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A new method is proposed to determine the evolution of coupling constants under the
renormalization-group study, by a single Monte Carlo simulation. The method makes use of
Schwinger-Dyson equations and has several advantages compared to other alternatives. Application
to scalar field theory in three dimensions is presented. The fixed point of this theory is determined.
The case of gauge field theory is also discussed briefly.

I ~ INTRODUCTION

The renormalization-group method' is one of the most
important concepts in quantum field theory (QFT) and
critical phenomena. There has been considerable inter-
play between both fields during the last 15 years. The lat-
tice formulation of quantum field theories does in fact
open the way to nonperturbative methods often borrowed
from statistical mechanics. One such technique is that of
Monte Carlo simulation which has led to considerable
success in application to field theories. In addition to
direct simulation of lattice theories there has been increas-
ing interest in combining the renormalization-group ap-
proach with Monte Carlo simulations following the
pioneering work of Ma and Swendsen. The so-called
Monte Carlo renormalization-group method seems more
powerful in determining critical properties or renormal-
ized quantities than ordinary simulations.

The most important applications of the Monte Carlo
renormalization-group method have been in determining
the critical exponents of several lattice systems. ' In addi-
tion to these quantities it is desirable to study the renor-
malization of the coupling constants themselves and the
position of the fixed point. Some advantages are expected
and reported by performing simulations along the renor-
malized trajectory in the vicinity of the fixed point. Basi-
cally the scaling behavior of observables is simpler on this
trajectory and given by the underlying continuum field
theory. Considerable deviations from asymptotic scaling
have been observed in gauge theories when approaching
the critical surface along other trajectories.

This paper presents a new method of determining the
renormalization of coupling constants by Monte Carlo
techniques. The method makes use of the Schwinger-
Dyson equations and, thus, is of considerable generality.
The simplest case, that of scalar field theories, is explicitly
developed in Sec. II. To illustrate the idea and show its
practical applicability we carried out the study of three-
dimensional scalar field theory. This case is in itself in-
teresting for statistical mechanics and our data are
presented in Sec. III. In Sec. IV we summarize our results
and discuss how to include gauge interactions.

Before presenting the details of our method it is in-
teresting to point out its advantages with respect to other
proposals. The first works on this subject used a compar-
ison of two simulations and two lattices. ' This requires

II. GENERAL FRAMEWORK

A. Notation and conventions

Consider the set of all operators integrated over the
whole lattice of volume V. We label each operator by an
index and denote it by 0 '=—0 '(P). The action can then
be written as a linear combination of these operators:

+(o) ~ &(0)+ID) (2. 1)

more computer time than methods using one simulation
and furthermore statistical errors are amplified.
Swendsen" proposed a method which is free of this diffi-
culty based on an idea by Callen. ' An application of it to
four-dimensional scalar theory was done by Lang. ' This
method is, however, less simple than ours. The equations
that determine the couplings are nonlinear and have to be
solved by iterative use of the linearized local form of the
equations. This fact suggests that Swendsen's method
might consume more time than our method. This might
turn out to be compensated or enhanced if less statistics is
required in one method or other to obtain the same accu-
racy for the couplings. For theories with unconstrained
fields our method has the definite advantage of requiring
essentially no more time than the one required to obtain
the critical exponents alone.

There are other methods proposed by several authors'
but in general the one presented in this paper seems supe-
rior for one or another of the following reasons.

(a) The physical principle underlying the method is sim-
ple: Use Schwinger-Dyson equations to determine the
coupling s.

(b) Only one Monte Carlo simulation is required to ob-
tain both the original couplings and the renormalized
ones.

(c) The set of equations which determine the couplings
is in most cases linear and thus easy to solve.

(d) The expectation values required are for scalar
theories, the same ones used in computing critical ex-
ponents.

(e) The method is valid for any lattice theory although
with varying degrees of simplicity.

(fl There are more equations than unknowns. This al-
lows a number of checks to be done on the approxima-
tions and other systematic effects.
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(2.2b)

where the superscript c stands for connected part and the
subscript f3( ' means that the averages are taken with
respect to the action (2.1).

Now consider a renormalization-group transformation
with a scale factor 2. The block-spin variable P(" is a
function of the original spin variable P. For example, for
a linear renormalization-group transformation, P(' ' is
given by

P")(block) =
d g (t (x),

x Eblock
(2.3)

where d is the space-time dimension and k is a parameter
which has to be tuned in order to have a fixed point. The
renormalized operators are defined as

0() )(y) 0(o)(y(1)) (2.4)

We will assume for simplicity that the operators 0; are
homogeneous functions of the field with dimension d;:

0;()u(/))=)((, '0;((()) . (2.5)

The renormalized action is specified by the renormal-
ized couplings /3';",

g(1& ~ ~(&)0(o)~ (~1
l

and is defined as

(2.6)

(+(y)&p ——(F(y" )&p. . (2.7)

where F is any functional (operator) of the field P.
In a similar fashion we can consider iterating the

renormalization-group transformation and label 0 ', P'
the corresponding renormalized operators and couplings
after a (1,2,3, etc. ) iterations. In what follows we will be
concerned with the expectation values

(2.8a)

(2.8b)

In Swendsen's method of determining the critical ex-
ponents a major role is played by the transition matrices

(a)

T (a, b)(p(0) ) (2.9)—V g/3(b)
J

which can be computed in terms of the correlation ma-
trices H as follows:

T(a, b) (H(c,a)) —)II(c,b)

with c )a, b.

(2.10)

B. Schwinger-Dyson equations

The problem of determining the renormalized couplings
in terms of the expectation values has been considered
many times in the literature. Here we present a simple

where /3,'
' are the different couplings.

