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On toroidal compactification of heterotic superstrings

l'aul Ginsparg
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 18 August 1986)

I comment on the use of background gauge fields and antisyrnmetric tensor fields in toroidal com-
pactification of heterotic strings, and explicitly construct the background gauge field that interpo-
lates between the E~ & E8 and Spin(32)/Z2 theories defined on R ' &S '.

I. INTRODUCTION

In Ref. 1 it was shown that even Lorentzian self-dual
lattices with signature (16+ d, d) can be used to give a
(16+ d)d-parameter construction of one-loop modular-
invariant heterotic string theories with 10—d uncompac-
tified dimensions. It was subsequently noted that these
theories could be obtained from a standard toroidal corn-
pactification of d dimensions of the 10-dimensional
heterotic string by varying a metric g,J specifying the ra-
dii and angles of the spacetime torus [ —,d (d + 1) parame-
ters], and by turning on constant vacuum expectation
values for a background antisymmetric tensor field Bz
[ —,d (d —1) parameters] and a background gauge field

A„(the remaining 16d parameters). Using the uniqueness
of Lorentzian self-dual lattices, it then followed immedi-
ately that one could continuously interpolate between
compactified versions of the Es X E8 and Spin(32)/Zz
theories by turning on appropriate background gauge
fields and adjusting radii. Since there has been some con-
fusion on this point, and since some of these ideas may
prove useful in illuminating relations between various oth-
er recent constructions of string theories, ' we shall un-
dertake here the relatively straightforward exercise of
making explicit this interpolation.

II. COMPACTIF IED THEORIES WITH
BACKGROUND FIELDS

The light-cone field content of the heterotic string con-
sists of the scalar fields x" (p = 1, . . . , 8), the right-
moving Neveu-Schwarz-Ramond (NSR) fermions iP, and
16 complex left-moving gauge fermions g . The
Euclidean-space world-sheet action, including the cou-
pling to background gauge field 2& and background an-
tisymmetric tensor field B&, is

s = f (ax~ax~+~~a~~+q'aq'
2~

+if A„ax"p +B„„ax"ax")

[a=a, =(t ra, ia, )/r, , w—ith z =(o,+rtr )/2; o, , cr,
E[0,1], r=r, +i' is the one-loop modular parameter,
2a' = 1, and the integration measure is 2i dz 5 dz

= r2dtr) 6 dtr2].

We consider closed-string propagation on a spacetime
with topology R ' X(S') . The d-dimensional torus
T"=R"/2~A is generated by modding out d of the space-
time dimensions by a lattice A, i.e. identifying the points
x" and x"+2~n'(e;)", where the e;, i =1, . . . , d, are a
set of basis vectors for the d-dimensional lattice A and the
n' are integers. The instanton solutions are given by
x o

——2~wo.
~ +2~w 'o.

2, with the winding numbers
w, w'EA (w =n'e;, w'=n "e;). Defining a metric
g; =e;.ej and its inverse g'~=g~, we see that the vectors
e '=gvej satisfy e*'.ez. ——5l (and e*' e*j=g'~), thus gen-
erating the dual lattice A*. Momenta p, conjugate to
translations, are constrained to lie on the dual lattice
p EA*, so we have p =m;e*' for integer m;. Since we are
interested in vacuum solutions of the theory we shall take
the background gauge field and antisymmetric tensor
fields to be constant. We write their components referred
to lattice frames as A

&
——a; (e *')„and B„,

=b;&(e*')&(e*~)„. In terms of these, the invariant line and
surface integrals are given by A&dx"=2~3„e," =2vra;I I I

and f . B„dx. "Adx =4' b;J.IJ
It is easily shown (see Ref. 2 and Appendix A here) that

the partition function for the theory in the presence of
background 3 and B fields is proportional to

wEA, pEA*
~~tnt

pL /2 p~ /2
(2.2)

where q =e ", and A;„, is the internal Euclidean self-
dual lattice, either the Spin(32)/Z2 lattice I ~6 or the
E8X E8 lattice I"8+ I z. The vectors in the exponents

pL ——(V+Aw, —,p —Bw ——, V A ——,A (A~w)+w),

and

p„=(—,'p Bw ——,
' V A ——,A (A—w) —w)

