
PHYSICAL REVIEW D VOLUME 35, NUMBER 2 15 JANUARY 1987

Topologically massive chromodynamics at finite temperature

Robert D. Pisarski
Fermi Rational Accelerator Laboratory, P.O. Box 500, Batauia, Illinois 60510

(Received 21 April 1986)

Topologically massive chromodynamics is studied at a finite temperature T. The topological
gauge invariance present at T =0 is argued to remain valid at T&0, but verifying this in the quan-
tum theory is far less direct at T&0 than at T =0. Debye screening occurs, and has a striking ef-
fect on the correlations of static magnetic fields. The behavior of the free energy at high tempera-
ture is also computed.

I. INTRODUCTION

In three space-time dimensions, adding a Chem-Simons
term' to the Lagrangian for a non-Abelian gauge field
dramatically changes the theory. Most notably, invari-
ance under topologically nontrivial gauge transformations
is no longer assured. To do so at the classical level, the
coupling of the Chem-Simons terms, which is a mass m,
must be equal to an integer q times g /4~, where g is the
gauge coupling.

How does this topological gauge invariance manifest it-
self in the quantum theory? At least in one special
case—in the Landau gauge when q &&1—it is straightfor-
ward to calculate the (finite) renormalization of this in-
teger, q„„(Ref. 3). For an SU(N) gauge group without
fermions, to one-loop order q„„=q+N. Beyond leading
order in the loop expansion, q„„does not change, and a
new, topological Ward identity emerges to ensure invari-
ance under large gauge transformations. What was not
clear before was whether this q„,„was a gauge-invariant,
and so a physically meaningful, quantity.

In this paper I consider topologically massive chromo-
dynamics at a finite temperature T. My purpose is sim-
ply to gain greater insight into the physics of these unusu-
al theories.

This hope is certainly borne out by the first topic I con-
sider, which is the topological gauge symmetry at T&0.
Common sense tells us that if q and q„,„are each integers,
then by continuity they must be independent of tempera-
ture.

Classically this is obvious, for the same facts of coho-
mology' which quantize q as an integer at zero tempera-
ture apply without modification when T&0.

At first, this does not seem to be true in the quantum
theory. If one blindly recalculates at T&0 in precisely
the same way as at T =0, it appears that q„„ is not an in-
teger when T~O, but just some ugly function of m/T. I
shall argue that this is simply because one cannot be blind
in calculating q„„at T&0.

Understanding how to correctly calculate q„„at T&0
suggests a general understanding of q„„. I propose that
q„„can always be defined by the behavior of the full, ef-
fective action under topologically nontrivial gauge
transformations. I then conjecture that with this defini-

tion, q„„ is a physical quantity, in that it is independent
of the choice of gauge, boundary conditions, and so forth.

For reasons that will become clear, usually it is ex-
tremely difficult to calculate q„„. If my conjecture is
true, this is unnecessary, for one can simply compute in a
convenient gauge, such as the Landau gauge, with con-
venient boundary conditions, such as at zero temperature.

While I shall present some evidence in support of the
conjecture, admittedly it is limited. Even so, given the
fundamental role that topological gauge invariance plays
in these theories, then if they are consistent quantum field
theories, it is very hard to see how it could fail.

I am also led to make a second conjecture. The relation
q„„=q+N was computed for an SU(N) gauge group in
weak coupling, which is large q. Since the bare value of q
is itself an integer, there is no guarantee that this relation-
ship could not change discontinuously as q decreased. I
suggest that this does not happen —that q„,„=q +N as
long as the bare value of q&0. It might be possible to
understand why q„,„—q is proportional to X by consider-
ing Z(N) monopoles in SU(N) (Ref. 6).

I start in Sec. II by reviewing topological gauge invari-
ance at T =0. I pay particular attention to some of the
details which were previously swept under the rug, for
what is under there is crucial in understanding q„„at
T&0. Fermions also contribute to q„„,and in Sec. III, I
show that their contribution is the same at T&0 as it is at
T =0. The methods which I use are not only circuitous,
but special to fermions. ' This demonstration is still in-
structive, for it does show that the way in which the topo-
logical gauge invariance works need not, and usually will
not, be as transparent as the consequences of invariance
under infinitesimal gauge transformations.