The expectation values of these operators as well as
their connected correlations are denoted by

(2.2a)

method which can be applied to any statistical system in-
cluding gauge theories. The method takes its simplest
form for spin theories with unconstrained continuous
fields, i.e., —cc &P(x) &+ cc. In this case the same
quantities which enter Swendsen's determination of- the
critical exponents suffice to determine the renormalized
couplings. The method is based on Schwinger-Dyson
equations and we will now describe it for the case of sca-
lar field theories, with no internal degrees of freedom.

We consider the expectation value of the field
(P(x)&~0) at some given point x on the lattice. We can
obtain a Schwinger-Dyson equation by changing variables
in the path integral from t(( x)~P( x)+E and equating to
zero the terms linear in e:

(2. 1 1)

Notice that the change of variables is performed at the
same point x where the field is averaged. Summing over
x and using (2.1) and (2.5) we obtain

V= g A' 'd. /3'
' (2.12)

y(a) ~ g (a)d p(a) (2.13)

where V"'= V/2"' is the volume of the renormalized lat-
tice.

A new set of Schwinger-Dyson equations can be ob-
tained by applying the same change of variables
[(/(")(x)~(t)( )(x)+e] to the quantities (0;"(t)(b)(x)& with
a )b. We obtain

d ~ (a) ~ ~ (a, b)d f3(b)
l l ~ —1J J J

J
(2.14)

It is important to distinguish the cases a & b and a =b.
The former case is only valid if the renormalization-group
transformation is linear. Formula (2.14) for a =b is,
however, valid for arbitrary renormalization-group
transformations and can be obtained by differentiating
(2.13) with respect to f3" . In both cases, one can solve for
the couplings

f/(b) (H( b)) —a) d g (a)1
J j k

(2.15)

provided the matrices 0 '"' are invertible.
The relation (2.13) is not necessary to obtain the cou-

plings and provides a cross-check of the validity of the
truncations. Formula (2.15) can be used to reobtain the
original couplings (b=0) and thus measure the statistical
and systematic errors in the quantities.

Combining (2.15) for different values of a, we obtain

d f3( ) —W T ' "d. /3(..a).. .
J J ~ —Jl l l (2.16)

involving the transition matrices T' ". Therefore, given

This relation is a simple consequence of the properties of
the path integral under a scale transformation on the
field.

In a similar way applying the same steps to the renor-
malized actions and using (2.7) we get
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these matrices and the original couplings one can obtain
the renormalized couplings through a simple linear rela-
tion. Notice, however, that (2.16) is only valid for linear
renormalization-group transformations.

Additional sets of Schwinger-Dyson equations involv-
ing correlations of three operators can be derived but we
will not use them in what follows.

C. Truncation

(0;(S—S'))'=0, i =1, . . . , N „

where S is the true action and

(2.17)

S= g ()()(x) (2.18)

In all numerical studies of the renormalization group
one is necessarily forced to restrict oneself to a finite num-
ber of operators 0;. It is, therefore, necessary to consider
what is the effect of this truncation on the quantities of
interest.

Suppose that we restrict ourselves to a set of operators
0), . . . , 0)v and we assume that P~ =0 for j & N. It is
then possible to solve for f3), . . . , P)v using (2.14) for
a =b restricted to i,j = 1, . . . , N. The resulting couplings
PI, . . . , PIv depend on the assumed truncation in
coupling-constant space. Let us denote by S' the action
computed with these couplings. Then, we may rewrite
Eq. (2.14) for a =b as

Unfortunately, it is impossible to calculate (2.20) without
knowing the exact action S. There is one exception,
namely, when S —S' has a definite dimension D as for the
Gaussian model. ' In this case we can use expression
(2.13) since

V —g A;d;P,'=(S—S') = —(S—S') .
I

(2.21)

As a corollary we notice that for a Gaussian theory only
the exact solution satisfies the finite set of equations (2.13)
and (2.17). For interacting theories expression (2.21) may
be approximated for a given truncation with some nonin-
teger D.

In our practical application we will employ two
methods to check how good is a given truncation. First,
one can check how well equation (2.13) is satisfied.
Second, we will agree to say that S' is a good approxima-
tion of S whenever S' —S is a small operator in the sense
that

((S—S')')'«V. (2.22)

Although (2.22) cannot be directly checked, it is at least
possible to compare subsequent truncations. This cri-
terion seems more reasonable than comparing the values
of the couplings themselves, since different couplings
could affect expectation values in the same way as expli-
citly shown in Sec. III B.

From these relations the interpretation of S' follows: of
all truncated actions (containing only the first N opera-
tors) S' is the "closest" to the true action S.

In the previous statement we have implicitly introduced
a distance operator on functional space. It is the one cor-
responding to the norm

(2.19)

where the overdot is defined as in (2.18). Now it is easy to
see that the equations expressing the extremum condition
for

~
~S —S'

~

coincide with (2.17).
For (2.19) to define a norm, it must satisfy that the only

functional with zero norm is the zero functional. This is
only true if we define functionals modulo additive con-
stants, as is physically natural for an action functional.
Furthermore it assumes that there is no functional of the
field with zero covariance. This assumption turns out to
be false for theories in the large-N limit (N being the
range of the internal index). However, this difficulty is
unavoidable in any method which computes the couplings
in terms of expectation values, and furthermore replacing
S by S' would have no effect on the quantum properties
of the theory.

Returning to our truncated action S' we stress that a
nice advantage of our method is that it provides the op-
timal approximation to the action with respect to the
norm (2.19). It is, however, desirable to check how good
the approximation (truncation) is, i.e., how small is

~
~S —S'~ ~. Upon integration by parts and using (2.17) we

obtain

(2.20)

(&)T(a,b) (b) (2.23)

and therefore at the fixed point m* is a left eigenvector of
the T matrix. ' It must necessarily correspond to the
largest eigenvalue (we have assumed that there is only one
vector orthogonal to the critical surface at each point).

