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The Gaussian approximation is generalized to include the complete effective action with arbitrary
inhomogeneous background fields. This offers new possibilities to treat static and dynamical soli-

tons resigning semiclassical approximation schemes. The analytical continuation to imaginary time
allows us to deal with nonclassical instantons. Our procedure is based on time-dependent variational
methods of which at least one concept can be extended to a post-Gaussian approximation nonpertur-

batively. We construct a unique mapping between a quantum field theory of a scalar field in 1+ 1

dimensions and a classical field theory of an infinite number of local and multilocal fields. As an

application we treat the sine-Gordon system. A preliminary comparison of our numerical results

with a semiclassical calculation of the soliton mass is presented and will be extended in a forthcom-

ing publication.

I. INTRODUCTION

The historical evolution in quantum field theory has
confronted us with models of increasing complexity. We
moved from simple gauge models to unified theories and
have now reached a status where the ultimate theory of
the world, the superstring theory, seems to be found.
These "theories of everything" are so elegant and easy to
understand, that we do not discuss them in our publica-
tion, but switch to "theories of nothing, " which definitely
do not describe real nature. Nevertheless, there are some
good reasons to study such models. Our understanding of
the quantum structure of field theories is very small and
most of the arguments are based on semiclassical tech-
niques and perturbative expansions. There are brute-force
methods to treat the corresponding lattice field theories
via computer simulations, and one tries to relate the re-
sults to the continuum version of the theory by
renormalization-group arguments. Unfortunately, the lat-
tices are sti11 small, ferrnions are incorporated only ap-
proximately, and, therefore, preliminary results are still
doubtful. In continuum field theory the situation is much
worse. Besides some exactly or nearly exactly solvable
models there are no comparable powerful methods which
seem to be reliable in general. Even quite clever approxi-
mation methods such as the dilute-gas approximation'
of a gas of instantons does not work independent of a very
special model. Although it explains confinement in the
Abelian Higgs model it does not in the case of @CD
(Refs. 2 and 4). So we conclude that this present status
justifies a detailed analysis of models far from reality if
we can obtain insight into their quantum structure in the
continuum case.

The investigation of simple field-theoretical models has
a long tradition. Most of these models are, however, not
defined in physical four dimensions. Since the invention

of spontaneous compactification 10, 11, or even 25 dimen-
sions do not cause any serious problem and a field theorist
may even be called old fashioned if he does physics in
four dimensions only. Most of the simple field-theoretical
models are defined in two dimensions and, unfortunately,
inverse compactification from two to four dimensions has
not yet been invented. We assume that there is a not-yet-
observed parallel universe with a single space dimension
and we would like to describe the field theories of those
living in that universe, which may also be considered as a
(1 + 1)-dimensional shadow world. But how can we
proceed if there are no known exact solutions of these
(1+ 1)-dimensional models? A method, which waves the
claim of pure quantum-theoretical origin, is the Gaussian
approximation. ' At present, nobody can estimate how
well this method approximates true wave functionals of a
field theory, but it is at least applicable to a wide range of
phenomena and not plagued by infinities, which are re-
sponsible for the fact that the Gaussian approximation
has not been applied succesfully to (3+ 1)-dimensional
models. The Gaussian approximation has been studied in-
tensively in the past and there exists already some work
done by us to extend this model to a post-Gaussian ap-
proximation. The concepts of this generalization will find
their successful applications soon.

What is the Gaussian approximation? It is a nonpertur-
bative variational principle based on rather elementary
and conceptually simple ideas, well known from quantum
mechanics of many-body systems. There is already a
large number of publications ' giving many technical
details, but it is really astonishing that all authors restrict
themselves to one single aspect and ignore quite interest-
ing phenomena.

Let us consider the effective action which is defined as
the Legendre transformation of the generating functional
of connected Green's functions. " This action can be re-
garded as an almost complete information of the whole
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system which may be obtained from a given quantum
field theory. Both perturbative and nonperturbative
methods should try to evaluate the effective action from a
classical level having applied standard quantization tech-
niques. The Gaussian approximation which belongs to
the class of nonperturbative methods is an alternative to
the conventional loop expansion" which is perturbative in
that sense that it expands the effective action in powers of
A. But, up to now, only a very special part of the effective
action, which is commonly known as the effective poten-
tial, has been evaluated in the Gaussian approximation.
This is acceptable as long as constant background fields
are considered exclusively which is sufficient for the vacu-
urn problem. Nevertheless, a lot of interesting phenome-
na, which require both space- and time-dependent struc-
tures, cannot be described by the effective potential alone.
Among these structures we find solitons and instan-
tons, ' ' but also cosmological problems such as the de-
cay of the false vacuuurn, " which is of central impor-
tance in the theory of the inflationary universe. ' '
Dynamical processes of this kind are commonly investi-
gated using classical and semiclassical methods, which are
improved by the loop expansion to take quantum effects
into account. ' In this publication we will introduce dif-
ferent procedures, utilizing the Gaussian approximation,
to approach problems such as solitons and instantons. We
develop the Gaussian approximation in a most general
way and restrict ourselves to special cases later on. At
first an approximation expression for the effective action
will be derived, which includes both static and dynamical
field configurations as stationary values of the action.
The background field is accompanied by additional classi-
cal and rnultilocal fields, which comprehensively describe
all quantum effects. This concept of additional fields can
be extended systematically to arbitrary high orders which
allows us to go far beyond the standard Gaussian
approximation —post-Gaussian approximations are born
out of this idea.