I demonstrate that Debye screening occurs at T&0 in
Sec. IV, and that it has unexpected effects. At T =0, the
correlations of all fields are screened over large distances
by the Chem-Simons mass. For any T&0, however,
while the long-distance correlations of electric and non-
static magnetic fields remain screened, those of static
magnetic fields are not. Because of the coherent oscilla-
tions in the thermal plasma, static B fields do develop
long-range correlations.

I discuss some features of the free energy in Sec. V, in-
cluding how easy it is to compute its behavior at high
temperatures.
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II. TOPOLOGICAL GAUCHE INVARIANCE
AT T=0

I follow the conventions and notation of Ref. 3. For
simplicity, I take the gauge group to be SU(2), and use
both the Pauli matrices o' and the anti-Hermitian H,
H=o'/2i. I put the fermions in the fundamental repre-
sentation, with Xf flavors of mass mf, and use a P-even
regulator, so there are no "regulator" fermions.

The Chem-Simons term

S = im—f d x d'" tr(A„B Az+ —,gA„A„A&)

transforms under a gauge transformation A as

(2.1)

S ~S + f d'x 0" B„tr[(B Q)Q '&x]

4~m+2&l (2.2)

Write 0, in terms of elements of the Lie algebra, e'.
Il =exp(i cr'B'), (2.3)

If e' is an arbitrary function of x, w can take on any
value, and the theory is not gauge invariant. To ensure in-
variance under large gauge transformations, it is necessary
to assume that space-time can be treated as a compact
manifold.

At zero temperature, this means that 0 must approach
a unique value 0 at space-time infinity, and so space-
time is isomorphic to the three-sphere S . From homoto-
py theory, the mappings from S into any Lie group are
labeled by an integer which is the winding number w.

Since 0 is constant, as long as all 2& are pure gauge
rotations at infinity, the Az-dependent surface term in
Eq. (2.2) vanishes. Following Deser, Jackiw, and Tem-
pleton, we can then arrange for the partition function to
be gauge invariant, at least classically, by choosing
4am /g equal to an integer q.

It helps to have an example of an II with w&0. In
SU(2), by a global gauge rotation I can take II =+1:

x'00=exp i~n
(
—2+ 2)1/2

(2.5)

From Eq. (2.4), this II has w =n, with Il =(—)".
In Eq. (2.5), p is a scale size 0&p& oo. Instantons in

four space-time dimensions also have a parameter p which
characterizes their size, but for instantons, p is a physical
quantity. Here, p is merely another parameter which la-
bels the infinite degeneracy of topologically nontrivial
gauge transformations.

It is easy to generalize this to SU(N) by embedding the

B'=BB', (B') =1. Then w, the winding number, can
be expressed as a surface integral:

1

, f d'xa~~,
(2.4)

p e ~ k abc~ay ebg gc
2 V

Q of Eq. (2.5) into an SU(2) subgroup of SU(N). Up to
global color rotations, Q is a diagonal matrix with ele-
ments + 1 and —1.

A natural question is whether further restrictions can
be placed on the 0's so as to forbid those with w&0. For
the II of Eq. (2.5), this seems possible, since for this 0,
the contribution to w is entirely from the point at infinity.
Perhaps one could impose w =0 by requiring B, Eq. (2.3),
to vanish at infinity.

This hope is misplaced. By a smooth gauge transfor-
mation, one can rewrite the 0 of Eq. (2.5) in a form where
the point at infinity, represented say by the north pole on
the three-sphere, makes no contribution to w. But be-
cause w is a topological invariant, this would only be
shifting the point which gave w&0 to some other point
on the three-sphere. In the original space-time, any such
point lies at finite x, and is not affected by the boundary
conditions at infinity. Hence in these theories, topological
gauge invariance is an unavoidable consequence of the lo-
cal gauge symmetry.