Furthermore, as a consequence of (2.16) we have that
the vector v',

(v*);=d;P,*. (2.24)

is a right eigenvector of the T matrix with eigenvalue 1

and orthogonal to m . The existence of a unit eigenvalue
is a consequence of the invariance under rescaling of the
field which ensures that if (P*, ) is a fixed point, then

(p '/3,*) is also a fixed point for any value of p. Thus the
eigenvector corresponding to the marginal operator gives
the fixed-point location.

In fact, on the critica1 surface we must have
co "-v"=0,where

(a)) d g(a) (2.25)

This relation is consistent with the fact, substantiated by
the data, that the divergent part of the correlation ma-

D. Fixed point

Here we list several consequences of the set of linear re-
lations which provide the renormalized couplings in terms
of the original ones. Let co' ' be the vector orthogonal to
the critical surface at point 13( ', and co(' the correspond-
ing one at the renormalized points. Then, since the criti-
cal surface is mapped onto itself under the renormaliza-
tion group, we conclude that
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trices H""' has the form

H(a, b) g(a, b)~(a) ~ ~(b) (2.26)

TABLE I. List of the operators used in the analysis. p is the
unit vector in the p direction and p&v&A, .

where g" ' diverges as we approach the critical surface.
However, since co' ' is orthogonal to v' ' it follows that
the vector A(" stays finite [see (2.14)]. Therefore,
co"v" measures how far we sit from the critical surface
and our data show that this quantity is small and grows as
a grows, as expected.

To conclude this section we notice that the fixed-point
couplings can be computed from the data. A first
method, mentioned previously below (2.24), gives the
fixed-point couplings in terms of the eigenvector of unit
eigenvalue of the T matrix at the fixed point. Couplings
are determined only modulo a normalization factor. The
second method is to solve the linear relation (approxima-
tion)

Ol

Op

03

04

05

06

07

g P(x l(t (x +p i

X,p

g P'(x}

g (() (x}
X

g P(x}
X

g (t(x}P(x+p+v}
X,P) V

g (t(x}P(x +p+v+X}
X,P, V, A,

P(x}P(x +2(M }
X&P

()}'(x}

p(a+() 7 (a+),a)p(a) (I T(a+ ),a))/3+ (2.27)

A. Monte Carlo data

We have analyzed the lattice theory of a single scalar
field in three dimensions, using the method presented in
the previous section. For definiteness, we have adopted
the linear renormalization-group transformation (2.3).

We only used eight operators in our analysis which are
listed in Table I. In order to locate the fixed point we
took data at three different regions in coupling-constant
space. The second and third regions were selected on the
basis of the previous runs aiming to get closer to the fixed
point. The three regions are as follows.

Regio~ I:/3) = —1.19, —1.2, /3, + 3/3) = —0. 1,/3, = —1,

4
——1;

Region II:/3, = —4. 5, /3~+ 3/I, = —1.002, 1,/33 =2.5,
Pg ——2.5;

Region III:/3) ———1,p2+ 3p) = —0.244, /33 =0.18,

4
——0.

The data were taken on a HITAC S810/10 vector com-
puter at KEK. We used a 32 lattice for the three regions
and in addition a 16 lattice for region III. A Metropolis
algorithm was used to update the configurations and the
acceptance rate was about 50%. In regions I and II only
the first six operators 0; were used in the analysis. The
three regions of coupling constants were seen to corre-

where the couplings are determined modulo the addition
of an eigenvector of unit eigenvalue. In principle, both
methods put together allow a complete determination of
the fixed-point couplings. In practice, the determination
of the fixed-point couplings faces the difficulty of the ex-
trapolation of the T matrix to the fixed point and the
problem of higher-order corrections to formula (2.27). In
addition, if we sit away from the fixed point one may
question which of the infinitely many fixed points is
selected. All that one can say is that it must be close
enough to /l') and /3'+ ').

III. APPLICATION TO THREE-DIMENSIONAL
SCALAR THEORY

B. Renormalization of coupling constants

The problem of the unknown value of A. in formula
(2.3) which appears in the determination of the critical ex-
ponents does not show up in the determination of renor-
malized couplings since the change of the couplings unde~
a change of k is simply given by

p,")(x)= '
/3,"(x,) . (3.1)

We choose to present the data in the form of the k-
independent ratios:

(a)
(a)

X].

)

/3(a)
(

d(~~

which corresponds to the replacement of the linear
renormalization-group transformation by a nonlinear one
obtained by selecting A.(P) so that P')"= —1. For com-
pleteness we also give the ratios

(3.2)

spond to the vicinity of the critical surface, the correlation
length being roughly 9 in all cases.

The analysis of renormalized coupling constants was
performed truncating the space of couplings sequentially
from 1 to the maximum value (6 or 8). In all cases a few
million iterations were performed initially to allow the
system to reach thermal equilibrium.

Then, the matrices H and vectors A were computed by
averaging over a given set of groups of configurations,
each group consuming roughly one hour of computer
time. The length of each group and number of groups is
as follows.

Region I ~ Each group contains 1250 configurations
separated by 100 sweeps. There are 20 and 13 groups for
each value of the couplings Ia ( f3( ———1.19) and Ib
(/3) ———1.2), respectively.

Region II. Groups of 2000 configurations separated by
50 sweeps. There are 40 groups used in this analysis for
each value of the coupling IIa (P2+3f3) ———1.002) and IIb
(/3p+ 3/3) ———1).

Region III. 60 groups of 1600 configurations separated
by 50 sweeps for the 32 lattice (IIIa) and 40 groups of
10000 configurations for the 16 lattice (IIIb).
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(aj
(.)

pt
p(0)

1

(3.3)

d d
M =dP)+P2+2 2 P +4 3 P6+dP7 (3.4)

in d space-time dimensions. We did not use expression
(2.13) in the determination of the couplings and in order
to check it we also present the lattice volume as deter-
mined from this formula.

The numbers in parentheses give the errors of the corre-

determined for X=A,O
——1.5. We choose to normalize our

values to P~ since this quantity has smaller errors than
other couplings. However, it is to be noticed that this def-
inition corresponds to a different normalization in terms
of continuum operators for each truncation in the
coupling-constant space.

