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Consistent factor ordering of constraints may be ambiguous
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It is shown in a simple model that consistency requirements of the Dirac constraint quantization
may be satisfied by more than one, essentially different, factor orderings of the constraints and the
Hamiltonian.

In the Dirac quantization of a dynamical system with
(first-class) constraints, the physical Hilbert space is
spanned by states which are annihilated by the constraint
operators. Consistency requires that the commutators of
such operators again annihilate all physical states and that
the Hamilton operator keep them within the physical Hil-
bert space. It is often difficult to find a factor ordering of
the constraints and of the Harniltonian which satisfies
these requirements, especially for systems with open con-
straint algebras such as the general theory of relativity. '

In the face of such difficulties, it is tempting to believe
that once a consistent factor ordering is found, it is essen-
tially unique and physically appropriate. The purpose of
this paper is to present a simple counterexample to such a
soothing conjecture.

Take a nonrelativistic particle moving in a three-
dimensional Euclidean space E with Cartesian coordi-
nates Q"=(X,Y,Z) and let the translation group T(1) act
on E as a gauge group by helical motions

X(r) =X(0)cosr+ Y(0) sinr,

Y(r) = —X(0) sinr+ Y(0) cosr,

Z(r)=Z(0)+r .

The orbits (1) can be considered as points of the physical
configuration space ~ and labeled by the physical coordi-
nates q'=(r, 8),

The gauge transformations in the phase space T*E are
canonical transforrnations generated by the dynamical
variable

11—:y (Q)P

their orbits are surface forming on the constraint surface

rr =0
in T*E . The Hamiltonian (4) is invariant under such
gauge transformations:

dH = IH, 11 I
=0 .

d7
(8)

extracts the physical metric

g' =G" QA'Q~ =diag(l, 1+r ) (10)

out of the Euclidean metric G =6 . The inverse pro-
jector

Q~" =G Qttgbo» QA(h =0» QAQb =oh

enables one to decompose the momentum Pz into the
physical momentum p, and the constraint H:

The motion in the big phase space T*E is easily reduced
to the physical phase space T*~. The projector

g, —=aq'zing"

r =R with R:—(X + Y )'r P, =g„'p. +t()An with p. =g."p„. (12)

0=(e—Z) Mod2vr with e —=arctanX/Y,

which are constant along the orbits. The generator
A

) =(Y,—X, 1)
d7

(3)

of the group action is a Killing vector of the Euclidean
metric Gzz ——6zz. The motion of the particle is governed
by the Hamiltonian

H = —,G PAP~+ V(Q) (4)

whose scalar potential V is assumed to be constant along
the orbits and hence dependent on Q" only through the
physical coordinates q'.

V(g)=v(q(Q)) .

h = ,'a'p. pb+v(q)- (13)

The metric (10) in the two-dimensional physical config-
uration space ~z is curved, but regular and complete. It
becomes flat for r && 1 and again for r »1, where it cor-
responds to a cylindrical surface with embedding radius 1.
The complete embedding diagram has the shape of a
cylindrical vessel curving rather abruptly into a flattened
bottom at r =O.

Quantum states of the physical system can be described
by scalar functions g(q) on ~, with the inner product

( 01 02 & = f d'q
l a l

' "4i (q)Wz(q) (14)

The Hamiltonian (4) is thereby reduced on the constraint
surface (7) to the physical Hamiltonian
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whose measure Ile(g) =0 . (25)

I g I

1/2 —(det(g ) ) 1/2 p( 1 +p2) —1/2 (15)

is given by the determinant
I g I

of the physical metric
(10). The physical coordinates and momenta are
represented by the Hermitian operators

q'=q' and P, = —i Ig I

' 8, fg I'

and the Hamiltonian (13) by the Hermitian operator

h = ——,
'

b, +U(q)

(16)

(17)

whose kinetic part is the covariant Laplace-Beltrami
operator in ~:

=r '(I+r )'/ g„r(1+r )

+(1+ ')8 ' . (18)

A consistent quantization of the gauge system whose
reduction yielded the physical system (13) requires us to
find a factor ordering of the Hamiltonian (4) and of the
constraint (6) which would satisfy the quantum version of
the condition (8):

—[H, II]=0 .
1

(19)

This problem has been solved in a manifestly covariant
way for an arbitrary gauge system with constraints linear
in the momenta and the (first-class) Hamiltonian at most
quadratic in the momenta so that yet another physically
compelling requirement is fulfilled: Quantization of the
gauge system is entirely equivalent to the quantization of
the reduced physical system. Applied to our simple
model, the procedure can be described as follows.