Things are not so obvious in the quantum theory. One
would like to determine q„„ from the effective action,
computed to some order in the loop expansion, in the
presence of a background field A" with w = n Whil.e this
A„" will be a pure gauge field, A„=Q 'B„Q/g, for finite

p this necessitates calculating the effective action for a
background field which is large in magnitude (A& —1/g)
and has a momentum dependence that cannot be neglect-
ed.

Suppose, however, that the scale size p is very large. By
increasing p, we can make the magnitude of Az, and its
typical momenta ( -p ), arbitrarily small over any finite
region of space-time. As phoo, all that contributes to
the effective action is the renormalization of the Chern-
Simons term, computed about the trivial vacuum, Az ——0,
at zero momentum.

This means that the effective action must have a well-
defined expansion about zero momentum. For covariant
gauges, this is only true in the Landau gauge. Using this
gauge in weak coupling to one-loop order,

Z
qIeII Zm q

Zg

=q +N + sgn(mf )
2

(2.6)

for an SU(N) gauge group. Z is the mass renormaliza-
tion constant evaluated at zero momentum, etc. For q
and q„„ to be integral, Nf has to be even, but there is no
restriction on the gauge group. (A& should be put into the
Landau gauge, but this can obviously be done. )

Corrections to Eq. (2.6) are the O(q '), so for q„„ to
remain an integer at large q, Eq. (2.6) must be exact. This
implies a topological Ward identity that relates Z to the
other Z's (Ref. 3). This topological Ward identity is very
similar in form to the usual Ward identities of infini-
tesimal gauge invariance. Nevertheless, it holds only for
Z's evaluated at zero momentum in the Landau gauge,
since only then in one computing the renormalized action
for 0's with scale size p~ op.
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The effects of topological gauge invariance cannot be as
simple at nonzero momentum —in any gauge —as they are
at zero momentum in the Landau gauge. To probe
nonzero momenta, the background A z must be generated
by an 0 with finite scale size. But then Az is large in
magnitude, and so calculating correlation functions about
the trivial vacuum will not tell one much about correla-
tion functions in the presence of such an A „. An explicit
example of this will be seen in the next section.

It cannot be easy to show what I conjecture q„„ is-
namely, a gauge-invariant measure of the (inverse) dimen-
sionless coupling constant. Following Witten, we under-
stand that fermions contribute to q„„because the fer-
miop measure in the functional integral —that is, their ef-
fective action Nftrln(B —mf)—is not invariant under
large gauge transformations. Since q„„&q even without
fermions, this means that the measure for gauge fields in
the functional integral, including ghosts and the like,
must also transform nontrivially under large gauge
transformation s.

So why should the conjecture about q„„hold? For the
quantum theory to make sense, q„„must be an integer. It
seems unlikely that q„„would change discontinuously as
one continuously varied parameters like 6's scale size,
those for gauge fixing, boundary conditions, etc. While
difficult, perhaps the proof of the conjecture would also
yield some insight into the effects of topological gauge in-
variance at nonzero rnomenta.

III. TOPOLOGICAL GAUGE INVARIANCE
AT T&0

In thermal equilibrium at a finite temperature T, the
gauge fields A„and the fermions fields P obey the boun-
dary conditions

four-dimensional instanton, with instanton number = n,
at a finite temperature T (Ref. 10). This is an Az in
singular gauge that is strictly periodic in time. Choose
one spatial direction, say x &, and transform the instanton
into the A& ——0 gauge. This is done by a gauge transfor-

xl
mation -P exp( I A, dx'& ), and so the instanton is still
strictly periodic in time in the A

&

——0 gauge. At
x

&

———oo, we can insist that A@ ——0; at x
~
——+ ~,

'BzA/g, p=2, 3,4. Because of the relation be-
tween winding number and instanton number, this 0, is
what we want —it depends only on the three-space defined
by xz, x&, and t, is strictly periodic in t, and has winding
number = n.