The results of our analysis are presented in Tables II—V
for the values starting from the initial coupling constants
Ia, IIa, IIIa, and IIIb. The numbers quoted have been ob-
tained from the data using formula (2.15) with a =b For.
a=0 the value of quoted gives the ratio of the deter-
mined value of PI to the true value used in the simula-
tion.

The tables give the values of the ratios for different
truncations in coupling constant space from three up to
the maximum number of operators used, and for all
blocking levels from zero to three. We also give the par-
ticular combination of couplings corresponding to M !P&,
where M is the lattice mass square

sponding couplings and affect the last digits of the value
quoted. For example, 1.868(17) means 1.868+0.017.
These errors have been determined by calculating each
particular quantity for every group of configurations and
studying the dispersion in the results, obtained for the dif-
ferent groups. Larger errors are obtained for the original
couplings than for the renormalized ones. A full covari-
ance analysis does in fact show strong correlations among
the couplings. In particular x&+x6 has much smaller er-
rors than x& —x6, which explains the discrepancy of the
result for the zero blocking level with respect to the exact
value. In fact, correlations also seem to decrease for
higher blocking levels. This is presumably related to the
expected and observed departure from the critical surface.

The data were taken first for region I. The results for
regions Ia (Table II) and Ib are consistent with each other
within errors. The values of the couplings do seem to ap-
proach a fixed point since the renormalized couplings be-
come closer to each other for each new iteration of the re-
normalization group. In the space of six parameters the
fixed point should be close to the values M —0.2Pt,'

/33-0. 1/3,-'; p4- —0.007p( .
On the basis of the previous results we selected region

II as a new starting point. The results obtained [regions
IIa (Table III) and Ilb] are again consistent with the two
values of the mass that we used in the simulation
M = —1.002, —1. Already after one iteration of the re-
normalization group we get to a region of M -0.13P, ,

P3 0.07P, , and P4 ( —0.003P~ . There is no clear sys-
tematic trend after the first renormalization-group itera-
tion. In particular the third and second iterations are not

TABLE II. Values for the ratios of couplings p and x [formulas (3.2) and (3.3)] for all truncations T =3—6 and blocking levels
(BL's) =0—3, for region Ia: /3I

'= —1.19, xz ' ——2.916, x3"'= —0.706, x4"'=0.593. The last three columns give M //3~, the volume
V"' computed with expression (2.13) and b defined in (3.8). In Tables II—IV the lattice is 32' and the exact volumes are
V' '=32768, V"'=4096, V' =512, V' '=64.

BL

0.9965
1.509
1.699
1.758

1.209
2.437
2.499
2.54

1.129
0.351
0.316
0.325

M /P

0.179
0.562
0.501
0.460

26 108
4 034

500
64.3

148
26.6

8.15
2.53

0.9937
1.509
1.699
1.758

2.801
2.645
2.596
2.664

—0.585
0.183
0.239
0.226

0.556
0.039
0.0175
0.0231

0.199
0.354
0.404
0.336

32 043
4 164

508
65.5

60.8
3.9
0.61
0.23

0.9862
1.912
2.606
2.668

2.818
2.22
1.954
2.021

—0.593
0.114
0.102
0.097

0.569
0.019
0.0048
0.0064

—0.0033
0.084
0.133
0.131

0.201
0.278
0.249
0.192

32 044
4 198

524
67.9

0.38
4.51
2.89
1.05

0.995
(27)

1.868
(17)

2.490
(25)

2.595
(24)

2.795
(88)

2.273
(42)

2.045
(19)

2.072
(28)

—0.584
(74)
0.120
(16)
0.112
(5)
0.103
(11)

0.555
(37)

0.0208
(22)

0.0055
(9)

0,0071
(16)

0.016
(20)
0.0456
(51)
0.073
(5)

0.101
(5)

—0.023
(18)
0.042
(6)
0.065
(6)
0.031
(7)

0.199
(97)

0.284
(34)

0.256
(14)

0.195
(22)

32 054
(604)
4 200
(50)
526
(8)

67.0
(5)

1.57

1.22

0.72

0.141
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TABLE III. The same as Table II for region IIa: f3'~
' ———4.5, xP'=2. 7773, x3 ' ——0.1234, x4 ' ——0.0274. For very small numbers

we use the notation 0.58-3(35) meaning 0.58)& 10 +0.35 && 10, for example.

BL

0.9891
1.463
1.608
1.642

2.668
2.82
2.759
2.755

0.227
0.123
0.157
0.197

0.331
0.179
0.241
0.245

31 939
4 070

490
63.9

0.331
0.179
0.241
0.245

0.9891
1.463
1.608
1.642

2.782
2.84
2.761
2.756

0.1326
0.11
0.155
0.197

0.0225
0.0027
0.28-3
0.75-4

0.218
0.16
0.239
0.244

32 462
4083

490
63.9

0.218
0.16
0.239
0.244

0.988
1.907
2.576
2.619

2.785
2.323
2.014
2.023

0.1329
0.0664
0.0603
0.078

0.0226
0.0012
0.17-3

—0.2-5

—0.66-3
0.092
0.141
0.140

0.218
0.124
0.137
0.136

32 462
4 122

509
66.6

0.218
0.124
0.137
0.136

0.979
(11)

1.840
(8)

2.461
(10)

2.539
(15)

2.810
(45)

2.411
(13)

2.105
(9)

2.080
(15)

0.135
(17)

0.0714
(49)

0.0664
(32)

0.0830
(43)

0.0233
(45)
0.0014
(8)

0.16-3
(35)
0.3-4
(65)

—0.0207
(71)
0.0341
(28)
0.0830
(24)
0.1080
(26)

0.0233
(65)

0.0640
(30)

0.0640
(25)

0.0330
(29)

0.220
(25)

0.128
(25)

0.142
(8)

0.138
(10)

32 464
(204)
4 128
(15)
510
(2)

66.7
(3)

0.220
(25)

0.128
(25)

0.142
(8)

0.138
(10)

M =0. 136+0.007, =0.064+0.003,03

Pi'

= —0.0004+0.0004 .
(3.5)

The errors are purely statistical. Systematic errors are ex-
pected from finite-size effects and transient motion to-

closer to each other than the first and second ones. This
is to be expected since once in the vicinity of the fixed
point, the renormalization of the parameters is small and
corrections due to finite volume effects and truncations in
the space of parameters are not anymore negligible.

