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Vacuum energy and dilaton tadpole for the unoriented closed bosonic string
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In oriented-closed-bosonic-string theory a dilaton tadpole (and vacuum energy) first develops at
the one-loop level from performing the path integration over manifolds with the topology of the
torus. We show that in the case of the unoriented closed bosonic string the leading contribution to
the dilaton tadpole arises at the tree level from the path integral over manifolds with the topology of
the projective plane. We explicitly compute the vacuum energy and the dilaton tadpole using
Polyakov's formulation of string theory.

Polyakov's' path-integral formulation for string theory
provides a convenient method for computing string-theory
S-matrix elements. Recently considerable progress has
been made in understanding the appropriate measure for
the integration over metrics. Polchinski has used the
path-integral formulation to compute the leading contri-

!

bution to the vacuum energy for the closed oriented bo-
sonic string. It arises from performing the functional in-
tegration over manifolds with the topology of the torus.
Rohm has also computed the one-loop vacuum energy
using the operator formalism. In this paper we note that
in the case of closed-unoriented-bosonic-string theory the
leading contribution to the vacuum energy occurs at the
tree level from performing the functional integration over
manifolds with the topology of the projective plane (i.e.,
the sphere with opposite points identified). The vacuum
energy and the resulting dilaton tadpole are explicitly
computed.

The path integral for closed-unoriented-bosonic-string
theory contains a sum over both orientable and unorient-
able two-manifolds. For our calculation only the contri-
butions from manifolds with the topology of S2 and P2
need to be considered. Then the partition function is

(det'P P)'iZ= g f [dx]exp[ —(S+S„)].
S2,P2 d ~CKv

In Eq. (I) P is a differential operator that maps vectors ud

into second-rank tensors,

(PU )ab (~a ~b +6a 5b gabg ) Va Ud

and det' denotes the determinant excluding the zero
modes. The factor VcKv in the denominator of Eq. (I) is
the volume of the group generated by the conformal Kil-
ling vectors, d is the order of the group D of diffeomor-
phism classes. The elements of D represent the connected
components of the group of conformal diffeomorphisms,
including those which do not preserve orientation. For
the sphere d =2 while for the projective plane d = 1. The
action is

S =
z fd gVgg " x"(g) bx&(g)ap agb

and the local counterterms are

S„=p'fd'g&g + fd'g~gR . (3b)

The constant p is chosen so that conformal invariance is
preserved. The second term in (3b) gives rise in Z to a
factor of k for S2 and a factor of k ' for P2 since

fd s~gR

VT(p)=a. T fd Sv'ge't' "'&' (4)

The contribution of S2 to the n-point tachyon scattering
amplitude is given by

(det'PtP)'r~~.(pi
2 VCKv

X f [dx]e "VT(pt). VT(p„) .

(5)

is the Euler number of the manifold.
Connected parts of S-matrix elements are computed by

inserting the appropriate vertex operators into the path in-
tegral. Conditions that the vertex operators must satisfy
in the oriented-string case have been given by Weinberg.
To these we must add the condition that the vertex opera-
tors be definable on P2. This condition forbids the vertex
operator for the antisymmetric tensor field, for example. '

Therefore in the unoriented bosonic string the states with
mass squares less than or equal to zero are the tachyon,
dilaton, and graviton.

The leading contribution to tachyon scattering ampli-
tudes comes from the contribution of Sz to Z. To set our
conventions we briefly review the calculation of the
sphere's contribution to tachyon scattering amplitudes.
The vertex operator for the tachyon is
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We perform the functional integration over x" by expand-
ing in normalized eigenfunctions of the Laplacian on the
unit sphere:

a„=
2"~,"X-'(det'P'P)'"[det'( —V') ]-"

2 VcKv

I

x&=g g ct' I; (g),
m= —1

using

dC m
[dx] = Q„,.v'z~

There is arbitrariness in the choice of measure that can-
cels out in physical quantities. ' '" Since the action is
quadratic in the variable x" the functional integral over
[dx] can be evaluated yielding

A„(p&, . . . ,p„)=(2~) 5(p&+ . . +p„)a„,

where

X«p ——,
'

gpgp, '{x„(g;)x,(g, )) ~ .