In practice, this construction is very cumbersome, and
it is easier to guess. Consider

A=exp 2m —0 a. (3.2j

0 depends only on the spatial x, and is chosen to be a
two-dimensional instanton'' with instanton number (for
maps of S ~S ) =n:

d2& &Ji&abc 0 ag 0 bg 0 c (3.3)
8~ 1 J

When x~ co, 6(x)~a constant, and A~a constant 0„.
A„does depend on time, but this is allowed for a mani-
fold isomorphic to S &S'.

As in four dimensions, the two-dimensional instantons

6(x) come in all scale sizes p. Using Eq. (2.4) shows that
the winding number of Eq. (3.2) is w =2n. I have not
been able to guess a form for a strictly periodic 0, with
odd w—following Eq. (3.2) gives an antiperiodic 0—but
the construction described above shows that such 0, 's do
exist. The gauge field generated by Eq. (3.2) is

(3.1)

1 2W
Ao ——— o. 0,

g P
(3.4)

P= T ', and x =(x,t): the three-momenta p =(p,po),
where po is an even or odd multiple of ~T for bosons or
fermions, respectively.

I assume that, like A&, the allowed gauge transforrna-
tions Q=Q(x, t) are strictly periodic in time. [When there
are no fields in the fundamental representation, 0, need
only be periodic up to a global Z(N) transformation, but
for our purposes, this can be ignored. This Z(N) symme-
try does play a role in the presence of monopoles. ] Com-
pactifying space-time, we obtain S XS '—but homotopy
theory does not tell us how to classify maps from S )&S'
into a Lie group. We must resort to cohomology
theory, ' which says that the mappings from any com-
pact three-manifold into a Lie group are characterized by
an integer, which is of course the winding number w.
Since any compact three-manifold will do, q must be an
integer for all (physically reasonable) boundary conditions.
This includes not just finite temperature, but even if we
put the theory in a box which is of finite size in all three
directions.

A prescription for constructing a strictly periodic 0
with winding number w =n can be given. Start with a

1 ~ t
exp 2tti (1 o. 6)—— .

l 4

~ t—exp 2vri (1+o—"6) +—2o. 6 o..B;6 .

I now make an elementary observation. By making the
scale size p of 0 arbitrarily small, I can make A; and the
typical spatial momenta of Ao and A; arbitrarily small.
What I cannot do is make the magnitude of Ao, or the en-
ergies of the A;, small. This is true for any 0—to have
u&0, 0, must depend on time, and so have nonzero ener-
gy. At T&0, no energy &0 can be smaller than 2~T.

In considering q„„,for the sake of simplicity I concen-
trate on the effects of ferrnions. As explained in the pre-
vious section, at T =0, q„„ is determined from Z's
evaluated at zero momentum, Eq. (2.6). Fermions con-
tribute equally to Z and Zg, so only their effect on Z
matters; Z = 1+H„where H, is the P-odd part of the
gluon self-energy. I do the most naive thing possible, and
evaluate H, (p,po) at T&0 in exactly the same way as at
T =0—by taking po ——p=0:
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m 1 dl4Hre~(0 ()) Z f N fm (k +mf ) (2~)

mf 1=g Nf
m — 4g 3f Ef [ 1 +exp(Ef /T) )

d k
2T cosh (Ef /2T) (2m)

(3.5)

for fermions in the fundamental representation; Ff —(k +mf )' . Subscripts + or —on integrals or traces refer to
boson or fermion boundary conditions, Eq. (3.1). At low temperatures,

Hfe™(0,0) — sgn(mf)Nf[1 —10exp( —
~
mf

~

/T)+ ],
8mm

(3.6)

while at high temperatures,

3 2

16~m
sgn(m )N +

S,ff (Aq) = —Nftr in(B+gA —mf ) . (3.8)

H,' (0,0) (3.7)
T)) mf i

At T =0, qII,' (0,0)=sgn(mf)Nf/2, Eq. (2.6), but for
any T&0, qH, ' (0,0) is just some involved function of
mf /T.