(2.3)

are, respectively, (16+ d)- and d-vectors. Note that if we
take the direct sum of pL and p~, a (16+ 2d)-vector, as a
lattice point in a space with a Lorentzian (16+ d, d) sig-
nature, then the (pt, pz ) are elements of an even Lorentzi-
an self-dual lattice. This follows immediately for the case
A =B=O, because then (pr, pR)=(V, —,p+w; —,p —w)

lies in a lattice with basis vectors k'=(O, —,e*', —,e*'),
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k;=(O, e;; —e;), and 1 =(f,0;0) [where (f ) are the
basis vectors for A;„,]. The k' and k~. satisfy k'k~. =5~
and k'k =k;kj =0, thus generating a lattice equivalent to
d copies of the 2-dimensional even self-dual lattice U with
metric (~ o) [and signature (1,1)]. The basis elements also
satisfy k'l:kjl =0 and I lp ——g'p", so the lattice gen-
erated by (pr.,pR ) is equivalent to Ue . e Ue A;„„
which is Lorentzian even self-dual as long as A;„, is Eu-
clidean even self-dual.

Thus for A =8=0, the sum over m EA, p E-A* may
be replaced by an equivalent sum over elements (pL,pz )

of a Lorentzian self-dual lattice. This is the statement
that generalizes to the presence of nonzero background A
and B fields, since from (2.3) it follows that (pr,pz ) more
generally lie in a lattice with basis vectors

and

These are easily verified to satisfy the same dot products
as for A =8=0, and hence continue to generate an even
self-dual Lorentzian lattice. Equivalently, (2.3) can be
written as a transformation that takes the (16+ d;d)
column vector ( pr, pz ) = ( V, —,

'
p +- w; —,p —w ) to its value

for nonzero A, B. The transformation is

——,A„
1 J
2 p

I
V

K K
6p —TBp ——,A pA

K K
Bpv 8 Ap'Av

I
V

K K
—,Bp ~ + —,A„A ~

K K
~p'v + p Bp'v + 8 Ap'A v

=exp l

2

0

J—A P

—8„8p ~

—B„B„~
(2.4)

(where I J=1, . . . , 16 and p, vp', v'=I, . . . , d) and is
manifestly an element of SO(16 + d, d). [In general
SO( n, m ) is generated by infinitesimal ( n +m ) X ( n +m )

matrices ( r M ) with N = —N, M = —M, and P an

arbitrary n &(m matrix. The matrix in the exponent in
(2.4) is a matrix whose cube vanishes. ] This shows that
the Lorentzian lattices for arbitrary A, B are simply
SO(16+ d, d) transforms of one another.

Finally, changes in the radii and angles of tori can be
parametrized as e;~exp( —a)e; where a& is a symmetric
d Xd matrix [ —,d(d+ 1) parameters]. Acting on (pL,p~)
this can be expressed as the SO(16+ d, d) matrix transfor-
mation

6J 0 0 0 0 0
0 coshaz sinhcx& ~

——exp 0 0

0 sinhu& cosh'& ~

CXP V ~

0 ap 0

Composing (2.4) with (2.5) then gives a (16 + d)d-
parameter family of theories with varying radii, angles, A
fields, and 8 fields.

To understand the significance of the remaining param-
eters in SO(16+ d, d), we exhibit the mass operator for
the theory

—,(mass) =(NL + —,pr. —I)+(Nz+ —,pz —c) (2.6a)

and the constraint

and periodic (R) sectors of the NSR fermions iP. We see
that the spectrum of the theory is invariant under
SO(16+ d)XSO(d) rotations of (pL',pR) (as are the in-
teractions as well, provided we use vertex operators
evaluated at rotated momenta). The distinct physical
theories are thus parametrized' by the (16+ d)d-
dimensional coset space SO(16 + d, d)/(SO(16) X SO(d)).

