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We investigate the vacuum state of (1 + 1)-dimensional P quantum field theory utilizing a modi-
fication of the powerful coupled cluster method by the additional maximum-overlap condition. This
permits us to construct the ground state of that field theory for nearly all values of the coupling
strength. Only a small region has to be excluded where our method still fails. This is most probably
due to critical behavior showing up in a change of the order parameter of the model. Our procedure
predicts a behavior of the (P ), model in complete agreement with some rigorous mathematical
statements which is not possible in the case of a Gaussian approximation only. Perhaps somewhat
unexpectedly, the symmetry-breaking Hamiltonian does not have any critical point.

I ~ INTRODUCTION

In a series of publications' the vacuum sector of the
(tb )q model was studied intensively in the past. Mathema-
ticians could prove rigorously the existence of a unique
phase transition of second order, but they did not give
an estimation where it should occur. On the other hand,
physicists utilized the nonperturbative Gaussian approxi-
mation to make concrete predictions. ' ' Unfortunately,
all these predictions, as they are concerned with critical
behavior, are totally wrong. Instead of a second-order
transition only a first-order transition is obtained, which
is in disagreement with the famous Simon-Griffith
theorem. ' Therefore, the Gaussian approximation is not
capable of describing correctly the most interesting
features of the ((b )2 model. On the other hand, that ap-
proximation becomes exact far away from the critical re-
gion.

In our first attempt" to overcome these shortcomings
we decided to use a powerful method of many-body
theory, which is known among experts as the coupled
cluster method. ' ' Although we had a lot of experience
with its application to typical problems in many-body
theory, it was never applied to quantum field theory. Be-
cause of this lack of experience the first numerical calcu-
lations were not as successful as expected. The cornplicat-
ed equations were solved iteratively and convergence
could not always be observed. Therefore, our first predic-
tions were not as reliable as necessary to make some pre-
cise statements about the critical point. In the meantime
we have improved our concepts' and can now report on
these superior techniques, which have a wider range of va-
lidity and seem to be precise enough to better localize the
critical point, which itself is still not accessible without
further modifications of the procedure.

This paper is arranged in five sections. In the next sec-
tion we discuss properties of the ((b )2 model in detail. We
emphasize the duality of models to relate states and ener-
gy eigenvalues of three different Hamiltonians to each
other. Scaling identities follow naturally from these con-
siderations. As a consequence, only a very small range of

parameters has to be analyzed to extrapolate the behavior
of the ((b )z model to all other parameter values. There
exists a small interval of the coupling parameter where
duality is absent. Most probably, the critical point is con-
tained in this interval which is strongly supported by our
numerical data. The uniqueness of the critical point is au-
tomatically guaranteed. In the third section we make the
reader familiar with a formalism corresponding to post-
Gaussian approximations. The ordinary Gaussian ap-
proximation can be recovered as an extremely crude
reduction of our most general procedure. We utilize an
approximation which seems to be sufficient to describe all
relevant properties of the (P )z model correctly. Only
close to the critical point do expected problems appear.
Numerical results concerning the energy density and the
vacuum expectation value of the field operator are dis-
cussed in detail in the fourth section. An estimation of
the critical point is derived. The exact duality relations
and scaling identities can be recovered from the numerical
data. In the fifth section we draw our conclusions and
stress the necessity to make the coupled cluster method
available in the critical region.

II. THE MODEL, DUALITY,
AND SCALING IDENTITIES

The model has already been described several times.
Therefore we restrict ourselves to those relevant aspects
which are of utmost importance. At first, we define two
Hamiltonians which will be called symmetric (H) and
asymmetric (H):

H(m, k, L)=X~z J dx , tr + —,(V'P)—

2
m
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H(i/„g, L ) =~„J dx —,~'+ —, (V'P)'+ , P.—'P' —3A;=0 . (2.8)

(2.2)

These are pure names which have to be interpreted with
great care. Utilizing the formulas of Ref. 3 it is easily
verified that both Hamiltonians agree up to a constant. In
this case we call the two models described by these Hamil-
tonians dual to each other. Here we obtain

.P (g],L] ) =
g2

1/2

(g2 iL 2 ) +g 1
L 1 ~ (g 1 ig2 ) (2.9)

Since W(g, ,L, ) and W(gz, L2) are both dual to the same

Harniltonian, P (g&,L3), they should be dual to them-
selves. This is expressed as an important self-duality con-

dition for the Hamiltonian W(g, L ):

p —2m 3k2 2

H(m, k, L)=H(p X L)+L ' — +
8~ 4

m25 m

2 4k
(2.3)