This paper, which is the first one of a series, is arranged
in six sections. In the next section we describe a time-
dependent variational principle as it was originally formu-
lated by Jackiw and Kerman. ' The case of a free scalar
field theory is analytically solvable and the wave function-
al of that solution is used as a trial wave functional for
field theories including interaction. We derive explicit
formulas for field theories with nearly arbitrary potentials
which can be utilized for the reader's favorite Hamiltoni-
an. Therefore, the second section can also be considered
as a cookery book for all the techniques necessary to ap-
ply the Gaussian approximation to arbitrary problems.
Our tool box contains recipes to calculate the effective ac-
tion, effective potentials, and Z [P] factors for inhomo-
geneous background fields. We derive general soliton
equations and equations for the fluctuation modes around
the so1itons. Once again, all this can be done without
specifying the Hamiltonian which will be done additional-
ly in a later section to make our ideas clear.

In the third section we will give an alternative to the
Jackiw-Kerman procedure, which we call the "variational
coupled cluster model"' ' ' ' (VCCM). Although this has
been known for years it has not yet been applied to con-
crete problems, mainly because it is more complicated
than the ordinary coupled cluster method. On the other
hand it allows one to calculate effective actions, whereas
the conventional coupled cluster method ' does not,
it only gives energy eigenvalues of the Hamiltonian. Cer-
tain1y, the variational version, is accompanied by an in-
crease of numerical and analytical expense. We can
rewrite our tool box in terms of a VCCM language but do
not proceed in this way. Actually, it turns out that the
Jackiw-Kerman formulation is easier than the VCCM, or
better said than its equivalent truncation, since the VCCM
is exact in principle and more complicated truncation
schemes are indeed post-Gaussian approximations. Such
generalizations are missing in the Jackiw-Kerman method
and that is the advantage offered by the VCCM.

An example of the ideas described in Secs. II and III is
presented in Sec. IV. It is quite natural to consider the
sine-Gordon system, since this has been studied utilizing
the Gaussian approximation and also semiclassical tech-
niques. We derive effective actions, the soliton equa-
tion, and the equation of the modes around the soliton.
The mode expansion is discussed as a standard procedure
to solve the mode equation, both for static an time-
dependent solitons. The VCCM is more complicated, so
we decided to give details only in the case of the effective
potential. Section IV finishes with a remark on effective
Lagrangians derived by eliminating the background fields
instead of the fluctuations around them.

There are some problems to prove the equivalence of
the Jackiw-Kerman method and a specially truncated
VCCM in the case of a field theory. Problems become
easier in the simple case of a quantum-mechanical model,
which such a proof is available and will be reported in de-
tail. The isomorphism, mapping variables of each method
onto the variables of the other method, can be construct-
ed. We give comments on 0 vacua and discuss the diffi-
culties of how to transfer these to field theories. This and
other results are presented for the sine-Gordon quantum
mechanics in Sec. V. Our conclusions about the Gaussian
approximation are summarized in Sec. VI.

II. THE EFFECTIVE ACTION DERIVED
FROM A TIME-DEPENDENT
VARIATIONAL PRINCIPLE

The effective action I [Po) is a powerful instrument" to
gi ve a comprehensive description of a quantum field
theory by an equivalent classical field theory. If we
denote the classical action of a (1+ 1)-dimensional field
theory with S,i [$0], the effective action can be construct-
ed by functional integration and Legendre transformation.
All one-particle-irreducible functions I „(x&, . . . , x„) can
be obtained from I [$0] by making use of the identity

I [(h ]= y ', f d x, . d x„P (x ) .
P (x )I „(x,, . . . , x ) .n!

Additionally to this multilocal expansion (2.1) there is a completely loca one

(2.1)
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I [P ]= f d x[ , Z—[P ]B„y,d"y, V—„,[y,]+Z[y,](a„y,r)"y, )2+ (2.2)

This representation is useful for slowly varying fields with small gradients. A standard perturbative technique to evalu-
ate V,tt[gp], Z[gp], Z[gp] and further functions determining I [$p] is given by the loop expansion which has been
described by various authors. " The Gaussian approximation utilizes a theorem which can be stated as follows.

Among all normalized states
~
g) with (f

~

P(x)
~
g) =Pp with a constant Pp, V,tt[gp] is the minimum of the energy

expectation values ( g ~

H
~ g ) .

If one restricts the trial states
~
P) to Gaussian wave functions, V,tt[gp] corresponds to the Gaussian approximation.

This theorem can be generalized to a representation of the effective action. Such a theorem exists due to the work of
Jackiw and Kerman, ' which states the following.

(t)) and
~
g+(t)) are time-dependent states with normalized overlap. Both states tend toward the stationary

ground state
~

II) of the Hamiltonian; i.e. , H
~

II ) =0,
hm

~

q-(t) ) =
~

n) .t~+ oo

Therefore, let (P (t)
~

P(x)
~
P+(t)) =Pp(x, t) be a fixed exception value. Then, I [Pp] is the stationary value of

r[y, ]= f dtt, q (t) ~(ta, —H) ~q, (t)) . (2.3)

Unfortunately it is impossible to construct the stationary value analytically besides in the trivial case of a free-field
theory with Hamiltonian of the type

$2
H = dx ——

2 + —,
' V' x + —,m x —Ep

2 5$(x)
(2.4)

and

E= k+m
4~

The states making I [Pp] stationary can be computed explicitly:

(t)) =
~ p (t)),

I 4+(t)) = exp ——,
' f dxdy[P(x) —Pp(x t)]II(x J t)[P(y) —Pp(y, t)]

(2.5)

(2.6)

+I, dx x —pxt Hpxt+ —,
' pxt Hpxt (2.7)

where 6 and Hp are defined by

A(x,y, t)=(x
~

+—V +m y)

Qk2+ 2 ik(x —y)dk
2' (2.8)

Q(x,y, t) = —,G '(x,y, t)+ I(x,y, t) . — (2.11)

I

longer a real function. One has to allow that 0 might
have an imaginary part:

and

j,(x, t) =11,(x, t) . (2.9)

I [Op]= f d"[ ,
'

~„yp(x, t—)~"yo(x,t) —,'m'y, —'(x, t)] .