III. EXAMPLES

zgij~ l (j
26ij=' g. ,

& &j
0, i=j,

(3.1)

then we find the Lorentzian ( d, d ) lat tice vectors
1

( —,p —Bw +w; —,p Bw —w ) are —generated by
k'=(e *',e *'), and

Before coming to our main point, we illustrate the for-
malism with two examples mentioned in Ref. 7. For the
first, we consider the root lattice AR of some simply laced
Lie algebra G of rank d, generated by simple roots e;,
normalized to length squared equal to 2. The dual vectors
e *' satisfy e *'ej ——6J and generate the weight lattice A~.
We take the spacetime lattice A =AR/2, generated by half
root' vectors, so that e; = —,e; and winding numbers m H A
have w =n 'e; /2. Then e *'=2e *' and momenta
p EA* =2A g satisfy —,p =m;e *'. Note that g;j =e;.ej is
the Cartan matrix for G. If we now take

2 2NI. + TpL —1=NR+ TpR —c . (2.6b) k; = ( —2bj, e*j+—,
' e;; —2b/; .e *1 —,

'
e;)—

Here NL R are the overall occupation nun1bers for the
left-moving bosonic and right-moving bosonic and fer-
mionic oscillators, and c is a normal-ordering constant
equal to —, and 0, respectively, for the antiperiodic (NS)

=(c;~e *J+e;;c;~e*'),

where c;j 26'j Tg,j is a matrix of integers. k' and k;
are seen to satisfy k 'kj=6J, k 'k J=k; kj ——0, generating an
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even self-dual Lorentzian lattice. Inspection of k' and k;
shows that this lattice is composed of vectors (pl,'p~)
with pz, pz H A ~ constrained such that pL —pz C Az.
There are thus additional massless gauge bosons, states
with pz ——2, pz ——0, corresponding to the adjoint repre-
sentation of the group G. We also note that the antisym-
metric tensor field B„appears in general as a phase in
the functional integral and thus constitutes a set of
periodic variables (0 angles). Here we see that the theory
is invariant under 26'j ~26'j +m j where I;j is an an-
tisymmetric matrix of integers [since 2b;~ is a matrix of
half-integers, for b;, as in (3.1) this means the theory is
also invariant under b;J ~ b,z (R—ef. .5)].

For the second example, we consider the Spin(32)/Zz
theory with d dimensions compactified on orthogonal
S 's of radius —, . For this we take ( e; )"= —,6";,(e "')&

=26&, giving a spacetime lattice generated by half the
weight lattice of SO(2d), A= —,Aa (SO(2d)). If we take
in addition b;J

——0 and a; =5; (so 3& ——25&), then we find
that our Lorentzian lattice is generated by
I =(fa, f"; f" ),— k—'=(0,6'";6'" ), and k;
=(5;,0; —b,"). This is a lattice equivalently given by add-
ing to the lattice generated by (pL', pR ) with

pI EAz(SO(32+2d)), pz &Ajar(SO(2d)), the additional
basis vectors ( W„W, ) and ( W„W, ), where W, , W, , are,
respectively, the spinor and vector weights of
SO(32+ 2d) and SO(2d). The additional massless gauge
bosons, with pz ——2, pz ——0, thus fill out the adjoint of
SO(32 + 2d).

IV. E8XE8 AND Spin(32)/Z2

We now discuss the relation between the E8XE8 and
Spin(32)/Z2 theories. For Euclidean signature, the state-
ment is that there exist a finite number of distinct even in-
teger self-dual lattices in dimensions 8k (Ref. 6). In di-
mension 8 there is only the E8 lattice I 8, while in dimen-
sion 16 we have both I s I s and the Spin(32)/Z2 lattice
I ]6. If we append to either of these two 16-dimensional
Euclidean lattices the even two-dimensional Lorentzian
lattice U, we get an even Lorentzian self-dual lattice II&7 &

of signature (17,1). But for Lorentzian signature, the
statement is that there exist even integer self-dual lattices
IIsk+d d in any dimension 8k +2d [with signature
(8k +d, d)] and they are unique up to SO(8k +d, d)
transformations. This means that there must be some
SO(17,1) transformation that relates the basis vectors of
I 8I 8U to those of I"]6U. Our aim is to exhibit the