1 1

4~ g2

~2
+ +

2g] 2g2 4g ]

(Q 2 Q 2)

1

4gq2
(2. 10)

p = —m +3k'
(2.4)

and g] is related to g2 by the equation

1 2m

4~ 2

Equations (2.4) have solutions only if A. /p exceeds a criti-
cal value (/L/p ),.„,=g3 =9.045978. Therefore, given a
coupling strength g3 ——k/p larger than this lower bound

g3, a special symmetric Hamiltonian H(p, k, L) is dual
to an asymmetric Hamiltonian II. But even more, it is

dual to two asymmetric Hamiltonians, which will be
denoted as H(m&, k, L)and H( mz, A, ,L). In the next step
we scale al) dimensionful quantities with powers of m I,
m2, or p to obtain dimensionless quantities. As before,

g ~

——A. /m
~

and g2
——A, /m 2 are adequate abbreviations

we make use of several times. Pure dimensional con-
siderations lead to (i = 1,2)

H( mk, L)=m;A'(g;, L;),
H(P, k,L)=PA (g3,L3),

(2.5)

where .M and M are dirnensionless and need no further

definition. L; =m; L and L &
——pL were introduced fur-

thermore. Now we rewrite the duality relations in terms
of these scaled operators and parameters. Equation (2.3)
transforms into

1 /'2

g2

1 3
ln =0 .

g] 477 g]
(2. 1 1}

l
&.(gi, Li)&=

l 4.(g2, L2)&

= l6„(g,L )&, (2.12)

Let us turn to a qualitative discussion of these exact iden-

tities. gi (g„L3) is dual to W(g, ,L, ) if g3)g*, and

0 &g, &4~i/3 It is dual to. W (g2, L2) if g3 )'g3 and
4~/3 & g2 & ~ . Finally, .W is dual to itself if
0&g& &4~/3 and 4~/3&g2 & ap. It is therefore suffi-

cient to investigate A (g&,L, ) in the range 0&gt (4~/3
to get all information about ~ in the range 4~/3 & g2 and
about M in the range g3)g3 also. On the other hand,

(g3 L3 ) for 0 &g3 &g3 is not dual to any other Hamil-
tonian. So we conclude that a complete investigation of
both the symmetric and the asymmetric model has to be
performed for 0 & g ~ & 4a/3 and 0 & g 3 & g 3 . These
ranges cover all possible different Hamiltonians. This will
be done in the fourth section. We want to become more
concrete now and relate states and energy eigenvalues of
dual models to each other. As a first result the agreement
of states has to be mentioned

(g;,L;)= (g~, Lg)

2 2

'+
4g;

1 1
+g;L; 8~ g3

(2.6)

where
l g„& are eigenstates of M with eigenvalues

E„(g;,L; ) whereas
l

(i/„& is an eigenstate of iW with eigen-

value E„(g3,L3). In addition to (2.12) one has to assume
that the expectation values of the field operator (t(x ) also
agree. Since the states may be degenerate one has to relate
corresponding states [via (2.12)]. Because of the duality
relations, these energy eigenvalues are dependent on each
other: namely,

and 6; is a solution of the equation

Furthermore, g& and g; depend on each other via

(2.7)
]/2

g]
&.(g] Li)= F-„(g2)L 2 ) +g ]L ) m(g ),g2 ), (2.13)
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E.(gi L»=
g3

1/2

E„(g3,L3)

2 3 2

1 ~1 1+
2 g1 4g1

+g1L 1 8~ g3

(2.14)

gy densities. This restriction is sufficient to answer the
important question of whether or not a phase transition
occurs in one of the two models described by the Hamil-
tonians M or M. The mass gap can in principle be ex-
tracted from a coupled cluster calculation of the first ex-
cited state or from the correlation function of two field
operators. In the present paper we shall not deal with this
problem, however. As discussed in the second section we
intend to solve the Schrodinger equation

These equations have consequences for the energy density
of the vacuum state of the dual models. Since Eo and Eo
should be proportional to the volume, we obtain

+o(g 1 ) +0(g2) +g 1~(g lg2 )

g2
(2.15)

and

1 1
&o(g i ) = &o(g3)+gi 8~ g3

2 3 2+ 451

1+
2g 1 4g1

(2. 16)

where 8'o and 8'o are the vacuum energy densities of,P
and A . Both are dimensionless quantities. Similar con-
siderations applied to the mass gaps M(g;) and M(g3)
yield

M(g( ) =
1/2

M(g, ) =
gz

1/2

M (g 3 ) . (2.17)

III. COUPLED CLUSTER THEORY
OF THE VACUUM STATE

Since we do not intend to give a boring introduction
into all the ideas and techniques of the coupled cluster
method once again, we only mention the existence of a pa-
per, telling the interested reader all necessary details. '

Furthermore, a numerical investigation of the (P )z model
has been performed some time ago making use of the
standard coupled cluster method. " It may be advanta-
geous to compare our procedure with this original one,
which is both analytically and numerically much more in-
volved.