If we insert these definitions into (2.3) we finish with the
expected action functional

It turns out to be an advantage if both operators P(x) and
11(x) have given expectation values Pp(x, t) and IIp(x, t).
All further calculations will be done for Hamiltonians of
the type

H=Nm dx —,'H x + —,
'

V x +V x . 2.12

They are normal ordered with respect to some mass m
which may be the classical one and is determined by

(2.10) V"($p) =m (2.13)

Interacting field theories do not allow us to find an expli-
cit solution for the stationary value of I [Pp]. But one can
still extremize I within the restricted set of Gaussian trial
states as defined by (2.6) and (2.7). Certainly, Eqs. (2.8)
and (2.9) need not be satisfied any longer. This method to
approximate I [Pp] is called the Gaussian approximation.

The first necessary remark has to be that Q(x,y, t) is no

f «&g (t)~ a, ~q (t))

= f d' [11,(,t)j,(,t) ——,'( ~I( )Gt(t)
~ )], (2.14)

where Pp is defined by V'(Pp)=0. It is now straightfor-
ward to evaluate (2.3). We give some useful formulas for
such a calculation, e.g. ,
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where an operator notation has been introduced to work
sufficiently with bilocal fields 1(x,y, t) and G (x,y, t):

&x II(t)G(t) (x) = f dy&x (I(t) ly&&y
)
G(t) (x)

and

I(xy, t)=&» lI(t) ly) =&y lI(t) x) (2. 15)

and

(2.16)

&x I (t)G(t)
~

x ) = f dy dz&x I(t) y ) &y I(t)
~

z) &z G(t)
~

x ) . (2.17)

This nomenclature simplifies the following calculations and makes the representation of I [Pp] more comprehensive.
Other typical matrix elements appearing in I [Pp] are

d x t ~Nm V x + t = d x 2 V o x t + 2 VxVy x G t y x y (2. 18)

and also

dx t —,N H x t = dx —,II xt+ —„x G 't+I tG t x (2.19)

Finally, the expectation value of 1V ( V(P)) has to be calculated for arbitrary potentials V(g). We assume that V(g') has
a Fourier representation at least in the sense of Schwartz distributions. Then we can use Coleman's theorem ' and obtain

(t)
~

X V(P(x))
~
g+(t)) = f dl3 V(P)&g (t)

~

cV e'~~ "'
~
g+(t) )

d V e
'

exp ——,
' x G t x

Q —ae V(av'Q (x, t)+ Pp(x, t) ),v'2'
where we defined

(2.20)

(2.21)

and furthermore

Q(x, t) = &x
l
G(t) x &

—&P'-) (2.22)

Equation (2.20) tells us that all details of the interaction are of minor importance to perform an explicit calculation of
I [Pp]. Indeed, we show soon that results can be obtained without specifying V(g). It is advantageous to define func-
tions of the type

v„(x,y) = e V'"'(av'x +y),&2~ (2.23)

where V'"' is the nth derivative of the function V(g). These u„have an easy interpretation which we will give later on.
Now we combine all intermediate results to a final effective action:

r[y, ]= f d xi II (x, t)$„(x,t) ——,
' Il 2(x, t) ——,

' [gg (x, t)]2

—up(Q(x, t), (hp(», t)) ——, &x I(t)G(t) x ) ——,
'

&x G '(t) x )

——, &x II (t)G(t) ~x) ——,m &$ ) +Ep ——,
' 9 V &x G(t) ~y) (2.24)

We can either stop at this point or do some cosmetics to find a more elegant notation and representation of I [Pp]. The
functional I [Pp] can be made stationary with respect to Ilp and I (t) leading to equations

(2.25a)

(2.25b)

It should be noted that I(t) obviously vanishes for the static case. Furthermore, it is favorable to introduce a bilocal
field g defined by

(2.26)

and another free bilocal field gp to represent the counterterms Ep and &P ) . It can be defined as

k eik(x —y)
gp(xy, t)=&»

l
Pp(t) ly&= f (2V k +m )' (2.27)
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and solves the equation

( —B„B"—m )(x
I @ (t) Iy )+ —, (x

I P (t) Iy) =0 . (2.28)

Eliminating IIp and I(t) from I [Pp] by making use of Eqs. (2.25) and expression I in terms of g and gp gives an ade-
quate formulation of I [Pp] for an arbitrary potential V(g):

r[y, ]= f d x[ , B„—P(x, t)B"P (x, t) —U (Q(x, t), P (x, t))]

+ f dxdydtI ,'r)"„g(—x,y, t)o"„P(x,y, t) —,'[ll—'(x,y, t)] —,'t)"„P—p(x,y, t)&"„Pp(x,y, t)+ —,'[gp '(x,y, t)] j,
where f '(x,y, t) is the x representation of the inverse operator of g(t). Q(x, t) will be rewritten as

Q(x, t)=(x
I @ (t) Pp (t—) Ix) .