1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12' 13' 14' 15'

FIG. 2. The Dynkin diagram for the II» l lattice with the
nodes labeled to show the embedding of I )6. The numbers
1'—16' specify the f of (4.2a).

f„''+k, f„' '+k, and '—(k+k), (4.1b)

then provide a Dynkin basis for a II~7 &
lattice. In Fig. 1

we give the Dynkin diagram for II~7 ] with the roots la-
beled according to (4.1a) and (4.1b).

To embed the I ~6 lattice in II f7 f we first write the basis
vectors

SO(17,1) transformation that effects this isomorphism,
parametrized in terms of a gauge field 3 (in compactify-
ing only one dimension, there is no 8 field).

First we need bases for the embedding of I 8 I z and
I,6 in Ill j ~ [as found, for example, in Ref. 7 (see also
Ref. 8)]. Let u; (i =1, . . . , 17,0) denote an orthonormal
basis in R ' ' ' with u; uj ——j);j=diag(1, . . . , 1, —1). Then
we choose basis vectors for the two I

& lattices embedded
in R' as follows:

f;" =u; —u;+) (i =1,. . . , 6),
8

fj ul uji f8
(4.1a)

f; =u9+; —utp+; (i =1, . . . , 6),
16

(2) (2)fj =u&s+u&6 fs = —
z ~ ui.

i=9

We shall consider the E8&E& theory compactified on a
circle of radius ,

' r (circumfe—rence jrr) so that the space-
time lattice A is generated by e =r/2 and the dual lattice
A* by e*=2/r. Then we define k =(0', —, e*;—,e*)
—( u jj + up)/r and k = (O, e; —e)=(u i j —up)r/2, satisfy-
ing k =k '-=—0 and kk=1. To complete the basis for
Iljj f we shall also need the vectors f =uj —us and(])

f„' =u q
—u, p, each of which is a linear combination of

the basis vectors already appearing in (4.1a), correspond-
ing to the extra root (the lowest root) added to produce an
extended E8 Dynkin diagram. The 16 vectors in (4.1a) to-
gether with

f16 u1s+u16
(4.2a)

1 2 3 4 5 6 T
—(t + I)

1 2 3 4 5 6

FIG. 1. The Dynkin diagram for the II» &
lattice with the

nodes labeled to show the embedding of I SEB I ~. The numbers
1 —8 on the left and right specify, respectively, the f; '' and the
f;"' of (4.1a).

that generate the SO(32) root lattice in R ' . Adding as
well the spinor weight f,'= ——,

' g, , u; would then gen-
erate I ]6. The vector corresponding to the extra root in
the extended Dynkin diagram for SO(32) in this basis is
f„' = —u, —u j. We shall take the Spin(32)/Z2 theory
compactified on a circle of radius r, so that the spacetime
lattice A is generated by e'=r and the dual lattice A* by
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e'*=1/r. Then we define k'=(0', —e;e) =( —u ~7+uo)r
and k '=(0', ——,

' e'*;——,
' e'*)= —(u &6+ uo)/2r (to agree

ultimately with the conventions of Ref. 7), satisfying
again k' =k ' =0 and k'k'=1. The 16 vectors in (4.2a)
together with

A' =—(0,—1, 1,0 ), A = —2r(( —, ),0 ) .
r

(4.3)

then provide a Dynkin basis for another II&7 &
lattice, as

labeled in Fig. 2. We wish to find the SO(17,1) transfor-
mation that relates these two bases.