To check this last point we performed the last runs of
region III increasing the number of operators up to eight
and using a 16 lattice in addition to the 32 lattice used
in all previous runs. The results are shown in Tables IV
and V. The renormalized couplings after one iteration be-
come close to the results of region II if we restrict our-
selves to the space of six operators as before. Again, no
clear tendency is observed for the second and third
renormalization-group iterations, except for the fact that
the renormalization of the couplings is small. The data of
a 16 lattice show that the finite-size effect increases with
the iteration as expected, since the effective lattice volume
decreases. The change in the couplings with respect to the
32 data is of the same order as the changes of couplings
from one iteration to the next. This seems to confirm our
basic interpretation of the result. The best agreement be-
tween the results of regions II and III is obtained after
two renormalization-group iterations. We give as best es-
timates of the fixed point position in the space of six
operators the values:

wards the fixed point.
The renormalization of the constants x5 and x6 seems

quite universal for all our independent runs. It does not
seem to approach any fixed point. A more thorough
analysis shows that it is more natural to consider the com-
binations x&+x6 and x5 —x6. First of all, the latter
quantity has much bigger errors than the former. This is
related to the fact that the corresponding operator has
smaller fluctuations:

((0(o) 0( ))2)c ((0( )+0( ))2)c (3.6)

In fact, if we restrict ourselves to the space with x6 ——0,
the value of x5 redefines itself to keep x&+x6 unchanged
at the expense of bigger changes in x& —x6 (Ref. 17).
Furthermore, the renormalization of x&+x6 behaves as
approaching a fixed point, while the difference x& —x6
does not. Altogether, our results show no net improve-
ment when taking x& —x6&x5.

We must now consider the effect of the truncation in
the space of operators on the results of our analysis.
From the tables one notices that increasing the number of
operators from five to eight produces changes in p, xz,
x3, and M /P~ which are of the order of 5—10%. There
are a few features of these changes which are worth men-
tioning.

(a) Local operators as P,P,P,P' (Oq, 03,04,0s) af-
fect each other much more than they affect bilocal opera-
tors. On the other hand, the latter ones 05,06,07 have a
very small effect on the P 'P, P couplings. Notice that
the changes in x2,x3,x4 are accounted for by the change
of P~ alone.

(b) Small changes in the volume computed by expres-
sion (2.13) result from including more than five operators.
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TABLE IV. The same as Table III for region IIIa: /3I '= —1, xP =2.756, x3 ——0. 18, x4" =0. T goes now from 3 to 8.

T BL p

0.988 2.816
1.442 2.871
1.569 2.805
1.641 2.750

0.157
0.106
0.146
0.185

0.184
0.128
0.195
0.249

32 774
4072

489
65

42
13.7
6.0
2.48

0.988
1.442
1.569
1.642

2.806 0.165
2.864 0.111
2.822 0.134
2.791 0.158

—0.0018
—0.93-3

0.0024
0.0054

0.194
0.135
0.177
0.208

32 728
4068

491
65.5

0.67
0.2
0.16
0.118

0.985
1.917
2.559
2.633

2.814
2.308
2.019
2.023

0.166
0.0662
0.0544
0.0667

—0.0018
—0.5-3

0.35-3
0.99-3

—0.0014
0.0964
0.143
0.139

0.194
0.113
0.121
0.143

32 729
4 107

507
67.6

0.171
5.4
3.21
1.2

6 0 0.975
(9)

1.841
(7)

2.433
(8)

2.54
(1)

0.976
1.871
2.496
2.827

2.845 0.169
(36) (20)

2.404 0.0726
(12) (40)

2 ~ 119 0.0608
(10) (27)

2.088 0.0722
(13) (42)

2.841 0.169
2.414 0.0717
2.148 0.0583
2.014 0.0576

—0.0018
(45)

—0.6-3
(6)

0.37-3
(32)
0.0011
(5)

—0.0018
—0.7-3

0.24-3
0.77-3

—0.025
(8)

0.032
(3)

0.079
(3)

0.102
(3)

—0.0266
0.0112
0.0532
0.0468

0.027
(7)

0.071
(3)

0.069
(3)

0.038
(3)

0.0242
0.0117

—0.0029
0.031

0.0085
0.116
0.139
0.150

0.196
(28)

0.120
(8)

0.128
(7)

0.149
(11)

0.197
0.121
0.125
0.131

32 734
(204)
4 111
(14)
508
(2)

67.6
(3)

32 731
4 148

519
69.3

1.84

2.04

0.766

0.176

0.69
4.58
2.31
0.087

8 0 0.976
(9)

1.871
(7)

2.496
(8)

2.827
(9)

2.861 0.143
(52) (51)

2.420 0.0669
(14) (78)

2. 148 0.0583
(10) (38)

2.034 0.0453
(12) (51)

0.010
(23)
0.8-3
(22)
0.28-3
(86)
0.0037
(11)

—0.027
(8)

0.011
(3)

0.053
(3)

0.047
(3)

0.0242
(72)
0.0117
(28)

—0.0029
(25)
0.031
(3)

0.0085
(44)

0.116
(3)

0.139
(2)

0.1500
(23)

—0.0018
(33)

—0.15-3
(21)

—0.26-5
(70)

—0.22-3
(9)

0.176
(46)

0.116
(12)

0.125
(8)

0.111
(11)

32 800
(242)
4151
(16)
519
(2)

69.6
(3)

1.02

0.16

0.0019

0.07

No clear tendency toward improvement is observed as the
number of operators increases to the maximum of eight.
It is important to realize that the small changes in the
volume result from cancellation rather than from the
small changes in the couplings themselves. For example,
if we consider the change from five to six operators at the
second blocking level in Table IV we observe that the
volume changes from 507.3 to 508.1. The change of x5
alone would produce a change of 75 units in the volume:
2 orders of magnitude larger.