[As an aside, note that the sign of H,' differs at high
temperature from that at low temperature. Hence if one
started with a gauge theory with no bare Chem-Simons
term, q =0, then the sign of the Chem-Simons term in-
duced by the fermions would change as the temperature
were raised. Presumably, there is a temperature
T, —

~
mf ~, at which the induced term evaporates—

II': (0,0)=0 at T, .]
To correctly calculate the fermion contribution to q„„

at T&0, I start with the fermion part of the effective ac-
tion. To one-loop order, this is

by the cyclic property of the trace. Contained in the defi-
nition of the trace are the correct boundary conditions for
the fermions, Eq. (3.1). As a large gauge transformation,
0, can only be commuted in the trace if it does not alter
these boundary conditions; this is why I insisted that 0 be
strictly periodic in time.

Equation (3.10) shows that q,",„ is independent of the
magnitude of the fermions' mass, so I can choose to
evaluate it at zero mass. Arguments first used by Witten
in a related context can then be employed. Remember
the construction of an Q with tLI =n at T&0. Consider
the dimension x

& simply as a parameter that interpolates
between 0,=0 at x& ———oo, and the A with m =n at
x& ——+ oo. Both 0's are proper gauge transformations, so
the eigenvalues of B+gg " and Q must be identical, but as
x&.—~ ~+ ~, levels can cross from negative to positive
energies (or vice versa). The number of such crossings is
related to the number of zero modes in the instanton field,
which in turn is determined by the instanton number. In
this way, one mimics the analysis at T =0 to find

Following the definition of q„„proposed in the Introduc-
tion,

det (8+gA ")=(—) det (8) . (3.12)

S,rr' (A„")—S,rr' (0)=(2rrin)q, ,"„ (3.9)

[S,rr (A„")—S,rr (0)]
mf

=Xftr

Since gA "=fl 'BQ,

1

8+gA "—mf 8 —mf
(3.10)

where 3& is a pure gauge field of winding number n, as in
Eq. (3.4).

q, ',„could be found by brute force. For a scale size
p»1, S,ff can be expanded to quadratic order in the
A;", but all orders in the large field 3 0 must be kept. This
is why Eqs. (3.5)—(3.8) do not get qr „right: implicitly
one is expanding in Ao. Although large in magnitude, 2 0
is approximately constant in space when p»1. Expan-
sion to quadratic order in the spatial derivatives of Ao
would give q, ',„,but only after much effort and with no
insight.

There is an easier way. Consider the variation of S,ff
with mf..

Trivially, this result is independent of the scale size p.
From Eqs. (3.9) and (3.11), q„,'„must be proportional to
1Vf/2. I make the small step of assuming that the con-
stant of proportionality is sgn(mf ), and so q,",„
=sgn(mf)Nf/2, exactly as at T =0, Eq. (2.6). [For this
to be consistent, it is necessary to define sgn(mf ) = + 1 or
—1 as mf~0+ or 0 .)

The trick of Eq. (3.10) does not seem to help with
gluons. With S,ff the total effective action,

1S,rr =—(S ),
3m m

(3.13)

IV. DEBYE SCREENING AT TWO

where (S ) is the vacuum expectation value of the
Chem-Simons term, Eq. (2.1). ((S ) is not manifestly in-
variant under topologically gauge transformations, but be-
comes so when the sum over positive and negative wind-
ing numbers is performed. ) Unlike fermions, (S ) de-
pends on both two- and three-point expectation values of
Az, and so it appears that S,ff could depend on the mag-
nitude of m.

1
Nftr 0 —mf

1

8 —mf
=0, (3.11)

The effects of Debye screening follow from the proper-
ties of the gluon vacuum polarization tensor, H& (p,po).
As at T =0, an infinitesimal Ward identity requires
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p"H„=O, (4.1)

but the consequences of Eq. (4.1) are very different, de-
pending upon whether po =0 or pa&0 (Ref. 10).