(8b)
In Eq. (8b) {x&(g;)x,(g~ ) ) is the propagator excluding the
zero modes

5'(g; —g, )
{x„(g;)x„((,) }=5„ v'g

(9)
It is convenient at this point to map the sphere onto the

complex plane by stereographic projection onto a plane
cutting through the sphere's equator. The northern hemi-
sphere is mapped onto the region

I
z

I
& 1 and the south-

ern hemisphere is mapped onto the region
I

z
I & l. In

complex coordinates the propagator is

6p{x„(z))x (z~)) = — ln
4~i

Iz, —z,
I

+2eexp2 i 2 Z1 +Z2

(I+ Izi I')(I+ Iz2I')

Here e is an invariant short-distance cutoff and we have written the metric as g =e . Dependence on the choice of
conformal gauge cancels if the tachyons are on the mass shell:

Then we find that

2' A, (a. e')"(det'P P)' [det'( —V' )]
CKV

dz[ . dz„exp p;p~ln z; —
z . 11

1

The integration over three of the complex z's is
equivalent to an integration over the invariant measure for
the group generated by the conformal killing vectors.
This is the group SL(2,C) of transformationsz'=, AD —BC =1 .Cz+D' (12)

The integrand in Eq. (11) is a scalar density with respect
to these transformations. For infinitesimal transforma-
tions

chosen orthonormal it reduces to [[.du~ near the identi-
ty. Using the metric

I
U

I

'= f d'kv'g g.bU'U' {1S)

we find that the six properly normalized conformal Kil-
ling vectors, using the notation

are

3 =1+@1/2, 8 =eP,
C = —e2, D = 1 —e1/2,

Eq. (12) becomes

6Z =6'O+ 6' iz +E2Z
2

(13)

(14)

3

16m

1/2
Z

1/2

l

}/2
Z

1/2

{16)

The infinitesimal diffeomorpkisms generated by the con-
formal Killing vectors Ug take the form 5@=g. a~uj'.
The volume of the group generated by the conformal Kil-
ling vectors VcKv is defined to be the-integral over the in-
variant group volume normalized so that when the v&' are

3

16~

1/2 2
Z

Z
—2

' 1/2
3 z

16m

It follows that the invariant group measure near the iden-
tity is
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3

dg =4 d cod end E'p .
3

(17)
Trading the integrations over z&, zz, and z& for an in-
tegration over dg (which cancels the factor Vczv in the
denominator) we find that

a„(p, , . . . ,p„)=X—'(~re')"Qs
t

x f d'z4 f d zn
I
zi —zz

I I
zz zeal z3 z|

I

'exp g p"p, lnI z —
z& I

' (18)

where

Qs =2"
3

3 (det'P P)' [det'( —7' )]16~
(19)

and the values of zi, z2, and zq are arbitrary. In particular the three- and four-point tachyon scattering amplitudes are

3(pl p2 p3) ~ (+T ) Qs

I (3—(t + s)/Stt)l (t ISn —1)1 (s/Sn —1)
I ((s + t)/8~ 2)I (2 ——t/8~)I (2 —s/8~)

(20a)

(20b)

where s =(pi+pal) and t =(p|+pq) .
The four-point amplitude has a tachyon pole

Snk(~.re , ) QsQ4~ as s~8~
s —Sm.

which implies by factorization that

A. = Ia IQ
' (Svr )

The dilaton vertex operator is

(21)

(22)

and use the measure in Eq. (7) for the functional integral
over x". The factor of v'2 in Eq. (26) occurs because the
Yi (g) have normalization one-half on Pz.

A vector field U' on S2 is defined on P2 if each of its
integral curves is mapped into itself by the identification
of antipodal points. Suppose in some coordinate system
points p on the unit sphere have coordinates P and their
antipodal points —p have coordinates g'(g). Then the
condition for a vector field u'(g) to be well defined on P2
1s

VD(p) =t~D fd'gv'g (g)'e" (p)g'" x„x
ap "ag'

v (g(g))=D, (g)U'(g),

where the matrix D, (g) is given by

(27)

v'24 v'24
+ R — e'~

~2
(23) D, (g) = g (g) . (28)

where
For the complex coordinates z the map g takes z into
—1/z and so

e~"(p) = (K —p"p —p p")1

V 24
(24) 0D=

1/z

1/z

(wD A,
'

) = ( Sm. ) Qs (25)

To compute the contribution of the manifold P2 to
scattering amplitudes it is necessary to expand x" in nor-
malized eigenfunctions of the Laplacian on P2, the unit
sphere with antipodal points identified. Since x" is a sca-
lar field, it must take the same value at antipodal points,
and for P2 we expand

x&=v2 g g cP Y, (g)
1 evenm = —1

(26)

and p.@=1, p =p =0. The counterterms in VD are
needed to preserve conformal invariance in scattering am-
plitudes involving the dilaton. The normalization of ~D is
determined by computing the dilaton-tachyon-tachyon
scattering amplitude and comparing it with the dilaton
pole in Eq. (20b). We find that

In these coordinates a vector field is defined on P2 if

—U'(p) =U'( —p) .
Z2

(29)

A =D, C= —B, IA I'+ IB I'=1. (30)

Hence on P2 the group generated by the conformal Kil-
ling vectors is SO(3) (Ref. 13). This corresponds to the
group of rotations on the sphere which clearly leave an-
tipodal points identified. Writing A =(1—

I
B

I

)' e'
the invariant group measure is proportional to d B da.