(c) Recalling the considerations done in Sec. II C we ar-
gue that what really matters is not the change of the cou-
plings themselves but the change in the action. In partic-
ular if S —S' is such that

((S—S') )'« V (3.7)
all expectations computed with the action S or with S'
would differ by a small amount. Thus if Sk is the action
obtained in the space of k operators, the value of

b, =[((Sk—S„,)')']' ' (3.8)

measures the effect of the truncation. This quantity is
listed in the last column of Tables II—V and is in all cases
much smaller than the square root of the corresponding
volume.

To conclude this section we will comment on other
determinations of the renormalized couplings. All our
previous results were obtained by use of formula (2.15)
with a =b. For a&b consistent values of the couplings
are obtained but the error is larger by several orders of
magnitude, getting worse for larger values of a —b.
Another possibility is to use formula (2.16) to determine
the renormalized couplings in terms of the original ones.
Table VI shows the values obtained for region III and 32
lattice. The results agree qualitatively with those shown
in Table IV. On a more quantitative basis is seems that
the agreement is mostly within two standard deviations,
rather than one. There are several explanations for this
fact. First, we recall that the values of the couplings are
highly correlated and therefore the errors quoted are not
independent. Second, for a &0 two truncations are in-
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TABLE V. The same as Table IV but now using a 16 lattice (region IIIb). The corresponding volumes V' are 4096, 512, 64, and

8. The seventh operator does not fit into the lattice of the third blocking.

T BL

0.9928
1.454
1.672
2.379

2.769
2.846
2.805
2.798

0.176
0.113
0.129
0.085

0.231
0.154
0.195
0.202

4077
508.3
63.3

8.2

19.5
6.32
2.76
1.32

0.9928
1.455
1.674
2.380

2.778
2.866
2.865
2.852

0.169
0.0996
0.093
0.064

0.0015
0.0025
0.0063
0.0023

0.223
0.133
0.135
0.148

4083
510.2
64. 1

8.35

0.25
0.25
0.25
0.09

6 0

0.9983
1.889
2.378
2.767

1.001
(5)

1.816
(2)

2.342
(3)

2.769
(2)

2.764 0.167
2.331 0.067
2.197 0.054
2.559 0.049

2.756 0.166
(17) (9)

2.424 0.074
(6) (2)

2.228 0.056
(8) (2)

2.558 0.049
(10) (4)

0.0015
0.56-3
0.00162
0.0014

0.0015
(15)

0.50-3
(25)

0.0017
(3)

0.0014
(4)

0.0023
0.0902
0.113
0.051

0.0091
(39)

0.0250
(16)

0.0944
{13)

0.0517
(8)

—0.0078
(38)
0.0720
(17)
0.0197
(14)

—0.55-3
(91)

0.222
0.128
0.123
0.134

0.221
(14)

0.138
(4)

0.126
(5)

0.134
(10)

4083
511.3
64.5

8.35

4083
(16)
511
(1)
64.5
(2)

8.35
(3)

0.098
1.78
0.85
0.15

0.19

0.72

0.08

0.0013

1

1.851
2.632

2.759
2.423
2.113

0.167
0.075
0.0455

0.0015
0.2-3
0.0011

0.0099 —0.0062
0.0014 0.0152
0.0411 0.0062

—0.0045
0.121
0.166

0.221
0.146
0.117

4083
514.6

65.9

0.13
1.62
0.88

1.000
1 ~ 851
2.632

2.742 0.187
2.422 0.075
2.121 0.0412

—0.0076
0.14-3
0.0021

0.0099 —0.0062
0.0014 0.0152
0.0411 0.0062

—0.0045
0.121
0.166

0.0013
0.5-5

—0.7-4

0.237
0.146
0.109

4076
514.6
66.1

0.35
0.0025
0.035

volved rather than one and the method should be con-
sidered less reliable.

21/2+ g/2 (3.9)

C. Critical exponents

For completeness we will present our preliminary re-
sults concerning the eigenvalues and eigenvectors of the T
matrix. The main difficulty we encounter is the deter-
mination of k in formula (2.3) associated with the critical
exponent g as follows:

A good determination of this quantity would demand
measuring expectation values and correlations of odd
operators. These operators were not included in our
analysis and therefore we can only obtain a rough esti-
mate of A, . One possibility would be to determine k in
such a way so that (A;" ) = (3;"+ ') at the fixed point.
From our data at the second and third blocking level we

TABLE VI. A different determination of the values of p and x for region IIIa (to be compared with Table IV, T=8). This deter-
mination uses formula (2.16), and a and b have the same meaning as in this formula. In particular b has to be identified with the BL
of Table IV.