To begin we shall employ the gauge fields

—(k'+k '), and f,'+k' —k ' (4.2b) We denote by

0 A —A

W(A) =exp ——A 0 0
1

2
0 0

1

2

& AKAK
8

& AKAK
8

1+—A

the SO(17,1) transformation associated with turning on the gauge field A, and by R:uo~ —uo a reflection of the 18th
axis. Acting on the I qel 8 basis vectors (4.1a) and (4.1b) first with W(A') and then with RW(A)R ESO(17,1), we find

8'( 3')
1 l R 8'(A)R

2r' 2r
O,r+;—r+

2» 2»
= —(k'+k'),

f7
' ——( —1, —1,0';0)~( —1, —1,0';0)~( —1, —1,0', r;r) =f„'+k—',

f„" +k = 0, 1, —1,08, —;—~(0, 1, —1,0;0)~(0, 1 —1,0;0)=f'7,'r'r

—(0 + k) = 0,————;——+ — 0, 1, —1,0, ——;—~(0, 1, —1,0;0)=f',r l r
r 2 r

(4 4)

f„' '+ k = 0, 1, —1,06, —;—-~(0, 1, —1,0;0)~(0, 1 —1,0';0) =f9'r'r

2» 2I 2»
' 2r

=f;+k' k'. —

The remaining basis vectors in (4.1a) are mapped un-
changed by the two transformations onto the basis vectors
of (4.2a) at the corresponding nodes of the Dynkin dia-
gram. Since the basis vectors generate the entire lattice,
we see that the transformation RW(A)RW(A') provides
an isomorphism between I 8+I 8 U and I &6 U.

To write this transformation in terms of a single back-
ground gauge field A", we decompose RW(A)R
&SO(17,1) into a product of an SO(17) rotation S, dila-
tion D, and gauge field transformation 8':

0
RW(A)R =exp ——A 0 0

1

2
0 0

0 A'0
S(A) =exp g —A 0 0

0 0 0

arctan (~A
~

=A A ),
/A/ 2

0 0 0
D(a) =exp 0 0 a, a = in 1+ A

i

0 a 0

and A = —e = —A/(1+
~

A
~

'/4) (verifying (4.5) in-
volves noting that

S=exp(M)

=1+M sin(g
~

A
~

)/g
~

A
~

where

=S(A)D(a) W(A ), (4.5) +M [1—cos(pi A
i
)]/(g

i
A

i
),

since M = —g ~

A
~

M). When 2= 1, we have
W(A ) ) W'(A2) = W(A, +Aq) so for the case of interest it
follows that
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RW(A)RW( 3') =S(A)D(a) W —
z

& +&'
1+2r

(4.6)

Equation (4.6) shows that we can start from the E8XEs
theory with one dimension compactified to a circle of ra-
dius —,r, turn on a background gauge field, and decrease
the internal size by a factor e =(1+

~

3
~

/4)
=(1+2r )

' to give a theory with the same spectrum
and symmetries as the Spin(32)/Zq theory compactified
on a circle of radius r. It comes out in an obscure SO(17)
rotated basis which may then be restored to the canonical
form (4.2a) and (4.2b) by the SO(17) transformation S(A).
Starting from the other direction with the Spin(32)/Zq
theory at radius r, on the other hand, after the SO(17)
transformation one would have to increase the internal
size by a factor e =I+2r =1+r /a' (restoring the
string scale a') and then turn on the opposite gauge field
to result in a theory equivalent to the E8 X E8 theory at ra-
dius —,r.

V. COMMENTS

From a mathematical point of view, compactified ver-
sions of the E8X Es and Spin(32)/Zz theories, insofar as
they are continuously related, may thus be regarded as
different ground states of the same theory. From a physi-
cal point of view, however, although the SO(17) transfor-
mation does not alter the spectrum of the theory, it does
affect the spacetime interpretation, as is evidenced by the
change in radius. The II171 lattices in arbitrary inter-
mediate SO(17) transformed bases provide theories which
are perfectly sensible as two-dimensional conformal field
theories, but which do not necessarily admit interpreta-
tions in terms of Riemann surfaces propagating in physi-
cal spacetimes. We therefore cannot see, for example, a
continuous interpolation of the natural notion of length
(of the compactified dimension) between the two situa-
tions. From the point of view of the spectrum alone,
then, any compactified heterotic string theory with space-

time supersymmetry may be regarded as either a compac-
tified Es X Es or Spin(32)/Zq theory with appropriate A, B
fields and radii, but a physical observer would choose one
or the other as the natural interpretation.