We will concentrate on the asymmetric scaled Hamil-
tonian A (g~, L~) to derive the maximum overlap coupled
cluster equations. A similar analytical calculation will
yield the corresponding equation for the symmetric model
with scaled Hamiltonian A (g3,L3). Since no new in-
sights can thereby be obtained, we only sketch the minor
differences in the latter system of equations. Further-
more, not the complete spectrum E„and E„will be
evaluated but only the vacuum state and the vacuum ener-

Despite the fact that these are exact identities they do not
tell us how large 8'p(g&) and 8'p(g3) really are. This has
to be clarified in an explicit calculation scheme as to be
introduced in the next section. As mentioned before it is
sufficient to do these calculations in the ranges
0&g1 &4~/3 and 0&g3 &g3.

~(gl L l ) &(gl L 1 ) ~ =Ep(gl L 1 ) &(gl L 1 ) ~ . (3.1)

The relevant energy density 8'p(g~) is related to the
eigenvalue Ep(g, ,L, ) via

&&o(g&)= lim L& Ep(g& Li) .

LI ~oo

In the coupled cluster method II(g, ,L, )) is assumed to
be a generalized coherent state

II(g~, L )t) =e ' '
~
0), (3.3)

(3.2)

P(x)=r+ f dk
(b e rkx+ b e

—&kx)

+4m. 8'k
(3.4)

where
~

0) is a Fock vacuum state still to be defined. The
e' form of the vacuum state reminds us of the typical
properties of coherent states. Before we make (3.3) more
concrete we turn to the Hamiltonian, M(g, ,L ~ ) once
again. It is specified by normal ordering with respect to a
set of creation and annihilation operators. The field
operator is expanded in this set which defines a Fock
space in the customary way. But this Fock space may not
be the most efficient one. A unitary transformation to a
new basis in Fock space can improve the convergence of
perturbative or nonperturbative calculation schemes. Op-
timization of the basis is exactly the concept utilized by
the Gaussian approximation, which is a variational princi-
ple in this sense. But once again, this is equivalent to a
unitary Bogoliubov transformation of the creation and an-
nihilation operators as was pointed out in Ref. 14.

Therefore, we proceed in the following way.
(1) The original Hamiltonian is defined in terms of

operators ak, ak and normal ordered with respect to these.
~e perform a Bopoliubov transformation to a new basis
of operators bk, bk and, additionally, shift the field opera-
tor, since (6

~

P(x)
~

Q)&0 has to be expected in one
phase of the (P )z model.

(2) The Hamiltonian is rewritten in terms of the bk, bk
operators. Both the energies of the Bogoliubov quasipar-
ticles and the shift parameter of the field operator will
serve as free parameters in later calculations. We em-
phasize that the energy spectrum of the quasiparticles
need not be relativistic any longer. This is not a serious
drawback of the method because the quasiparticles have
no physical meaning.

(3) The coupled cluster method is applied to the Hamil-
tonian resulting from the manipulations of step (2). It
turns out that the description is not unique at all. This al-
lows us to set some correlation amplitudes to zero, result-
ing in a unique and relatively simple system of equations.

Proceeding in this way is only a matter of lengthy cal-
culations. As mentioned in step (1), P(x) is expanded as
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+3g~2+3gh t2

Inserting this definition and a similar one for the operators vr(x) into A (g&,L &
) and changing the normal ordering from

a operators to b operators results in
2

A dk 1
A (gi, L&)=Li (8'« —co«) + —t —— +1~(bp+bp)8n8'k 4 g

+ f k1 «b«b«+&«( «b «+—b«b «)]—+» f d 0'(—)+gt0'(
L, /2 4

(3.5)

There is one necessary remark to be made concerning a slightly inconsistent treatment which can be traced back to a
usage of a finite volume but a continuous momentum. A correct procedure should use discrete momenta. Since the
infinite-volume limit is somehow trivial to perform we decided to work with continuous momenta already from the be-
ginning.