(b, a)

10
20
21
30
31
32

1.82(2)
2.44(8)
2.42(2)
3.28(28)
2.87(7)
3.01(3)

2.35(4)
1.92(9)
2.13(2)
1.66(28)
2.03(5)
2.14(2)

0.1 1(2)
0.18(5)
0.07(1)
0.27(12)
0.06(2)
0.021(7)

—0.007(6)
—0.02(1)
—0.003(3)
—0.03(3)

0.002(4)
0.008(1)

—0.005(8)
0.07(3)
0.034(6)

—0.03(7)
0.03(2)
0.060(5)

—0.003(10)
—0.09(3)
—0.011(5)
—0.05(7)

0.007(17)
—0.024(5)

0.13(1)
0.17(2)
0.155(6)
0.44(6)
0.22(2)
0.240(5)

0.0006(6)
0.0015(10)
0.0003(2)
0.002(2)
6X 10 (35)

—4~ 10 (1)
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estimate A, =1.5+0.2 consistent with all different runs and
operators. This value is also consistent with the behavior
of the coupling constants under renormalization. Notice
that for 1=1.5, 131 does in fact behave as approaching a
fixed point ~

Unfortunately, the determination of k affects the value
of all critical exponents. The largest eigenvalue po of the
T matrix is related to the correlation length critical ex-
ponent v as

pp= 2 (3.10)

The relevant operator associated to this eigenvalue is
basically given by 02 (95—99%%uo). This explains why the
truncation in the space of operators has little influence on
the determination of this eigenvalue.

Although the value of v itself depends on the value of
g, it is possible to determine from the data the value of
the combination

X= —+1.03(+0.01)r) .
1 (3.1 1)

The numerical constant is found empirically, the value 1

is just half of the dimension of the 02 operator, and the
decimals come from contamination of higher dimensional
operators.

In Table VII(a) the value of X is given as determined in
the space of six operators for regions IIIa, IIa, IIIb, and Ia
computed from the largest eigenvalue of all T""' ma-
trices. In Table VII(b) the effect of different truncations
is shown for region IIIa. A common feature of all deter-
minations is that all data lie well above the value of
2 = 1.6218 which corresponds to the Ising model as deter-
mined by other authors. It is hard to draw any con-
clusion, however, without a detailed analysis of the effect
of truncation, finite-size, transient motion towards the
fixed point and departure from the critical surface, fol-
lowing the guidelines of Ref. 8. We did not attempt any
such analysis since the main purpose of this paper is to il-
lustrate the method of determining the renormalized cou-
plings and computing the fixed point for the scalar field

T '': x P
——2. 18, x 3

——0.23, x4 ——0.007,

T"): x2 ——2.953, x3 —0.041, x4 —0.006,
(3.12)

obtained by normalizing to /3I" and f3I ', respectively. The
qualitative features are consistent with our determination
of the fixed point of the previous section but errors are
larger and these results cannot be used to improve on the
former.

If we include up to six operators the results are

T' ":x2 ——2.48, x3 ———0.08,
x = —0.001, x ' =0.138, x * =0.0112,

T' ' '. x2 ——2.07, x3 ——0.09,
x4 =0 006 &s =0.115 x6 = —0.026

(3.1 3)

theory in three dimensions.
We would like to comment on the possibility of getting

rid of our lack of knowledge on the value of g, by replac-
ing the linear renormalization-group transformation by a
nonlinear one. One can define the transformation in such
a way as to keep P,

' = —1. We did not choose this possi-
bility since in this case the value of po depends strongly
on the particular T" ' matrix chosen. However, this
variation is very small as seen in Table VII(a) when a con-
stant value of k is chosen. Thus a nonlinear transforma-
tion of this type would obscure the interpretation of the
data.

A final remark that we want to make concerns the
smaller eigenvalues of the T matrices. In the space of
four operators all eigenvalues are real for all runs and T
matrices. For X= 1.5 two eigenvalues become close to one
but slightly higher (1.2+0.2) and the smallest one is of the
order of 0.4. One of the two operators which are close to
marginal is associated with the invariance under rescaling
of the field. As an example we show the values of xz,
x 3 and x 4 determined by T ' and T of region IIIa by
use of formula (2.24),

TABLE VII. (a) Values of X [formula (3.11)] as obtained for several regions and using different
T"b' matrices [the value of (a, b) is indicated in the first line]. Six operators are used in all cases. (b) X
as determined for region IIIa as a function of the truncation ( T) in the number of operators. (a, b) have
the same meaning as in (a). Errors are typically 0.001—0.002.

Region

IIIa
IIa
IIIb
Ia

(1,0)

2.0845
2.068
2.071
1.906

(2,0)

2.0855
2.077
2.0777
1.9431

(a)
(3,0)

2.08
2.075
2.0814
1.9527

(2, 1)

2.0869
2.08
2.0895
1.9842

(3, 1)

2.0727
2.068
2.0845
1.9781

(3,2)

2.056
2.054
2.0888
1.97

(1,0)

2.0915
2.0908
2.0854
2.0845
2.0836
2.0853

(b)
(2, 1)

2.0917
2.0919
2.0874
2.0869
2.0857
2.0857

(3,2)

2.0627
2.0630
2.0568
2.0560
2.0495
2.0495
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showing a sizable dependence on the truncation but still
consistent with the qualitative features. Unfortunately
after the seventh operator is included this eigenvalue and
eigenvector disappear and a pair of complex-conjugate
eigenvalues occur.

Concerning the other close to marginal operator we
point out that it is basically associated with a combination
of P and P with opposite signs and remains stable under
different truncations or choices of T" ' matrices.

IV. CONCLUSIONS

In this paper we have presented a new method to deter-
mine the coupling constants in terms of expectation
values. It can be applied to block-spin averages to obtain
the evolution of the coupling constants under the renor-
malization group. Compared to other methods, our pro-
posal has several advantages. First of all, the determina-
tion of all renormalized couplings is done in one single
Monte Carlo simulation and essentially requires no more
information than the one used to compute critical ex-
ponents. Therefore, there is considerable gain in comput-
er time and systematic errors compared to methods in-
volving different simulations. Furthermore, the coupling
constants are determined by solving a set of linear equa-
tions and there is no need to tune any parameters during
the simulation. This feature contrasts with other methods
based on one simulation which involve nonlinear equa-
tions to be solved by an iteration within the Monte Carlo
run.