(2.29)

Let us make some remarks concerning the final formula (2.29). It still depends on two fields, the background field
Pp(x, t) and a bilocal field g(x,y, t), which contain all information about the quantum fluctuations around the background
field. The fields are coupled via the interaction Up(g, pp) whenever terms such as Q (x, t)P((x, t) appear. Only for a
free-field theory, i.e., V(g) = —,m g, can it be shown that the fields do not interact and indeed (2.29) reduces to (2.10), as
can certainly be expected. We will now derive some general formulas from (2.29) which will be applied to special models
in Sec. IV. I [Pp] is actually not (2.29) but the stationary value of it with respect to the bilocal field P( xy, t). Therefore,
P has to obey the Euler-Lagrange equation which becomes

[—a„a~—U, (g(x, t), P,(x, t))]&x
I
Q(t) Iy)+ —'&x

I g '(t) Iy) =o (2.31)

Once again, for a free-field theory U2 ——m and (2.31) reduces to (2.28). g and Pp coincide, Q(x, t) vanishes, and (2.29)
agrees with (2.10) as stated before. The more general case of an arbitrary V(g) cannot be solved without numerical at-
tempts or expansion methods which we will discuss now. It may be possible to solve (2.31) by a mode expansion

(x
I
g(t) Iy) = g g (x, t)g (y, t)

1

a 2ea

which transforms (2.31) into an infinite number of coupled differential equations:

[B„B"+ zU( Q( xt), P (pxt))]g ( xt)=e q (x, t) J(x, t—)

(2.32)

(2.33)

J (x, t)= g
p Cp

1/2

2itt3(x, t) f dy g (y, t)gtt(y, t)+qtt(x, t) f dy g (y, t)it@(y, t) (2.34)

Unfortunately, the system is highly coupled and requires a
self-consistent method for a unique solution. Both Q(x, t)
and J (x, t) depend on the modes q (x, t) themselves. The
static case may be more interesting at the moment, where
it is known' ' that the mode expansion is efficient and
converges quite rapidly. Equation (2.33) reduces to

pp(x t) = (5p+ EF( t) (2.38)

The next point of our discussion is a recipe to construct
a local expansion of the effective action as defined by Eq.
(2.2). We restrict ourselves here to V,tt[gp] and Z[gp],
since they can be extracted in a rather simple way. It is
sufficient to consider background fields of the kind

and

[—7 +U2(g(x), gp(x))]q (x) =e g (x)

dk
2Ea 4m +k +m

(2.35)

(2.36)

with constant Pp, infinitesimal e, and an odd function
F(t) Equation (2.31.) will be solved with these restric-
tions by a linear response theory. Since the system is still
translationally invariant in x space, we search for solu-
tions of (2.31) which are of the type

We postpone a further discussion of these equations and
an additional one, which we will call the soliton equation,
to the fourth section. A soliton is a stationary value of
I [Pp] and obeys the equation

a„a~y,(x, t)+U, (g(x, t), y, (x, t)) =o (2.37)

with additional requirements concerning nontrivial boun-
dary conditions at infinity. This may be expressed by a
topological charge related to the zeros of the function U&.

Instantons are related to the Euclidean versions of our
equations which needs no further explanation.

r/i(x, y, t) =tt(x —y)+uk(x y, t) . — (2.39)

P(q, t) =tt(q)+el(q, t) . (2.40)

The assumption of a linear response theory allows us to
stop the e expansion after the linear term. It is possible to
calculate the functions Z[gp], . . . of (2.2) also, but this re-
quires a nonlinear response theory and all analytical cal-
culations become inelegant. Because of the translational
invariance it is advantageous to solve (2.31) in momentum
space:
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Inserting (2.39) into (2.31) and utilizing the momentum
representation (2.40) leads to two equations for 5(q) and
A(q, t). The t(t(q) equation is solved by and

p'= 2(Q, A) (2.42)

6(q) = 1

2(Q 2+ 2)1/2
(2.41) Q= ln

1 m

4~ p2
(2.43)

where the so-called Hartree mass p obeys to the equation
A(q, t) is a solution of a more complicated integro-
differential equation

A(q, t)+4(q +p )iL(q, t) =— 1 F( t)v, ( Q, (to) + v4( Q, (to)
dk k(k, r)

(2+q2+ 2)1/2 247 (21/'k 2+ 2)1/2
(2.44)

It can be proved that iL(q, t) has to be ignored in (2.44) be-
cause it does not contribute to the Z[(t(o] factor of (2.2).
It would contribute to another Z'[(t(p] factor, appearing as
a coefficient of B„()po(x,t)(3"() (t(p(x, t). Details concern-
ing this complication may be found in Sec. V on sine-
Gordon quantum mechanics. Finally, A, (q, t) becomes

V3 1 F(t) ~ ~

&(q, t) = — —
2 2»/4 +0(F(&)) .

4&2 1+v4/8trp2 (q'+ p')'"

(2.45)

Obviously, a constant has been added, the normal-
ordering mass has been changed, and the potential V((t )

has been mapped onto a new potential
vp(g, (()p+(t() —vp(g, (t(p), which may be expanded in
powers of (t (x) to yield

II =L V,«+X„f dx ,
' II'+ ,

' (—Py)2+—,' p2y2—

+v1(Q 4o)4+ g v„(Q, o)

nI

If we insert g(q, t) =$(q)+et(. (q, t) into (2.29) and compare
with (2.2), Z[gp] and V,«[(t(o] are easily obtained:

2 2

V,«= +vo(Q ~o) (2.46)
8~

U3 1
Z[((),]=1+

48vrp, (1+v4/84rp )
(2.47)

where, as we already mentioned, p. is a solution of (2.42)
and (2 43). Some trivial steps may convince you that

Z[(t(p] can also be written as

1Z[po]=1+
48

d Inp, '[Pp]

d(t o
(2.47')

which can be utilized, if the (t(p dependence of p is known.
Finally, we give an interpretation of the c numbers

v„(g, (tto) as effective coupling constants. Let (ttp be a fixed
but constant quantity. Instead of taking matrix elements
it is also possible to evaluate the effect of a shift from a
normal ordering with respect to the original classical massI to a normal ordering with respect to the Hartree mass

p. The result is simp1y

a=+ f dx[ —,
' II'+ —,

' (Vy)'+ V(y)]