The quantities ~, Ek, Qk, wk, and 6 are given by

~=gt
+k=O

1/2

t ——+361

Ek ~k + +k +3g t +~2

28'k

2
cok —8'k +3g t ——+548'k (3.6)

dk 1

21T 28 k 2' k
cu«=(k +2)'~

It is obvious from expression (3.5) that neither 8'«nor E«can be reliably identified with a physical particle energy.
as defined by (3.5) seems to be a drawback since there are terms proportional to b«b «and b«b «as well as terms pro-
portional to bo and bo. The Gaussian approximation fixes t and 8'k by minimizing the energy. This leads to the re-
quirement that these operators are absent from A . Here we do not insist that both ~ and Ak vanish but try to choose a
method more intimately connected with the coupled cluster method. We return to the ansatz (3.3) and expand the opera-
tor S in terms of creation operators with coefficients which are commonly known as correlation amplitudes:

~(gi L i) = g ~. (gi L i )

n =1

=g fdk,
n =1

1/2

Q2@„S g~, S„(~, (3.7)

As long as an infinite number of correlation amplitudes is
taken into account, the ansatz (3.3) permits an exact treat-
ment of a physical vacuum state, although some
compromise has to be found later on. In practical calcu-
lations it will not be possible to evaluate all correlation
amplitudes exactly. We insert the ansatz (3.3) into the
Schrodinger equation and project onto states
(0

~ b«, b«e ', where b«
~

0) =0:

r 2

&p(g»=
dk 2 g 2 1

(co« —8'«) + —t ——
8vr 8'k 4 g

g 16~2

gt+ 3/2 S3,2(2')
(3.10)

(0~b«b«e '~e'~0)=0, n =1,2, . . . ,

(0~% e'~0) =Ep(g, ,L, ) .

(3.8)

(3.9)

where we set up S„k amplitudes via

«)= f dii d4
The nth equation of the complete and infinite system of
Eqs. (3.8) will be abbreviated by [n]=0 to shorten the
further discussion. Equation (3.9) defines the exact vacu-
um energy in terms of t, 8'k and correlation functions S„.
A simple calculation of (3.9) yields in the case of the vac-
uum energy density (for reasons which will become obvi-
ous later we choose S~ ——Sz ——0) the exact expansion

This introduces partially averaged correlation amplitudes.
Since 8'p(g~) does not depend on any momentum it 1s

quite convincing that only S4 3 and S3 2 enter the expres-
sion of the vacuum energy density. If we had not scaled
the momenta, these numbers would be dimensionless;
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therefore, this leads to

S„„1(g1)=S —1(g3) . (3.1 1)

The numerical calculations should obey this fundamental
relation serving as a test of numerical accuracy.

At this point we have to return to Eq. (3.10) where

S& ——S2 ——0 was used which is exactly the maximum over-
lap condition. ' Why can we put these two functions
equal to zero? There is a one to one correspondence be-
tween amplitudes S„and equations [n]=0. Each ampli-
tude is completely specified by its equation. But t and 8'k
are also free parameters which cannot be fixed in this
way. The shift t and the amplitude S&, both simple num-
bers, can somehow be interchanged. We can set t to zero
and use S1&0 or we set S1 to zero and assume t&0. In
the maximum overlap condition S

&
is set to zero and

[1]=0 is the equation fixing the parameter t Simila. rly
S3 ——0 fixes the energies 6'k via [2]=0. Only amplitudes

S3,S4, . . . appear in the expansion of S(g1,L1). From
now on we replace the original definition of S by a rnodi-
fied one where the sum over n starts at n =3. [1]=0 will
be called the t equation and [2]=0 will be called the 8'k
equation. [3]=0,[4]=0 . . . are S3,S4, . . . equations.
This approach is based on "the maximum overlap" (MO)
condition, well known in many-body theory. ' Since for
boson systems the most general Gaussian wave function is
of the form' /=exp(S, +S&) 0) the variation
5

~
(p

~

A)
~

=0 leads to S1 ——S3 ——0.
Let us return to the Gaussian approximation for a mo-

10=
28'k =o

S~,2 gtS4 2(0)++28k 01' +
2& 277

+ jdk AkS3(O, k) . (3.12)

8'k equation:
r

g +S3,2S3 (0,q) + —,S» '( q)
7T

q

3gt S3, 1('q)+ ' + J dk Qt, S4(q, —q, k)
277 g

Qq+ +V'28'k oicS3(O, q) .
q

S~ equation:

(3.13)

ment. If we ignore S(g1,L, ), [1]=[2]=0are the Hartree
conditions of the Gaussian approximation. The other
equations [n]=0 with n ) 3 are not satisfied. We will use
an approximation which includes S& and S4. Therefore,
we can satisfy [1]= [2]= [3]= [4]=0, but [n]&0 for n )5.
This is obviously a post-Gaussian approximation which
goes beyond the standard Gaussian one as defined before
in terms of "[n]=0" equations.