I start with the static limit, po =0. Equation (4. 1) is sa-
tisfied by

IIoo ——H,((p ),
IIo; ——me;~p'H, (p ),
H;, =(5;,p' —p'p')H .,(p');

(4.2)

i,j =1,2 refer to the spatial directions. H, ~
and H, g

can
be viewed as self-energies for electric and magnetic fields,
while H, is a P-odd piece like that at T =0; there is no
P-odd term in H,z, since it would be -e;~pp. Equation
(4.1) does not require Hoo to vanish as p~O, so we can
define an electric mass m, ~

——H, ~(0):

H„(p ) =m„+p H,',(p ) . (4.3)

k +3m d k
+g N

+ (k + ) (2~)'
(4.4)

H,'& and H, g
will contribute to wave-function renormali-

zation for the electric and magnetic fields.
To determine the electric mass, it is easiest to observe

that by Eq. (4.2), m, ~
——Hz&(0, 0). I assume the gauge

group is SU(N), with Nf flavors of fermions in the fun-
damental representation. I work in the Landau gauge,
since that is the only (covariant) gauge that is infrared fi-
nite at T =0 (Ref. 3). To one-loop order, m, ~

is a sum of
fermionic and gluon pieces:

t +3mf
m, ~

———g Nf
(k +mf ) (2~)

me1
Nf gN TT ln2+ T ln —+. . . (4.7)T~ oo 277 2& m

Note the factor of ln(T/m) which appears for gluons but
not for fermions. This happens because only bosons can
have zero energy at T~O: the bosonic part of Eq. (4.4)
with kp ——0 contains terms which are
—f d k/ (k +m )-ln(T/m). The gluon part of Eq.
(4.7) agrees with results of d'Hoker. '

Up to this point, there are no surprises. Let me now
take Eq. (4.2), and compute the renormalized gluon prop-
agator for pp

——0, p&0. In the Landau gauge,

Z-'
~00 el P + el +

Zmag
m

ren p= —m E;~
P

mm ~ren
00

Zmag
(4.8)

Z mren g p p e~p + e~ gren
00

p magp

where
Z„=1+H,', ,

Zmag 1 + Hrnag ~

Z =1+H, .

(4.9)

Z, ) and Z, g represent wave-function renormalizations of
electric and magnetic fields, while Z is a mass renormal-
ization constant for the Chem-Simons mass m. Consider
Eq. (4.8) about zero spatial momentum. For clarity, I set
Z =1; I also assume that m, ~ &&m, which is necessary
for the loop expansion to be valid. Then as p~0,

Performing the sum over energies kp,

4T cosh (Ef/2T) (2~)

m

ren 1 p
Ap; —— e;

m p
(4.10)

E +m+g A
E [exp(E/T) —I]

karenIJ 6;—p'p™et 1

2 2 2

+ m exp( —m /T)+. . .g 2N

277
(4.6)

The exponential suppression with temperature occurs be-
cause all massive particles are essentially nonrelativistic at
low T, and so their fluctuations —which give m, &

—are
down by corresponding Boltzmann factors. At high tem-
perature,

2 d k
(4.&)

4TE sinh(E/2T) (2n)

Ef =(k +mf )'~, E =(k +m )'~ . From Eq. (4.5), to
leading order the contribution of both fermions and
gluons to m, ~

is a finite and positive quantity for all tern-
peratures. At low temperatures, T«

~
mf

~

and T&&m,
me~ is exponentially small:

g Nfm„' —
~
mf

~

exp( —
~
mf

~

/T)
T~0 277

Since I have set Z =1, and neglected me~ relative to m,
one would expect that 6„""should be equal to the bare
propagator. This is true for 600" and Ap';", but not for
6,"~'"—instead of a factor of 1/(p + m ) —1/m, there is a
massless pole, with a residue = me~ /m .

Equation (4.10) shows that the static correlations of A,
behave discontinuously with temperature. At T =0, they
are exponentially screened over distances & m ', but for
any T&0, they develop long-ranged correlations which
are logarithmic in space. The limit T~O is still well de-
fined, since the coefficient of the logarithm is -m, ~, and
this vanishes exponentially fast as T does, Eq. (4.6).