=L V, [P«]+oN„ f dx[ —,
' II + —,

' ((7$)'+ vo(Q, (ho+a )

III ~ THE EFFECTIVE ACTION
IN THE FRAMEWORK OF

THE VARIATIONAL CLUSTER METHOD

The theoretical concepts as developed in the last
chapter are basically due to the possibility to evaluate
Gaussian path integrals. Trial functionals more compli-
cated than those used before do not allow the construction
of I [(((p] without perturbative expansions. It is neverthe-
less feasible to extend the formalism to a most general
time-dependent Ansatz which is known as the VCCM. A
detailed analysis of this method in connection with appli-
cations in many-body theory was given by Arponen' in
the past. The fundamental idea is to use a special repre-
sentation of the states (tt (t) ) and

~
p+(t) ): namely,

q (t) ) =e"'1
~
0), (3.1)

(2.49)

It is now very transparent to interpret the v„as coupling
constants of the $" interaction. The Hamiltonian (2.49) is
the starting point for improvements of V,«[(t(o] going
beyond the Gaussian approximation. This may be done
either by ordinary perturbation theory or by more sophis-
ticated techniques such as the coupled cluster method.

—vo(Q 4o)] . (2.48) where

oo oo

S(t)= g S„(t)= g dx, dx„S„(x,, . . . , x„,t)p( '(x1) . . (t' '(x„) .
nt

n =1 n =1
(3.2)

The field operator was decomposed into a creation part (t(' (x) and an annihilation part tt(+ (t) with (t'+'(t)
~

0) =0.
Similarly (P (t)

~

will be expanded as

(q (t) (0
~

eS"(t)e —S(t) (3.3)
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where

S"(t)= g S„"(t)= g f dx, . dx„S„"(x(,. . . , x„,t)P(+)(x)) . P(+)(x„) .
n =1 n =1 n!

(3.4)

These Ansatze are universal and exact as long as an infin-
ite number of so-called correlation amplitudes (S„,S„") is
taken into account. Certainly, in practical calculations
one has to truncate the infinite set somewhat but sys-
tematic improvements of low-order truncations can be ob-
tained by including more and more amplitudes. This is an
enormous advantage of the VCCM compared with the
Jackiw-Kerman method, which is always restricted to
Gaussian trial states only. There is a complete agreement
between both procedures if the set of (S„,S„")amplitudes
is truncated after (Sz,Sz'), that means S„=S„"=0for
n &2. Let us discuss the special Ansatze (3.1)—(3.4) at
first. The overlap of both states is obviously normalized.
Furthermore, the requirement that the expectation value
of (t((x) is identical with a given function Pp(x, t) is a first
subsidiary condition for S, (x, t). If we require that the
expectation value of H(x) also agrees with a given func-
tion IIo(x, t), this can be translated into another subsidiary
condition for S", (x, t). Therefore, S((x,t) and S", (x, t) are
both already determined by Pp and IIo. The original set

can be replaced by an equivalent set
Ifp, Hp, (S„)„&(, (S„")„»]of field variables. Inserting the
Ansatze (3.1)—(3.4) into (2.3) yields (note the trick to insert
e since S"

I
0) =0)

1.[y, , H, , (S„)„., (S„")„., ]

f dt(0
I

5"(t) —s(t)( g ~)es(t)e —5 (()
I
0)

(S„,S„")„,=0 case A,
( S„,S„")„&2

——0 case 8,
and will do most of our calculations in the scheme B. To
evaluate (3.5) for Hamiltonians of the type (2.12) similar
formulas like those derived in the second section are
necessary. In the calculation scheme B we obtain

f dt(OIe "e i(3,e e "IO)

d II x, t x, t + —x T2'T2 x (3.7)

where the operator notation as introduced before has been
used again. Furthermore, T2' and T2 are defined by

T2 ——&AS2&A, T2 ——&AS2 &5 ) (3.&)

number of variables by a coincidence of all time variables
corresponding to the different locations x ] x„.

The true effective action I [(t(o] is defined by

I [Apl= min I [(t(o Ho (S ) o) (S ) o) (3.6)
rr, , [s„,s„")„,,

and leads to an infinite set of Euler-Lagrange equations
for the S„'s and S„"'s. In concrete calculations utilizing
the VCCM it is hard to go beyond low-order truncations
of the set (S„,S„")„&(.We will restrict ourselves to two
cases:

Equation (3.5) can be considered as a mapping of a quan-
tum field theory with a scalar quantum field P(x) onto a
classical field theory with an infinite number of classical
fields, some of them being local like Po and Ilp, the others
are multilocal like (S„,S„")„». This is similar to the
Green's-function formulation but there the additional
fields are not only multilocal in space but also in the time
variables. Our description by Eqs. (3.1)—(3.5) reduces the

I

I
~ y&=[0'+, (t' (y)]

ik(x —y)

4~ Qg2+

Similarly some computations yield

(3.9)

f d x —, (OIe e 1V H (x)e e 0)= f d x —,'Hp(x, t)

1x T2+ T2 —T2T2 —T2 T2+ T T"T xv'Z 2 2 2

(3.10)

and also

f dzx ,' (OI e e X [V'(t—((x)]e e IO) = f d xI —,
'

[V'po(x, t)]

2 V (x &b( T2+Tj +T2T2'+ Tz'Tz

+ Tz T2 Tz)~~
I y &

I =y] . (3.11)
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The matrix element of V(P(x)) agrees with (2.20), but
Q(x, t) is now defined by

Q =~A(T, +T,"+T,T", +T2'T&+T~T~T2)&h .