As a result of lengthy but straightforward evaluations
we arrive at the following.

t equation:

gS&, 2
3

0= +28'k otc+
'

S4(O, q1, q3)+ g [E(q )+cr(q ))S3(q1,q2)2'

+ & Z & +S4,1(q, q. ) S3, 1(Iq1,q2 q3l~ Iq„q. I)3g 1

4~, 28'q 8'q

P(V

3gt 3gt 1
S4, (Iq, , q, , q3I i Iq„I)

7T q q q f 2 7T 2 2
q

(3.14)

where q&+q2+qs =0
S4 equation:

4
3go= g [&(q.)+~(q. )]S4(q1 qz q»+ 16 &a=1

+ 2 'S3( [qj« Iq, q. j ) S3(q„q.)& + + 3g $3 1(q )

q
P(V

+
qV

3gt 1+ —,, +S4 1(q„,q )
277 q

2
q1tt V

3g
8~

P (V

1
+S41(q„,q ) S,(IqI ZIq„,q I)

q q

(3.15)
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o(q) = S, ,(q)+ S» (q)
3gt

2~ ' &2~
(3.16a)

and

wh~re q, +q2+q&+q4 ——0 and, e g. , I qj4i [q&, q2 )= [q»q4 l.
Furthermore

the next section. Hopefully, the inclusion of more and
more amplitudes will give a convergent behavior of the re-
sulting series of physical quantities. Unfortunately, al-
ready the inclusion of S5 will increase the numerical ex-
pense enormously and convergence is very hard to prove.

A phase transition can be identified by inspection of
two physical quantities, the field expectation value
(II

~
P(x) 0) and the mass gap

Bq ——28'qSlq . (3.16b)
—in[(II

~
P(x)P(0)

~
II)„„]

M(g& ) = lim
IX

/

~oo
(3.17)

Equations (3.12)—(3.16) constitute a basis to analyze the
physical vacuum and its properties nonperturbatively.
The complexity of the ansatz for a realistic description of
the vacuum state has been significantly increased in com-
parison with Gaussian trial states. It is not obvious at all
that this improvement is already sufficient to reproduce
the known and provable features of the ($ )q model with
acceptable accuracy. This problem has to be postponed to

If we insert the calculated vacuum
~

Il) in the coupled
cluster representation, the resulting matrix element cannot
be evaluated exactly. We expand in the correlation ampli-
tudes up to quadratic order, since Sz and S4 should be
very small which is guaranteed by the numerical solution
for a wide range of coupling parameters.

This results in

(n
~
y(x)

~

n) =r+ ——4 2

3 77

1/2

f dk, dk2[Sg(k), k2)S4(k, , k2, 0)8'k 8'k 8'„+k ] . (3.18)

It should be noted that (P)(g, ) = (P)(gz) = (P)(gq) in the range of duality because (P) is a dimensionless quantity of
the theory. Furthermore

(II p(x)p(0) fI),„„=f e'~" +4 f dk[8'k8'k+~Sq (k,p)]
2~ ' 28'p

+ —, J dk)dk2[S4 (k), k~,p) 8' 8k' 8k'k~4k~+q] (3.19)

Formula (3.18) will be utilized to extract the critical point
from the numerical data. Equation (3.19) was not helpful
in obtaining the physical meson mass since a Fourier
transformation is required first and the asymptotic
behavior could not be reliable derived from it numerically
because of fast fluctuations of the integrand at very large
x. We conjecture that there is a special value g&,.„, in the
range 0&g& „,, &gq having the property that (P) =0 is
true in the range 0&gq &gq „;, and (P)~0 will be the
case in the range gz ~g&,„,. This means, the critical
behavior can be found somewhere in the symmetric ver-
sion of the (P )2 model which will be briefly discussed
now. All operators, states, and functions
(A,

~

II),EQ, . . . ) are replaced by those of the symmetric
model (A, J II ),Eo, . . . ).

and A differ in ~, Ek, cok, 6, and O, k as well as in
the constant proportional to L&. All the objects of the
symmetric model are indexed by a tilde above them.
has the same representation as .A ' of (3.5), but