The group generated by the conformal Killing vectors
is not the same on P2 as on S2. Only those transforma-
tions in (12) which satisfy ( —1/z ') =( —1/z)' are defined
on P2. This restricts the transformations (12) to those
that satisfy
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Near the identity the transformations (30) are

6z =B'(1+z )+iB (1—z )+2iaz, (31)

on k can be replaced by dependence on the physical three
tachyon scattering amplitude a3. This gives

1/2

where 8 =8'+iB . The normalized conformal Killing
vectors are +vac =

(det'P P)p

4, [(det'P"P)s ]'"
3

16m

1/2

1+—2
[det'( —V' )]p

X
I [det'( —V )]s I'~

—13

(35)

3
16~

3
l

4w

1 —z
—1+z

1/2 z

(32)

(P Pv )b = —2V'V, ub —2ub . (36)

where the subscripts have been placed on the determinants
to signify what manifold the operator is defined on.

To compute the ratio of determinants of P P we note

and so the group volume is
3/2

~CKV
16~

3

16~
3

3/2

772 .

dB da

(33)

The finite volume for SO(3) gives rise to a qualitative
difference in the contribution to amplitudes from S~ and
P2. The manifold P2 will give a nonzero contribution to
the vacuum energy (the zero-point amplitude) and to the
dilaton one-point function.

According to Eq. (1) the contribution of P2 to the vacu-
um energy density is

3/2

It follows that on S2 the eigenvectors of P P are

v'=g
b Ylm, v = e bYlm

a ab ~ a 1 b

grab
'

Qg gg, b

with eigenvalues 2(l —1)(1+2). In Eq. (37) e'" is the an-
tisymmetric symbol. For P2 only vector fields which
satisfy u (p) = —u ( —p) and u~(p) =v~( —p) are admissi-
ble. Hence for odd l only

1 .b (3
U = —6 Ylm

&g agb

is allowed and for even I only

v g Ylm
a ab

b m

1 3
+vac =

2 16

&&A, '(det'P P)'"[det'( —V')] (34)

is allowed. On P2 every eigenvalue of P P that occurs on
S2 is present but its multiplicity (21+1) is only half what
it is on S2. Therefore

(det'P P)z ——[(det'P P)s ]' (38)
Since the determinants and A. are positive the vacuum en-

ergy is negative. Using Eqs. (19) and (22) the dependence Next we consider the ratio

1

- 1/2

[d t ( —V')] & ["'+"]"+'
2 1 even

[[det'( —V' )]~ ]'~ + [l(l+1)] '+'
1 odd

2X4X6X8X. . .

1X3XSX7X-. -
(39)

It is straightforward to relate' the logarithm of r to the Riemann g function gz(s) and its first derivative evaluated at
s=O:

OO g OO

lnr = g ( —1)"ink = — g ( —1)"k ', o —— [(1—2' ')g~(s)]
k=1 ds k=1

' ds s=0
(40)

Thus r = V'vr/2 and our expression for the vacuum energy density simplifies to
1/2

2 1
(41)

To compute the dilaton tadpole the propagator (x"(g; )x'(gj ) ) is needed on Pq. It satisfies

—V'g (x„(g;)x (g~. )) =5„ 1

2' (42)

The factor of —1/2~ occurs because the zero-mode contribution is omitted. In complex coordinates



35 VACUUM ENERGY AND DiLATON TADPOLE FOR THE. . . 659

1
( x„(z, )x (zz ) ) = — 5„1n

Z) +Z2
z, —z,

l
+a~exp

(1+
f
zg

/

')(1+
/
z2

/

')

1+z,zz
+ln

2
+2

(1+
/
zg

/

')(1+
/
zp

/

')

Performing the functional integral with a single insertion of the dilaton vertex operator gives
3/2

(43)

AD(p) = —(2m ) 5(p)
3

16~
'a.D(det'P P)' [det'( —V )]

d z lim +, In~ 1+zz'~8
Bz gz ' 5z Bz' (44)

= —(2n) 5( ) 2

3/2

g —'&D(det'ptp)'~'[det ( V')] —» (45)

Using Eqs. (25), (38), and (40) this becomes
jeff

1/2
384 fd xv'g(x)D(x) . (47)

AD(p) =—
' 1/2

(2~)' 5( ) (46) There is a sign ambiguity for the coefficient which can be
absorbed into the sign of the dilaton field.

Therefore, the effective action for the dilaton field D con-
tains a term'
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