The theories we have considered here are supersym-
metric theories with presumably vanishing vacuum energy
density, so there is no energetic criterion for selecting any
one over another. For the theories without spacetime su-
persymmetry discussed in Ref. 3, the dependence of the
one-loop vacuum energy density can be investigated as a
function of the background-field parameters. ' '" It is
further shown in Ref. 11 that compactified versions of the
(heterotic-based) theories formulated in Ref. 3 are all con-
nected in the sense described in this note.

Finally, we note that the spectra of both the compacti-
fied E8XEs and Spin(32)/Zq theories are invariant under
the transformation R:uo~ —uo used in the above. It is a
duality transformation, ' ' which, for background gauge
field 3=0, interchanges e~—,

' e*(e*=1/e), exchanging
the roles of winding numbers and momenta. Each of the
theories at radius r thus has an identical spectrum at ra-
dius u'/r. The self-dual point under this transformation
is r =a.
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APPENDIX

For completeness we establish Eq. (2.2) used in the text,
reproducing the results of Ref. 2. Higher-loop generaliza-
tions of the (one-loop) formulas that follow may be found
in Ref. 11. We start with the world-sheet action (2.1),
rewritten as

S = ' f d or(B,x'") + [(8 —r, B, )x"] + B„B,x"8 x "+f B,—P+iP /I„B,x"P'2' ~2' ~2
(A 1)

We shall sum over the contributions from the different instanton sectors, given by the zero-mode solutions
xo 2m(wcr——&+w'crz) (w, w'HA, the spacetime lattice). In each such sector, the coupling to the constant background
gauge field is equivalent to twisted boundary conditions for free fermions

P(cr)+ I,oq)= —( —1) e '
g (o), rq), c0 =2 w,

P —2m.i PI IP( r~, rc~+cI)= —( —1) e '
t/i (o~, cr~), P = —3 .w',

where a, )33=0, 1 (= —,+ = /I, P) specifies the spin structure. The path integral is thus proportional to

(A2)

e = g exp —2~ rqw +—(w' —r&w) —4~iw'Bw
—So 1 2

w, w'EA w) w 'EA 72
Q det p(0, $ ),

Ia, p=0, 11 I
(A3)

where the final sum is over the product of fermion determinants partitioned into different spin structures, as will be
made explicit shortly.

The determinant for a single complex fermion with boundary conditions twisted by 0,$ as in (A2) can be evaluated ei-
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ther by considering a regularized product of eigenvalues or by considering the partition function (as explained, for exam-
ple, in Ref. 13) for a left-moving fermion with Hamiltonian H and world-sheet fermion number F (satisfying
e '~ ge 'k =e '~g). For a single complex fermion twisted with respect to the AA spin structure (a=P=O), for
example, we find (up to an overall phase chosen for convenience)

detpo(0, $)= Q [(n + —,
' +0)r—(m + —,

' —P)]=tre '&
q

fg, SPY = —oo
7

Hlb 8 /2 1/24 g (—1+ +8—&/2 & 0)(1+ —& —&/2 —& '0)

n=1

oo (n +Oj2/2 2ni (, n +0/2)Pn=—

0
8oo ] (r)

r)(r)

where q =e ", r)(r)=q'/ +„&(1—q") is the Dedekind g function, and 0 /2 ——„ is the vacuum normal-ordering
constant. [As pointed out in Ref. 13 and as we shall see shortly, (A4) embodies the statement of bosonization at one
loop. ] The result for other spin structures may be inferred, again up to a phase, by letting 0~0+ —, ,P~P+ —, . We find

det p(0, $)=
0 p (r)