Using the alternating symbol 5&zc in F, form a field
of two-flats

NAB ~ABC'
C (20)

orthogonal to the group orbits and, dividing them by the
no~

I I 0 I I
«NAB

"'G'
CAB&CD (21)

construct a "two-dimensional Levi-Civita tensor"

&wa:— wa . (22)

Turn the constraint (6) into the directional derivative
operator along the orbits,

11= —iy "a„, (23)

H =,' ~"aAe'caB+ V(g) (24)

acting on the space ~ =C (E,C ) of complex-valued
functions of E . Then, the operators (23) and (24) com-
mute, Eq. (19).

The physical states %(g)&~o are such states in ~
which are annihilated by the constraints:

and the Hamiltonian (4) into the second-order differential
operator

They are constant along the orbits of the group and hence
depend on Q" only through the physical coordinates q':

+(g)=g(q(g)) . (26)

The Hamilton operator (24), when acting on a physical
state, reduces to the physical Hamilton operator (17):

II+=0 =-H+=hg . (27)

P"=(0,1, 1) and G" =diag(l, R, 1) .

This yields

0 1 —1

cAB ——R(1+R )
/ X —1 0 0

1 0 0

for the Levi-Civita tensor and

(29)

(30)

(I+R')'/'& R (1+R')-'/

——R (1+R ) '(8 —R Bo) + V (31)

for the Hamilton operator.
Because V=U(R, e—Z), it is obvious that H com-

mutes with

11= —i(a, +az),
When acting on a physical state

(32)

%(R,e,z)=q(r =R,e=e —z) (33)

the second term in (31) yields —,(1+r )r BB, which
leads to Eq. (27). Finally, by choosing the plane Z =0 for
X and parametrizing it by the polar coordinates R and 0,
we see that eABdg" Adg gives the correct physical mea-
sure (15) and hence (28) reduces to (14).

We have exhibited the factor ordering which is con-
sistent, Eq. (19), and physical, Eq. (28). We want to show
now that it is not the only consistent factor ordering.
Indeed, a naive way of ordering the Hamiltonian (4) and
the constraint (6) would be to implement them as Hermi-
tian operators on a big Hilbert space A
=L (E,

I

G
I

'/ d Q) with the measure provided by the
determinant

I

G
I
=det(G„B) of the flat metric GAB..

(+1~ p2) = f,d'Q
I

G
I

'"pi «)+&(g) . (34)

The constraint (6) and the Hamiltonian (4) are then turned

The space M p of physical states can be endowed with
an inner product

(+„%2)= f eABdg" hdg %*, (g)%2(g) . (28)

Here, the integration is over an arbitrary two-surface X
which is transversal to the orbits. The integral (28) does
not depend on the choice of the surface and it reduces to
the physical inner product (14).

These statements, which follow from the general theory
proposed in Ref. 3, can be easily corroborated by direct
calculation. In cylindrical coordinates Q"=(R,e,Z) we
have
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IIG ———'(p"(I + —, di Gp) (35)

and

into operators which are Herrnitian under the inner prod-
uct (34), namely, into

(+1II' +2II") (X1 X2)~( (44)

Instead of working with the physical states 'Pp ——0 z p, we
smear the constraint surface by a small amount e and re-
place Op by an eigendifferential

5,%'=—e '/ f dlI 1ptt . (45)
HG ————,AG+ V,

where

a =
I
G

I

-'/2a
I
G

I

'/2G "a
is the Laplacian in E . With this ordering,

(36)

(&,q'1, &,q/2) = (X1,X2) . (46)

The eigendifferentials lie in the original Hilbert space A
and their inner product agrees with the renormalized ex-
pression (42):

[HG,—IIG]= ——,
'

IG I

' (3„IG I' (&pG )i)
1

+ , (b, G dtvG—Q), (38)

where X~ denotes the Lie derivative. For a generic sys-
tem, the terms on the right-hand side of Eq. (38) make the
ordering inconsistent. In our simple model, however, P"
is a Killing vector of G and, hence, because

f ~G" =0= divGQ,

the consistency condition (19) is actually satisfied. Be-
cause of Eq. (39), the orderings (23) and (35) of the con-
straint H coincide: Hz ——II. On the other hand, the or-
derings (24) and (36) of the Hamiltonian H differ.