(3.12)

This agreement gives us a hint that the truncation scheme
8 is probably identical with the procedure developed in
the second section. Nevertheless, an explicit mapping
from ( T2, Tz' ) onto g has to be constructed to prove this
conjecture. %'e s~itch to the truncation scheme 2 for a
moment and ignore T2 and T2' in all matrix elements.
This maps I [Pp] onto its classical expression

(3.13)

+ f d x W(T2, T~, T2, T&) (3.14)

with

where Hflo II„] is the Hamiltonian after replacing opera
tors p(x) and II(x) by their expectation values. Trunca-
tion scheme 3 is the trivial approximation by a classical
theory ignoring all quantum effects. Scheme 8 results in
the effective action

x —T2 T2+ — T2+ T2 —T2 T2 —T2 T2+ T2 T2 T22 S v'g x + —,V' x y (3.15}

Comparing (2.29) and (3.14) demonstrates that the quan-
tum effects described originally by f are now described
comprehensively by two fields T2 and T2'. It has to be
stressed that the first-order Lagrangian (3.IS) leads to
equations of motion for T2 and T2' which are also first-
order differential equations in the time variable. On the
other hand the equation of motion for Q was of second or-
der. To map both procedures onto each other it is neces-
sary to solve one equation of motion for T2 or T2' and in-
sert it into the other equation, which then becomes also a
second-order differential equation. Unfortunately, this is
harder to execute than to write down.

%'hat else can be said about the VCCM and its useful-
ness'? The formulation is obviously more complicated
than the Jackiw-Kerman method. But it is flexible, can
be extended systematically to post-Gaussian approxima-
tions, and it is challenging to investigate it in a general
content. In the next section we return to it in a simpler
case to demonstrate its equivalence with the Jackiw-
Kerman method at least for constant background fields

Before doing this we present an example how to use
all the concepts developed in Secs. II and III for a simple
and well-known model.

IV. APPLICATION TO THE SINE-GORDON SYSTEM

This famous model has been studied intensively in the
past using many different methods and techniques. It is
widely believed that some statements found are probably
exact. These are concerned with mass ratios of soliton
masses. The model is defined by

m
V.tr[kp] =

8~
1—8~m

cos
v'g

m

1/'(1 —g /Svrm 2)

(4.3)

d„r)"Po(x, t) + exp —— Q (x, t) sin
rn' 1 g
&g 2 m'

vg
foal

=0. (4 4)

It should describe time-dependent solitons in the model-
like breather modes but also scattering of two or even
more solitons. If we ignore the quantum effect Q(x, t)
Eq. (4.4) agrees with the classical equation of motion
which definitively shows such a type of solutions. Quan-
turn effects themselves are comprehensively formulated by
Eq. (2.31), which here leads to

Both functions become singular at g /m = 8~. This
bound was already found by Coleman. He proved that
the Hamiltonian becomes unbounded for values of g/m
greater than 8sr. Furthermore, we have to require

I

(t/g /m)Po
I

&rr/2. Otherwise Z[gp] develops a pole
and V,tt[go] an imaginary part. This bound can also be
found using the loop expansion. The meson mass, which
is Q V,tt[4)p], becomes imaginary at values
~/2&

I
(v'g /m )Pp I

&3'/2 indicating instability. For
later use we switch to the description of solitons in the
sine-Gordon model. The soliton equation (2.7) becomes

4

V(P) = 1 —cos (4.1)
1 g8 8"+m exp —— Q(x, t) cos2m2 Pp(x, t)

Some simple calculation steps immediately lead to

Z [do]= 1+
48~m

tan'
v'

m

1—
8~m

2 (4.2)

4m
P,)(x)= arctan(e ")

g
(4.6)

Since we are interested in static Hartree solitons, which
are quantum solitons related to the classical soliton solu-
tion
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by an improvement via the fluctuation P, we again give
the concrete system of equations to be solved: —V„+m exp —— Q(x) cos

m m

—V Po(x)+ exp ——
2 Q(x) sin2

m' 1 g

g 2 ft1

Vg
Po(x) =0,

(4.7)

&& g (x) =e 'g (x) .

This system of equations will be analyzed in detail in a
forthcoming publication. ' Here we only sketch its global
properties; all numerical details may be found in Ref. 15.
After some little algebra we end with the formulas for the
soliton mass in units of the classical mass m:

m sol
&aBya

2

+ dx ——, ox exp —— x sin ox ——, x +
m

1 —exp —— Q(x ) cos[go(x )]
1 g

m

(4.8)

where
x =mx,

Pp(x ) = (50(mx),
vg

1/2 1/2
1Bya

E'y

Ey

2+1

e =modified stability frequencies,

Q(x)= g ~
r) (x)

~

—f
a

(4.9)

I

ferent from zero and we do not have a zero mode. Addi-
tionally, with increasing coupling strength there emerges
one more localized excited state out of the continuum part
of the spectrum (at ~g/m =1). If the coupling strength
tends toward larger values of g/m, i.e., g/m ~8~, we
find more and more localized states of the underlying soli-
ton solution. Our conjecture is that at the "critical point"
g/m =8~ we have an infinite number of such states.
The quantum sine-Gordon soliton has the same shape as
the classical soliton with some minor modifications. We
computed the soliton mass as defined by Eq. (6.4) and

compared our result with the two-loop formula ' of the
semiclassical method (Table I):

(a ~y) = f e'~ q*(x) .
217

m so] 8m

192m
(4.10)

Solving the system of equations (4.7), we observe the fol-

lowing results. The function $0(x) is a modified sine-

Gordon soliton which resembles the classical soliton very

tightly. The energy of the first excited state is now dif-

In the weak-coupling limit both approximations agree ex-
cellently. For larger values of the coupling strength we
note remarkable deviations which are not surprising as the
two-loop expansion describes the mass only for small

TABLE I. Contains the numerical results of the calculation. coo and col are the energies of the zero mode and the first excited

mode. E„l is the contribution of the second integral of Eq. (4.8) whereas FI refers to the first integral. E„, is our final result for the

soliton mass and E„has been obtained using the two-loop formula Eq. (4.10) of the semiclassical calculation.