In a non-Abelian gauge theory neither the 3; nor the
field strengths are gauge invariant, so it is not clear what
to make of this. The same phenomenon, however, will
happen in an Abelian theory with a Chem-Simons mass
term. Correlations of 2; are not gauge invariant in an
Abelian theory, but those of the magnetic field,
B =e'8;Az, are and analogous conclusions hold for the
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correlations of 8. Physically, I do not know why Debye
screening and the Chem-Simons mass interact in this way.
It is certainly counterintuitive to find that the Debye
effect—which acts, as always, to help screen electric
fields--= ompletely obliterates the screening of static mag-
netic fields.

This effect only happens in the static limit. In the non-
static case, PD&0, Eq. (4.1) implies'

II J m, i 6,1, II0& ——m, i
'p' /PD (4.1 1)

the other parts to Hz all vanish as p~O, and represent
contributions to the renormalization of wave function and
mass. m, i, which is a function of p0, is similar to m, i,
in that it does not vanish at p=O. In the same spirit as
Eq. (4.10), if the renormalized propagator is calculated us-

ing just the self-energy of Eq. (4.11), one finds that the re-
normalized propagator has the same behavior for p~O as
the bare one with no singular dependence on m, i .

This discussion has overlooked one minor point. The
bare propagators for the gluon and ghost have massless
poles —1/k; for the gluon, they are just in the P-odd
part. For any temperature or external momentum, when-
ever virtual gluons or ghosts carry zero ener y in a graph,
these massless poles will produce terms, — d k/k, that
are logarithmically divergent in the infrared. Inserting an
infrared cutoff p into the integrals over k turns these
divergences into terms —1n(p). In the gluon polarization
tensor H&, to leading order these logarithms do not ap-
pear in m, i or m, i, but they do show up in the factors
for wave function and mass renormalization [such as the
Z's of Eq. (4.9)]. While p must be introduced in order to
calculate, any dependence on p should cancel in physical
quantites. In some simple cases, I have shown this expli-
citly.

V. THE FREE ENERGY AT TWO

At the tree level for an SU(N) gauge theory, the gluons
contribute ( N —1)F to the free energy, where

PF= —,tr+Inh 'z (p) —tr+ln(p ) .

is the inverse gluon propagator:

(5.1)

p (P)=op~P + 1 PpP +~&@ &P (5.2)

g is the gauge-fixing parameter for the covariant gauge.
This second term in Eq. (5.1), —tr+ln(p ), is the contri-
bution of ghosts. F is also the correct free energy for an
Abelian theory with a Chem-Simons term. While the
ghosts decouple in an Abelian theory, Bernard' has
shown that their contribution must still be included in the
total free energy.

The free energy is independent of g: d(PF)/
Bg—tr+p"p b„(p)-tr+1—:0, so I can choose the Feyn-
man gauge, g= 1. Then

tr+Inb, '&„(p)= tr+In(p 5„)

Performing the trace over the vector indices p and v,

—2 2

tr+Inb, '&„(p)=3 tr+In(p )+tr+ln
p

In sum,

(5.4)

PF= —,tr+In(P +m ), (5.5)

and at high temperature

train(p +m ) — — T Ve(3) .2 1+7 z

T))m 8
(5.7)

e(3)=g„|I/n, and V is the volume of space.
It is much harder to compute perturbative corrections

to the free energy. One interesting question is whether it
is possible to see any sign of fractional statistics. For dis-
tances ))m ', identical particles interacting with topo-
logically massive gauge fields can be said to exhibit frac-
tional statistics. The parameter which determines how
fractional the statistics are is 5=g /m. This fractional
statistics only occurs over large distances, so at best it
could only be important at low temperatures, when the
average interparticle separation is large.

Arovas, Schrieffer, Wilczek, and Zee' have considered
identical particles with fractional statistics of zero size.
i.e., point particles. By computing the contribution of
two-body correlations in the low-density limit, they
showed that the fractional statistics affected the free ener-

gy of fermions and bosons very differently. In terms of
the fractional parameter 5, the corrections to the free en-

ergy about the boson limit are — 5 i, while about the fer-
mion limit, they are -5 .