(A5)

with

0 QO

(r)= e' ' '"—0 ~(r0+P, r)= g q
"+ + ' exp[2zi(n + —,'a+ —,'0))+in(n + —,'a)P],

n = —oo

(A6)

a,P=0, 1, and the 8 ~(z, r) are as defined in Ref. 14. [In the notation of Ref. 15, we have 83(z, r)=Boo(z, r),
8q ——8p~, 8q ——8~p, and 8~ ——5». ] We have chosen the phase in (A6) so that under the modular transformations r~r+1
and ~~ —1/~, these functions conveniently transform as

0 0 0
(r+ 1)=x9o& 0+~ (r) 8oo = ( —ir) Boo (r),1/2 —0

0 0 0
(r+ 1)=Bop 0 ~

(r), 8o)

0 0 0
»o p

(r+1)=e' "»o 0+p (r), &io
p

=( i r) 8)p — (r),~ 1/2
,

—0

= ( i r) 0—o, (r)

(A7)

0 0 '0
(r+ 1)=e' 5) ( 0+~ (r), i ( —ir—)' ~5))1/2 (r) .—0

They also satisfy ~Bop[~](r) —8o, [&](r)—5&o[~](r)+8»[&](r)=0 for all 0,$ [following from relation (R5) on p. 20 of
Ref. 14].

To construct a modular-invariant partition function for a string theory, we need to choose an appropriate sum over the
spin structures of the fermions. Here we consider the combination

8k 0 8k 0 8k i0 8k 0, (.)+ &~.. . ( )+ &~.. . ( )+ ~~„
1=1 .+ . I=l . I=l . 1=1

(A8)

which is invariant, as required, under the transformations r~w+ 1, (0,$ )~(0,$ —0 ), and r~ —1/r,
(0,$ )~( —$,0 ), for arbitrary integer k. The relevant cases will be k=1,2, corresponding, respectively, to the bosonic
lattices I 8 and I ~6. Substituting (A6) into (A8) gives
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(nt+()t)2/2 2~i(n +(1 /2)(() + ~ ~ (n +& ) l2 2ni(n +& /2)p
( 1)nq e

I =1„r~Z I =1 nI~Z
8k

+ g g (n +1/2+& )2/2 2ni(n +1/2+& /2)p + g y (n +(/2+& ) /2 2ni(n +1/2+e) /24k
( 1 )n +1/2

I =1 nr&Z I =1 nrgz

gt (ni+@) /2
q exp 2rri g(n + zO )Q [1+(—1) '

]
EZ I

rXr (ni+ +& ) t 1 1 I t i(n 1+1/2)
q

' ' exp 2mi g(n'+ —,'+ —,'0')(t' [I+(—1) '
]

Inrez) I

( V+A w) /2 —2ni( V +A w/2)A w' (A9)

lattice I k in the above is hy definition the even self-dual 8k-dimensional lattice consisting of vectors V ~hose
components Vt are either all integer, V EZ, constrained such that gt V is even, or all half-integer, V EZ+ —, , again
such that g V is even. Splitting the complex fermions into two groups of eight and summing independently over the
spin structures corresponds to summing over VE A;„,= I 8 I 8, and summing over the same spin structure for all 16
complex fermions corresponds to summing over VE A;„,= I &6.

Inserting the result (A9) for the determinants in (A3), we see that the w dependence is contained in the function
f (w') =exp[ —(2' lr2)(w' r) w) ——2rriw'k], where

k =2Bw+ V /I + —,
'

/I (/Iiw) .

Fourier transforming gives f(p) = f exp(2trix p)f (x) —exp[2trir)w (p —k) ——, trr2(p —k) ]. Using the Poisson resum-
mation formula to reexpress the sum of f (w') over w'EA by a sum of f(p) over p EA*, and including the additional
pieces from (A9) and (A3), gives a partition function proportional to

exp[ —2rrr2w +21rir) w (p —k) —,
'

trr2(p —k—) ]q
wEA, pEA

Ehtnt

thus verifying (2.2) and (2.3).

w Eh,pEA*
VGA;„,

q q q
[(p —k) //2+ w]2//2 —

I (p —k)/2 —w]2//2 ( V+ 3w]2//'2 (A 10)
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