1/2

3g+t 2+

Ek = [~k'+ 8'k'+3g~(t '+~)],
28'k

+k — [~k +k +3g3(r +~)]
48'k

(3.2O)

8k=(k +1)'~

dk 1z=f
2' k

Equations (3.12)—(3.16) are still correct with these new
definitions if S„k's are also replaced by S„~'s. The vacu-
um energy density 8'o(g&) is slightly different: namely,
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@P(g3)= (nk —Kk) + r + 2 r + 4g3
dk —

p g3 -4
8m. 8'k 4

+ —,g3ht + S43+ S32 .
16~ ' (2~)

(3.21)

Kp(g2 ) = —0.0225g2 —g2 W (g 1 (g2 ),g2 ) (3.23)

where g1(g2) is a solution of (2.11). Once more, (3.23) can
be tested and turns out to be correct very precisely. We
now switch to the numerical investigations supporting all
our statements made before.

IV. NUMERICAL RESULTS

A superficial comparison of the system of equations
(3.12) to (3.15) with the original system as derived in the
standard coupled cluster method" must lead to the con-
clusion that the numerical expense has been reduced signi-
ficantly. But even more advantages can be attributed to
the use of the maximum overlap condition. There is a
nearly unique iteration scheme since all S„equations can
be written as

In the phase of a unique vacuum state both t and S3
should vanish. A nonvanishing value of t, and therefore
of S3, indicates a phase transition from a (p) =0 to a
(P)&0 phase.

Before we turn to the numerical part of this paper, we
would like to make a last remark about asymptotically ex-
act properties inherent in the system of equations (3.10)
and (3.12)—(3.16). The cases g1~0 [and g2~ co via the
connection (2.11)] should allow a perturbative treatment
by expanding in powers of g&.

This leads us back to the Gaussian approximation plus
higher-order corrections. Equations (2.15) and (2.16) are
satisfied in the Ciaussian approximation, but F~p(g1) =0
for the (p)&0 sector in the whole range 0&g1 &4m. /3.
If we do perturbation theory in lowest order, 8'p(g1) will

be replaced by the contribution corning from S3

V g1
8'p(g, ) = S3 2(g1) = —0.0225g1, (3.22)

(21r )

where S3 2(g1) was extracted from Eq. (3.14) in lowest or-
der also. (3.22) is reproduced by our more involved
method in the limit g& ~0 and serves as a numerical test
case. On the other hand, the limit gz~~ is also now
available. Making use of the identity (2.15) leads to

bility to write the S3 and S4 equations in such a way.
This is in contrast with the standard coupled cluster equa-
tions which allow many different formulations. Comput-
er experiments applied to the anharmonic oscillator model
have convinced us recently' that convergence or diver-
gence is strongly dependent on the correct choice of an
iteration scheme. This is in obvious agreement with ob-
servations made in nonlinear dynamics of iterative maps.
Finding the best functions F„of Eq. (4.2) is highly non-
trivial and the partial failure of the standard coupled clus-
ter method in our first attempt may be traced back to this
fact. We have overcome this problem due to the max-
imurn overlap condition and its unique description.

The t equation is a cubic equation which can be solved
by standard algorithms. It may possess up to three dis-
tinct solutions. In the Gaussian approximation there is al-
ways a solution at t =0 indicating three distinguishable
vacuum sectors of the asymmetric (p )2 model. This sec-
tor even becomes the one with the lowest energy in some
range of the coupling strength. This causes a phase tran-
sition of first order in the asymmetric model. ' Already in
our first attempt we could never construct this spurious
sector and concluded that it is a disastrously wrong pre-
diction of the Gaussian approximation. In the maximum
overlap case things do not change, and there is no hint
that a vacuum sector at (P) =0 exists in the asymmetric
model. On the other hand, the symmetric model has a
unique vacuum at (P) =t =0 at least for small values of
the coupling strength. This is in agreement with the
Gaussian approximation. But this sector becomes instable
for larger values of the coupling strength and dynamical
symmetry breaking takes place. The unique vacuum at
(1t ) =0 splits up into two degenerate vacua at (p)&0.
We will try to estimate at which value of g3 this phase
transition appears. At least qualitatively we can under-
stand why g3 „.„,&g3 results from our more sophisticated
method. The t equation has no solution at t&0 in the
Gaussian approximation if g3 &g3. Because of higher-
order correlations solutions of the modified t equation
occur already at values g3 smaller than this Gaussian g3 ~

Therefore, a phase transition can be observed in the post-
Gaussian approximation at some g3,„;, & g 3.