Two-body correlations will affect the free energy in the
present theory at O(g ). Unfortunately, there does not
appear to be any sign of fractional statistics for the free
energy computed to O(g ) at low temperatures. While I
have not carried out this computation, matter fields —be
they boson or fermion —and gluons will all contribute to
the free energy at 0 (g ). As long as the matter fields are
massive, at low temperatures there is no dramatic differ-
ence between how boson, as opposed to fermion, matter
fields contribute to the free energy. Indeed, I do not know
how any thermodynamic quantity could simply distin-
guish between the effects of fractional statistics from
those of "ordinary" interactions.

It is possible to calculate the behavior of the free energy
at high temperature without much trouble. Assume that

which is the free energy for a massive bosonic particle
with a single degree of freedom. This was not apparent
from Eq. (5.1), but it does agree with the (physical) de-
grees of freedom found on the mass shell ' —a single
massive mode per color index.

Fermions in the fundamental representation contribute
—NfNtr ln(p +mf ) to the free energy/T.

For reference, at low temperatures

tr+ln(p +m ) — + exp( —m/T)+ (5.6)z 2 mTV
T ((m 77

p+tr+ln 5& +me& ~
p

(5.3) T m

m g2 In(T/m)
(5.8)
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the upper bound on T is necessary so that m, ~, which is a
quantum effect, does not overwhelm the bare m . This
upper bound can always be satisfied in weak coupling,
when m /g ~~1.

To O(g ), one contribution to the free energy is from
an insertion of the gluon polarization tensor II„(p,po) in
a gluon loop. ' For the term with po =0 involving Hoo,

F'=—N' 1T—
II ( 0)

1 d'p
2 p +m' (2~)

X —1 TT ln —m, ) +4~ m
(5.9)

Using Eq. (4.7),

F'=—N(N —1) qT21 z T
g Tln

/~2 m
+ ~ ~ ~ (5.10)

I assert that for high T, F' is the leading correction to the
terms —T in the free energy, Eq. (5.7): relative to F', all
other terms will be suppressed at least by I/In(T/M) or
g 2/T

Equation (5.9) also gives a term -Nfg T ln(T/m).
This is small compared to Eq. (5.10), but in an Abelian
theory, this term will dominate at high T. (This assumes
there are no scalars. Scalars contribute -g T ln T in the
Abelian and non-Abelian cases. )

generically, to O(g ) the purely gluonic contributions
to the free energy are of the form'

2

II; (p, O) —(5; p —p;p )g T f k (k+p)'

-g Tin(p) 6;, —2 PiPJ

P
(5.12)

F„„g)„,—T ln 1+
2 2 m, )

1

p+m

1 2 22m, ) d Pp+m

The estimate of Eq. (5.12) is only qualitative; in the Lan-
dau gauge II,

&
will not be as singular as this. p is the in-

frared cutoff noticed in Sec. IV.
Substituting Eq. (5.12) into Eq. (5.11) gives a term

-g T In(T/m)ln(p). As was argued before, however,
the dependence on p is an artifact that has to disappear in
any physical quantity. Since the free energy is such a
quantity, the ln( p ) 's must cancel, leaving terms
-g T ln(T/m); these are down by 1/ln(T/m) relative to
Eq. (5.9). While I have not checked this cancellation ex-
plicitly, there is no sleight of hand involved here —p is
just an infrared cutoff, with no relation to T or m, and so
a In(p) cannot become a ln(T/m).

Corrections to higher order in g are manifestly
suppressed by g /T, and are negligible. The only higher
order that might cause concern is the sum of "necklace"
diagrams F„,„.k~„„since this involves the summation of an
infinite number of diagrams. ' Concentrating on the zero
energy term,

F,-T & f S„„(p,p, ) 11~ (p,p, )d'p . (5.11)

m m -g m ln(T/m), (5.13)

Pp

Logarithms —ln(T/m) come from terms —f d k/
(k + m ), so we can concentrate on the term with po ——0
in Eq. (5.11). Similarly, for II&„ the largest contributions
in the infrared are from diagrams where the internal ener-

gy is zero. For example, by the Ward identity at po ——0,
II;~(p, O) is transverse in p, Eq. (4.2). To one-loop order,

and F„,„.z~„., can also be ignored.
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