The physical states +&A p are defined as before by the
requirement (25). Because II has a continuous spectrum,
the inner product (34) of two physical states in M*' in gen-
eral diverges, due to the integration along the orbits on
which the physical state functions maintain their respec-
tive constant values. To see this in detail, complement the
physical coordinates r =R and 0=0—R by the coordi-
nates z =Z labeling the points along the orbits, and write
the inner product (34) in the form

(1I', , %' )= f dZ f dR f dBRqq1

= f dz f dr f dOrX,*(r,0)X2(r, g),

IG I1/2 I~ I1/2Ig
I

1/2 wtth ~ G yA@B (47)

In other words, a state 7 in A p corresponds to the state

(48)

in M p and the Hamilton operator HG in ~p corresponds
(as any other observable) to the Hamilton operator

~G= I)' '"HG )'I (49)

in ap.
When acting on a physical state (41) in A o, the Hamil-

ton operator (36) and (37) has the form

HG= ——,
' Ir I

'"Ig
I

'"~, IyI'" g I'"~
——,

' (1+r ')a, '+U(r, e)—.

Therefore, hG differs from h by a potential m,

(50)

h~ ——6+m,
which can be written as

(51)

The renormalized inner product (42) does not coincide
with the physical inner product (14) and (15) because the
big space measure

I

G
I

' =r differs from the physical
measure

I g I

' =r(1+r )
'

by the factor
I y I

' =(1+r )
' which can be interpreted as the

measure of a line element along the orbits:

where

(40)

= ——„' (4+r')(1+r') (52)

%(R,B,Z) =(21') '/ X(r =R,0=B—Z) . (41)

To make the expression (40) finite, we restrict the z in-
tegration to a finite stretch z E'(zo, zo+2w) of the z axis
covering exactly one turn of the helical orbits. This
amounts to redefining the inner product of two physical
states as

OO 2.7r

(1I11,%2)=(X1,X2):—f dr f dgrX1X2 . (42)

The same expression follows by applying to the physi-
cal states the familiar technique of eigendifferentials.
The eigenstate of H to an arbitrary eigenvalue H has the
form

'Ptt(R, B,Z) =(2~) ' X(R,B—Z)e'" (43)

The operator H has a continuous spectrum and two eigen-
states (43) are thus normalized to the 5 function:

Notice that the difference between h G and h does not
amount to a mere inclusion of a curvature term because
the potential m is not proportional to the scalar curvature
R=6(1+r ) of the physical metric (10).

We thus see that the naive factor ordering (35)—(37)
leads to a quantum theory in the reduced (physical) space
which is substantially different from the physical quan-
tum theory (17) and (18). In particular, the reduced Ham-
ilton operator (51) and (52) has typically an entirely dif-
ferent spectrum from the physical Hamilton operator (17)
and (18). However, both the naive factor ordering
(35)—(37) and the physical factor ordering (23) and (24)
satisfy the consistency condition (19). This clearly illus-
trates the point that consistency alone does not determine
the factor ordering uniquely.

The difference (52) between the two orderings is ex-
pressed solely through the difference between the measure
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G
~

' in a big unphysical space E and the measure

g ~

' in the small physical space ~. The choice of the
Laplacian depends on such a choice of the measure. One
can say that the naive ordering takes the big space serious-
ly and finds it conceivable that the quantum system can
be found outside the constraint surface. This idea per-
meates the whole procedure. It lies behind the definition
(34) of the inner product, behind the requirement that
both the constraint operator (35) and the big Hamilton
operator (36) and (37) be self-adjoint under this inner
product, behind the determination of a complete set of
eigenstates (43) of the constraint operator (even those with
eigenvalues different from zero) and behind the subse-
quent formation (45) of the eigendifferentials. On the
other hand, the physical factor ordering considers the big
space as a mere artifice and treats the physical directions
completely differently from the gauge directions so as to
ensure that the quantum state never feels anything outside
the constraint surface.

Our particular model has an interesting field-theoretical

application. In scalar electrodynamics, the action of the
gauge group on the real and imaginary parts of the scalar
field can be considered as a rotation in the field plane
while its action on the electromagnetic potential has a
character of a translation. One can thus express the joint
action of the gauge transformations of the "first" and
"second" kind on the total field space as an infinite num-
ber of replicas of the action of T(l) on E by helical
motions. Standard quantization of scalar electrodynamics
corresponds to the "naive" factor ordering. One may
wonder whether the "physical" ordering leads to higher-
order corrections which could be in principle detectable.
Unfortunately, the difference between the two orderings is
obscured by renormalization problems.
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