The main observation underlying our proposal is the
fact that the Schwinger-Dyson equations are (except for
discrete-spin theories) linear in the couplings. Thus it is
possible to determine the couplings from the equations.
In practice, one must restrict oneself to a finite number of
couplings. The limitation is present in any other method,
but in our case the validity of the truncation can be
checked since there are more equations than unknowns.
Furthermore, our data suggest that the subsequent ap-
proximations to the action obtained by truncating to the
space of a finite number of couplings differ from the ex-
act action by "small operators, " i.e., operators with small
fluctuations relative to the volume. This can be con-
sidered a reasonable "definition" of the restriction of the
renormalization group to the space of a finite number of
couplings.

There are some interesting theoretical properties which
follow from our set of equations. For the case of scalar
field theories some of them have been presented in the
text. In particular a left and right eigenvector of the T
matrix at the critical point are identified as the normal to
the critical surface and some simple function of the
fixed-point couplings, respectively.

An important advantage of our method is its generality.
The main idea is to determine the couplings so that
Schwinger-Dyson equations are satisfied. However, its
practical application is not as simple in some theories as it
is in other. The simplest case is the one of scalar field
theories with or without internal degrees of freedom,
which has been considered in the text. The worse situa-
tion applies for theories with discrete spins. In this case

S =Tr(U~F~)+ Tr(Ut Fr )+b,S, (4. 1)

where U~ is the SU(%) gauge variable at link 1 and b,S
does not contain U~. In general F~ depends on the cou-
pling constants P linearly and can be written as

F~ ——g/3 GP. (4.2)

For simplicity, we assume that GP do not involve U~. (If
G~ involve U~, the final equation is modified by contact

the Schwinger-Dyson equations are not any more linear in
the couplings. It might well be that Swendsen's method"
is superior to ours in this case, although the equations
look very much alike. It would be desirable to check both
methods for the Ising model to see which one gives small-
er errors and requires less time.

There are field theories where our method does not ap-
ply: namely, when the expectation values are not enough
to determine the couplings. The best known example is
that of spin theories in the large-X limit for which many
different actions lead to the same expectation values. The
only way out is to restrict oneself to a minimal form of
the action. Of course, this problem occurs for any
method of the type.

In this paper we have illustrated the method of comput-
ing renormalized couplings for the case of scalar field
theory in three dimensions. We proceeded in subsequent
approximations towards the fixed point on a 32 lattice.
The last two runs converged towards the same region in
coupling-constant space most remarkably after two itera-
tions of the renormalization group. Our best estimate for
the couplings is given in formula (3.5). There are theoreti-
cal difficulties in being too precise about the location of
the fixed point. Since all numerical estimations are neces-
sarily limited to a finite volume and number of couplings,
there need not be any fixed point at all. Once in the
neighborhood of the true fixed point, the motion of the
couplings may crucially depend on finite-size and trunca-
tion effects. In fact, the truncated finite volume T matrix
has complex eigenvalues when many operators are includ-
ed.

We have performed a number of cross-checks on the re-
sults. A different set of Schwinger-Dyson equations to
the ones used in determining the couplings is seen to be
reasonably well satisfied, although purely statistical errors
seem too small. In any case the qualitative features of the
fixed point remain unchanged. The effect of truncation
and finite size has been studied in the text. The latter is
obtained by comparison with a 16 lattice and remains
small although increasing with the blocking level. The
former is much larger especially for couplings involving
bilocal operators other than nearest neighbor. It seems on
the basis of our data that the different approximations to
the action differ by small operators in the sense explained
in the text.

Finally, to conclude this paper, we discuss how to gen-
eralize our method to include gauge interactions. Then
we consider the SU(1V) gauge theory and write the action
as
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terms. ) Then we consider the quantity

dUI Tr A.'U$G$ e
I

(4.3)

and make a change of variable Ut~U/=(I+i@A')Ut in
the path integral. Here X' is the generator of SU(N). By
equating to zero the terms linear in e and summing over a
we obtain

(N ——1)(Tr(UtGt ) ~ = g (Tr(UtGt UtGf) —Tr(Gt Gf ) ——Tr(UiGt )Tr(UiGf)+ —Tr(UtGt )Tr(Ui Gft)'jpr
r

(4.4)

where use has been made of the identity

a ag ~ij ~kl 2 ~il~j k ~ij fikl2X
(4.5)

coupling constants are

it3 = 1.004+0.005, ill = —0.2007+0.0017,
(4.7)

/3 = —0.4005+0.0018, P = —0. 1002+0.0009,
Equation (4.4) is the desired Schwinger-Dyson equation. '

By solving (4.4) for P, we obtain the coupling constant.
For the SU(2) case this equation has a very simple form

since Tr( UiFi ) =Tr( Ui Fi ). In fact, (4.4) becomes

~ (Tr(UtGt )) = —g (Tr(Gt Gi)' )

r
——,Tr( Ui Gt )Tr( Ui Gtr ) ) itlr . (4.6)

We have checked (4.6) by including four coupling con-
stants P' —P corresponding to the simple plaquette, the
6-link planar, L-shaped, and twisted loops in four dimen-
sions. Starting from the given coupling constants P'=1,
P = —0.2, P = —0.4, and g'= —0.1, we used (4.6) to
reproduce these coupling constants on the 8 lattice.
After system reaches to equilibrium, we took 50 gauge
configurations to evaluate the vacuum expectation values
appearing in (4.6). To increase statistics, (4.6) is averaged
over the position and direction of link l. The calculated

showing nice agreement.
The above example shows that our method is really

simple and general. Now it is also easy to combine (2.14)
and (4.4) to write down the Schwinger-Dyson equations
for SU(N) gauge-Higgs theory. These equations should
be useful to study the nature of fixed points in four-
dimensional real systems.

After completion of this paper we became aware of a
paper [M. Falcioni et al. , Nucl. Phys. B265 [FS15], 187
(1986)] in which the idea of using Schwinger-Dyson equa-
tions to determine the renormalized coupling constants
has also been considered. Their practical implementation
of this idea is, however, quite different from ours.
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