0.1

0.2
0.3
0.4
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.005
0.011
0.018
0.026
0.035
0.078
0.109
0.131
0.144
0.145
0.136
0.112
0.070

1.049
1.047
1.045
1.042
1.039
0.999
0.978
0.943
0.890
0.812
0.698
0.541
0.322

E„i
7.9430 X 10
1.9684 X 10~

8.6588 X 10'
4.8150X 10'
3.0434 X 10'
7.0539
2.8289
1.3790
7.1107X 10
3.3241 X 10
6.6314X 10-'

—1.8933 X 10—'

—6.2866 X 10

FI

4.3497
2.6320
1.9674
1.5498
1.2703
0.6973
0.5158
0.4322
0.3896
0.3822
0.4127
0.5093
0.8247

Etot

7.9865 X 10~

1.9948 X 10~

8.8555 X 10'
4.9700 X 10'
3.1704X 10'
7.7512
3.3447
1.9112
1.1007
7.1458 X 10- '

4.7902 X 10—'

3.1993X 10
1.9600X 10—'

E„
7.9968 X 10'
1.9968 X 10'
8.8570 X 10'
4.9681 X 10'
3.1680X 10'
7.6765
3.2255
1.6609
9.2914X 10—'

5.2370 X 10
2.7095 X 10—'

9.8357 X 10
—2.8717X 10—'
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T2(x,y, t)= f T, (k)e'"
2~

(4. 1 1)

and similarly for T2'(x, y, t). Q is simply a constant de-
pending on T2, T2'.

Q= f t T2(k)+T,"(k)[1+T,(k)]2) .
4~

(4.12)

values of the coupling strength correctly. The soliton
mass is positive in our approach for large values of g/m
while the semiclassical approximation is already negative
indicating instability of the soliton sector. We calculated
the soliton mass for the critical value of g/m

'
and found

besides very slow convergence behavior also an "infinite
negative" soliton mass in our approach. This singular
behavior arises in agreement with the former analysis by
Coleman. Thus the Gaussian approximation for the soli-
ton mass of the sine-Gordon model provides us with con-
vincing and very reasonable results.

We now return to the variational coupled cluster
method to derive at least V,tt[bo] in that scheme. Since
background fields are constant we can make use of a
translationally invariant Ansatz

p =m cos2= 2
1/( ] —g/8~m )V'g

m
(4.18)

it is even possible to eliminate p completely from (4.17)
and finish with (4.3) once again. This proves that the ef-
fective potential obtained from both calculation schemes
do agree. It is not related to the restriction to the sine-
Gordon model as (4.13) (4. 14) exhibit, since v2 can be tak-
en from an arbitrary potential of a Hamiltonian.

There is one more remark we would like to make con-
cerning effective Lagrangians. In previous sections we
calculated effective actions I [Po, tij] describing a back-
ground field, e.g. , a soliton, and fluctuations gi around the
background-field configuration. I [bo] was constructed
by eliminating g due to the Euler-Lagrange equations.
That means that mesonic excitations were integrated out
and thereby eliminated leaving us with an effective classi-
cal field theory of the soliton. One might think to go the
other way: to integrate out the soliton to finish with an ef-
fective field theory of the mesonic excitations, and to
study their spectrum and interactions.

Varying I [Pp] with respect to Tz' and T2 yields the equa-
tions V. REDUCTION TO QUANTUM-MECHANICAL

APPLICATIONS

and

1 —T~(k)

1+T, (k)
=k'+ v2(Q 4o)

1 —2T2'(k)[1 —Tp(k)]
=k'+v~(Q 4o} .

1+2T~ (k)[1+T~(k)]

(4. 13)

(4.14)

This section, treating formal aspects of the Gaussian
approximation, comments on some problems which can
be analyzed easily in quantum mechanics, but become
somehow difficult in field-theoretical generalizations. We
approximate

Let use define a mass parameter p, by v2(g, pp)=p
Solving Fqs. (4.13) and (4.14) yields explicit representa-
tions of T2 and T2'..

+k +m' —&k +p (4.15)
+k +m ++k +p

2 2

T2 (k) = (4.16)
4(+k +m ++k +p )

Inserting these into (4.12) results into Eqs. (2.42) and
(2.43) as to be expected. Finally, the effective potential
expressed in terms of T2(k) and T'2'(k) becomes

dk
Vert[go] =vo(g, gp)+ f [T,+ T2'( 1 —T2) ]2w 4

[Tz+ T'i(1 —T»']
4@k

r[Q]= f dt(q (t)
~
[i&,——,'p' —- V(q)]

~

I// (t}) (5.1)

~p (t)) = ~'g+(t))
I'

I/2

P
exp — (p+i o)(q ——Q).1 2

2

+ iP(q —Q)+ PQ—
2

(5.2)

and P(t), p(t), and rt(t) are variational parameters, Q(t)
is the expectation value of q. After some simple steps,
I [Q] becomes

2r[g]= f dt pg+ —' — —,'p —,'p
4 2 4

1/2

by the value which I [Q] takes for Gaussian wave func-
tions:

f dqe ~q V(q+Q) (5.3)
= vp(g, gp)+ p —m

8~ ('4. 17)

if one inserts the solution (4.15) and (4.16) T»s com-

pletely agrees with the general formula (246} Since
&~—v (g y ) can be solved for the sine-Gordon model «
yield

r[g]= f dt —,'g'+ —,
' j'— 1

8 2
—vo(P Q) (5.4)