The 8'~ equation is solved iteratively also. We can
rewrite this equation as a quadratic equation for K~I,

0= A [t, 8'k, S3pS4]8'k +B[t,S3tS4)8'k+C[t, 8'k],
(4.3)

Sn(p1)p2&. . . tpn 1) =Fn[ S3). . . ) Sn 1)Sn +1)

S„1, . . . , S„„1], (4.1)

where 3 and C may depend on 8'k themselves at least in
a functional form via 6 or other integrals containing 8'k.
(4.3) will be solved as a series 8''k' defined by

(i) (i!
Sn1~ ~ ~ Snn —, 1],(4.2)

The maximum overlap condition allows exactly one possi-

where S„ itself does not occur on the right-hand side any
longer. Only averages S„k are allowed as arguments of
F„. Starting with (4.1), an adequate iteration scheme is
given by

(i +1) (i) (i) (i )

Sn (p1~p2~ &pn —1) =Fn [ S3 I ~ ) Sn —1~Sn+ 1 k

0= 3 [t, 8'k', S3,S4](P'k'+")

+B[r,S3,S4]8'k'+"+C [t, 8'k'] (4.4)

and usually convergence is established after a few itera-
tions. Sometimes problems appeared because (4.4) has no
real solutions if B —4AC &0. This can be expressed as a
bound on the higher correlations S3 and S4. If they
exceed some critical value, complex pseudoparticle ener-
gies will result.
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TABLE I. Numerical results for three Harniltonians dual to each other. First three columns list the coupling constants for the
three Hamiltonians. Columns four to eight give the energy densities.

g&

0.5
1.0
~/2
2.0
4'/5
3.0
3.5
4.0
4~/3

g2

2170.044 5

61.608 493
17.886 871
11.157 619
7.751 199
6.098 053
5.070 816
4.389 650
4w/3

g3

1091.299 4
36.931 457
14.956 747
11.638 368
10.080 763
9.443 272
9.152 828
9.052 659
9.045 978

&P(gl )

—0.011 52
—0.023 72
—0.038 28
—0.048 59
—0.058 24
—0.065 73
—0.073 55
—0.082 47
—0.086 22

&p(g, )

—1191
—6.904
—0.808 3
—0.356 7
—0.196 8
—0.1370
—0.107 0
—0.090 51
—0.086 22

&p(g3)

—599
—4.135
—0.6625
—0.3516
—0.2285
—0.1799
—0.1577
—0.1498
—0.1493

+0(g2 )pred

—1151
—6.904
—0.808 2
—0.356 7
—0.196 8
—0.1370
—0.107 0
—0.090 51
—0.086 22

P(g 3 )pred

—579
—4.134
—0.6624
—0.3516
—0.2285
—0.1799
—0.1577
—0.1498
—0.1493

We finish the description of numerical technicalities at
this point and turn to the numerical results concerning the
vacuum energy density and field expectation value. We
can either restrict ourselves to the range 0 &g~ & 4~/3 and
relate the model at values of the coupling strength
g2) 4~/3 to this range by the duality transformation, or
we forget duality and analyze the model at all values

g &0. Then, duality is a numerical result of our calcula-
tions and can serve as a test of numerical accuracy. If we
use g as a coupling strength, the complete interval
0&g & ~ is meant, whereas g& and g~ always cover only
a limited range as it was often defined before.

Table I tests duality of three different Hamiltonians
with coupling strengths g~ and gq of the asymmetric
model and coupling strength g3 of the symmetric one.
We give both the numerical data kp(g&), Zp(g2), and
8'p(g3 ) and the prediction of duality for Kp(gz ) and
8'o(g3). The agreement is excellent in all cases supporting
our belief that our numerics is completely reliable. A
disagreement in the last digit can always be traced back to
the integration method and complete agreement can easily
be obtained by adjusting it. Scaling identities, telling us
that t, S43 and S3z should agree for the three dual
models, are shown in Table II. We need not emphasize
the high precision at which the identities can be repro-
duced by our procedure. Therefore, numerical problems
should never occur due to an inadequate numerics but
more likely due to some fundamental shortcoming of the
method or a chosen approximation scheme. Divergent
iteration schemes are probably a consequence of missing
higher-order correlations S&,S6, . . . being extremely desir-

able close to the critical point.
Figure 1 shows the vacuum energy density of both the