It is stationary for P =—Q and cr= —,pp '. If we define
g= I/v 2p, I [Q] takes the conventional form
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where again functions U„(Q, Q) have been defined by

v„(Q,Q)= J —e ~ 'V"'(qP+Q) . (5.5)v'2'
Now, all formulas of the second section can be derived in

I

the simplified case of quantum mechanics. Since no new
insights can be expected, we skip these derivations. But it
is possible to do similar calculations in the VCCM. A
straightforward evaluation yields

I [Q,P,S2,S2']= f dt PQ —, P +——Sp'S, + —,'[S2 —1+S2'(S2 —1) ] U—{j —,[1+S +S"(1+S ) ])',Q) . (5.6)

To map (5.4) and (5.6) onto each other, we define the vari-

ables

"=+,„q 2~n
A(~) =-

n = —oo

(5.13)

q=[ —,[I+S2+S'j(1+S2)]}',y=, (5.7)
1+S2 '

and rewrite I [Q,P,Sz,S' ]~in terms of P, Q, g, and $:

r[Q, P, q, y]= f dr[PQ ,
' P'+——

+ —,
' 0'0' —~0«Q)]

Sine-Gordon quantum mechanics with the Hamiltonian

H = —p + —[ 1 —cos( V'g q ) ]2 g
(5.14)

is representative of those models which make 0 vacua
necessary. Tunneling effects are described by a typical
tunneling factor

This functional becomes stationary if @=exp p +0
p

(5.15)

2 dr
(5.9)

X(r)+A'kit) =xF(t), (5.10)

where A and ~ are again expressible in terms of the U„'s.

We do not need their concrete form here. The general
solution of (5.10) may be obtained as a series in F deriva-

tives:

After inserting of these solutions into (5.8) we arrive at
(5.4) which was obtained using the Jackiw-Kerman
method; therefore, the equivalence was at least proved for
quantum mechanics. The Euler-Lagrange equation of
g(t) can be solved if we assume Q(t)=Qo+eF(t) as be-
fore in Eq. (2.38). g(t) should be a linear response to
Q (t), so we expand in e up to linear order:
r/i(t) =f0+EX(t). The function k(t) is a solution of

being nonanalytical in the coupling constant. The effec-
tive action I [Q] can be split up into a term I „o[Q]
agreeing with (5.4) and additional contributions I „&0[Q]
which are complicated expressions in Jacobi's 8 functions.
If one likes to transfer such 0-vacuum wave functions to
field theory, a tunneling factor

2 2

f3=exp — f dx dy{x
~

I1*GA ~y ) (5.16)

is encountered. It vanishes in the infinite-volume limit;
therefore, I [Po] is always I „0[/„]. Tunneling effects
due to instantons are more difficult to incorporate in the
Gaussian approximation of field-theoretical models. A
successful incorporation of tunneling effects in the Gauss-
ian approximation has been described recently by Cooper,
Pi, and Stancioff but these authors restrict themselves
on quantum-mechanical applications.

A, (r) =
o

1 d2"F(r)
dt2

(5.1 1)

and we truncated after the n =0 term in the second sec-
tion. The other terms in (5.11) contribute to I [Q] via

oo 2

f dr y " (Q(n+l))2
n=1

(5.12)

and, therefore, are related to higher time derivatives of
Q (t) In fiel. d theory (5.12) introduces

B& $0(x, t)B ' . 8 "Po(x, t) into the effective ac-
~n

tion which we did not attempt to calculate. The trunca-
tion to the n =0 term in the second section is justified be-
cause of this argument.

In the case of periodic potentials V(q)
= V(q +2m/V g ) the wave function (5.2) may be too re-
stricted. There are tunneling effects and the true ground
state is a 0 vacuum with the wave function

VI. DISCUSSION AND OUTLOOK

In this paper we presented a complete discussion how to
apply the Gaussian approximation to arbitrary space- and
time-dependent phenomena in (1+ 1)-dimensional quan-
tum field theory of a single scalar field. It was possible to
obtain general expressions for the effective potential,
Z[go] factors of the effective action, quantum soliton
equations, and comprehensively formulated stability equa-
tions. All this was formulated in the Jackiw-Kerman
variational principle which seems to be suited best in case
of a restriction on a definite approximation scheme is tak-
en into account explicitly. It is not possible to go beyond
that concept relying completely or. Gaussian trial wave
functionals.

As a new and extendible alternative the variational cou-
pled cluster method has been proposed. Here, post-
Gaussian approximations are easy to formulate and
emerge quite naturally from the general description which
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is exact in principle. We are convinced that all these ideas
based on the variational coupled cluster method will have
their successful applications soon since they allow to have
access to the complete effective action in a nonperturba-
tive way. It is now possible to extend the standard cou-
pled cluster method, which is restricted to the calculation
of eigenvalues of a Hamiltonian, to a variational method
which gives much more insight in the structure of a field
theory.

As a first application of our method we propose to esti-
mate the soliton mass of the (tb")z quantum field theory in
case of a post-Gaussian approximation. A previous es-
timation' of the soliton mass utilizing the standard cou-
pled cluster method already indicates that the mass is sig-
nificantly changed by higher-order correlations at least
very close to the critical point ~

There is one more test of the Gaussian approximation
still to be performed. Mass ratios of soliton masses in the

sine-Gordon system may be known exactly due to the
WKB approximation. It is necessary to calculate masses
of different static solitons of that model and compare
their ratios with these perhaps exact results. This would
underpin the statement of the high reliability of the
Gaussian approximation. Work in this direction has been
started recently and will be reported soon. "
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