symmetric (dashed curve) and the asymmetric model
(solid curve). At first we have to mention that the numer-
ical data are in complete agreement with Eqs. (3.22) and
(3.23) if g~ is small and gq very large. These two formu-
las describe the vacuum energy density nearly perfectly.
At intermediate coupling strengths further corrections are
necessary but still small. Therefore, many higher-order
contributions sum up to a small quantity making infinite
summations, as they are described by the coupled cluster
method, absolutely obligatory. Things are worse in the
symmetric model where no solutions at values
3.8&g3 & 8.6 were reliably obtained because the iteration
scheme did not converge. This may be understood from
the large correlations which we will describe later on.
Nevertheless, the incomplete curve Sp(g3) allows a simple
interpolation in the range 3.8 & g3 & 8.6 if we assume a to-
tally smooth behavior. This is indicated by the dotted
curve.

Figure 2 exhibits the field expectation value as a func-
tion of the coupling strength g or g3. It is remarkable
that t or t describes these expectation values nearly per-
fectly and the corrections of order S3S4 are almost less
than l%%uo. This supports our conjecture that an expansion
of a matrix element as a power series in correlation ampli-
tudes is reliable even if the series is truncated already after
the quadratic terms. ($)(g) is represented Ly the solid
curve of Fig. 2. There is no hint of a phase transition in
the asymmetric model. We searched for the spurious vac-
uum sector at ($) =0 as it is predicted by the simpler

TABLE II. Test of scaling identities for three Hamiltonians dual to each other. The labels i of t, S3:, and S4 & refer to the three
Hamiltonians.

gl

0.5
1.0
~/2
2.0
4w/5
3.0
3.5
4.0
4~/3

1.410
0.9868
0.7679
0.6662
0.5883
0.5415
0.5130
0.5013
0.5004

t2

1.421
0.9868
0.7679
0.6662
0.5883
0.5415
0.5130
0.5013
0.5004

1.421
0.9868
0.7679
0.6662
0.5883
0.5415
0.5130
0.5013
0.5004

(S3,2)l

—0.2694
—0.4197
—0.6007
—0.7305
—0.8135
—0.8327
—0.8309
—0.8275
—0.8271

(S3 p)~

—0.2669
—0.4197
—0.6008
—0.7305
—0.8135
—0.8327
—0.8309
—0.8275
—0.8271

(S, , ),

—0.2669
—0.4197
—0.6008
—0.7305
—0.8135
—0.8327
—0.8309
—0.8275
—0.8271

(Sg s)l

—0.005 44
—0.007 32
—0.016 2
—0.065 8
—0.207 5
—0.362 3
—0.479 4
—0.531 4
—0.535 0

(Sp 3)

—0.005 38
—0.007 32
—0.016 2
—0.065 7
—0.207 5
—0.362 3
—0.479 4
—0.531 4
—0.535 0

(S4, 3 ) 3

—0.005 38
—0.007 32
—0.016 2
—0.065 7
—0.207 5
—0.362 3
—0.479 4
—0.531 4
—0.535 0
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Certainly, we cannot evaluate a„and 6„ from our data.
But the existence of such power laws must have conse-
quences for our method which is basically analytical.
Therefore, nonanalytical behavior will never result from
such simple truncation schemes as they were used in this
publication. The critical region needs more sophisticated
techniques which have not yet been formulated.

V. DISCUSSION AND OUTLOOK

In this paper we have presented a method to treat the
continuum (P )q quantum field theory with post-Gaussian
approximations. In contrast with the ordinary gaussian
approximation most features of that model can now be
reproduced, only the critical point is still out of reach
without further modifications of the general procedure.
But we have succeeded in localizing the critical point
better than ever before. It is most probably contained in
the symmetric (P )z model at a coupling strength
3.8 &g3,„,& 8.6. Our data indicate a value of g3,„,-8.0
although some assumptions have to be made to come to
this conclusion. At values g 3 & g 3,„;, the symmetric

model possesses a unique vacuum state and becomes
dynamically broken by radiative corrections at coupling
strengths g3 &g3 „;,. The asymmetric model has always
two phases for all values of the coupling strength, and
thus no critical point ~

The maximum overlap version of the coupled cluster
method is a useful and precise tool for the investigation of
quantum field theories at least if we exclude critical phe-
nomena. This method is based on three principles: name-
ly, the Bogoliubov transformation, the maximum overlap
condition, and the coupled cluster method. But this is not
the end of the story and further well-known concepts of
many-body theory can be included to constitute even more
complex nonperturbative calculation schemes in quantum
field theory. It is quite natural to think of pairing-
phenomena as they are described by a BCS theory. This
is one of our future projects.
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