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Structure of a composite system in motion in relativistic quantum mechanics
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Unlike in nonrelativistic quantum mechanics, the structure of a relativistic system of bound parti-
cles is intrinsically coupled with the overall translational motion of the system. This is illustrated by
means of a solvable two-body model in one space dimension. The model is described in terms of the
two-body Dirac equation with an interaction in the form of the 6 function. Although the equation is
not manifestly covariant, relativistic covariance of the model is confirmed by constructing the
Lorentz-boost operator. When boosted the system exhibits exact Lorentz contraction. It is pointed
out that the "form factor" of the bound state, which simulates the form factor of the deuteron
determined by electron scattering, is not as simply related to the density distribution in the system as
is often taken for granted.

I. INTRODUCTION H; =tx;p;+/3;m;, (2.1)

Consider a system of two interacting particles. Assume
that the interaction depends on the particle positions only
through the relative coordinates. Then the total momen-
tum is a constant of the motion, and the system is transla-
tionally invariant. In nonrelativistic quantum mechanics,
the center-of-mass (c.m. ) and relative coordinates can be
separated, and the two-body problem is exactly reduced to
a one-body problem. The structure, e.g. , the size, of the
bound state (if any) does not depend on the c.m. motion.
In relativistic quantum mechanics, however, translational
invariance does not imply separability of the c.m. motion
and internal structure; rather the latter is expected to
change when the system is boosted. The main purpose of
this paper is to examine a type of solvable model which il-
lustrates the structure of a relativistic two-body system
and its relation to the overall translational motion.

The model that we consider is defined in terms of the
two-body Dirac equation in one space dimension with a
direct instantaneous interaction. This belongs to what
Dirac called "the instant form" of the formulation of the
relativistic two-body problem. ' The equation is not mani-
festly covariant because the two particles are at equal
times. However, if the interaction is in the from of 5(x),
where x =x& —xz is the relative coordinate, the system is
in fact covariant. We confirm this by constructing the
Lorentz-boost operator. For such an interaction the two-
body Dirac equation can be solved analytically for bound
and scattering states. For the bound state the relativistic
relation between energy and momentum is satisfied and
the wave function exhibits exact Lorentz construction.
We also examine the form factor, which simulates the
form factor of the deuteron determined by electron
scattering. The model reveals a rather intriguing relation
between the form factor and the density distribution of
the bound system.

II. MODEL

The one-body Dirac Hamiltonian in one space dimen-
sion reads

where i =1 and 2 refer to the two particles. We denote
the particle position by x;; [x;, p1]=i5J. The units are
such that c =A = 1. For the Dirac matrices we use
a=(, 0) and /3=(o &). The masses are assumed to beOl 1 0

equal, i.e., mi ——mz ——m, although unequal masses can
easily be handled.

Our basic equation for the two-body system is

Ht/t=EP,

where

(2.2)

H =Hi+H2+ V, (2.3)

H, and H2 being defined by Eq. (2.1). The interaction V
will be specified below. It is understood that the two par-
ticles are at equal times. The wave function tb has four
components, t/„„, which we specify in terms of the eigen-
values of Pi and P2, i.e.,

(2.4)

We introduce the c.m. and relative coordinates and mo-
menta in the usual manner, i.e., X = —, (x, +x2),

1x =x, —x~, P =p, +p~, and p= —, (p, —p~). Then
Ho =—H& +H2 can be rewritten as

Ho ———,(a|+et&)P+ (a& —az)p+ (Pi +P2)m (2.5)

For the interation V we consider the following three
types:

—, (1 —ct ia2)ft (x),
PiP2fs(x»
atot2PiP2fp(x) .

(2.6)

Here the combinations of the Dirac matrices are those of
the covariant ones which correspond to the interaction
types of vector, scalar, and pseudoscalar, repsectively.
Since V of Eq. (2.6) does not depend on X, [P,H j =0; i.e.,
the system is translationally invariant. We assume that
f (x)'s are even functions of x so that parity is a good
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quantum number.

III. BOOST OPERATOR

Since the two particles are at equal times, Eq. (2.2) ob-
viously refers to a specific Lorentz frame. Even so the
system conforms to relativistic covariance if a boost
operator K exists such that

[H,K]= iP,—

[P,K]=—iH .

(3.1)

(3.2)

This K is the generator of the Lorentz transformation.
The energy H and momentum P transform according to

H' H
iuK —lQE=e p e

coshu
—sinhu

—sinhu H
cosh u P (3.3)

Kp ———,([«, ,Hi I+ j«2, Hp I ), (3.4)

where Ia, b] =ab +ba. In th-e presence of the interaction
V, let us start with the ansatz

where u is related to v, the velocity of the transformed
coordinate system with respect to the original one, by
coshu=(1 —U )

' and sinhu=u(1 —v )

When there is no interaction, it can easily be checked
that K is given by

We assume that all f (x)'s of Eq. (2.6) are in the form
of 5(x). In solving Eq. (2.2), however, we start with a
square-well potential:

—D for ~x~(a,
0 for ~x~)a.(x=' (4.1)

After solving the equation we let the width of the poten-
tial reduce to zero, keeping the "area" 2aD =g constant.
Then f (x) becomes

lim f(x)= —g5(x), g=2aD .
a~p

(4.2)

If one uses the 6-function potential from the outset one
encounters various inconsistencies. This has recently been
illustrated for a one-body Dirac equation in one dimen-
sion; hence we refrain from delving into this problem
here.

In solving Eq. (2.2) we find it convenient to use the fol-
lowing combinations of P„:

0+++0
, ,p«1 &++ —&-—

(4.3)v'2 0+ +0 +
0+- —0-+

4

where the dependence on the c.m. coordinate X has been
separated. Equation (2.2) leads to the following four
equations:

K =Kp+XV+L, (3.5)

where [P,L]=0. This K satisfies Eq. (3.2). By setting
Eq. (3.5) into Eq. (3.1) we find that L has to satisfy the
equation

P$3+2mp3 ——(E —C& )p, ,

—2pp4+ 2m p, = (E —C2 )p2,

PQ )
——(E —C3 )(53,

—2p(bz = (E —C4 )p4,

(4.4)

(4.5)

(4.6)

(4.7)

[H,L]= '

—,
'

ma&a2(P& /33)«fan(x), —
—' PA[(a i+as) [p «fs(x) ]

+(a, a, )P«fs(x)]—,

——,p&/33[(a ~+a2) Ip, «fp(«) ]

(3.6)

where the

C]

C2

C3

C4

0 —1

1 —1

1

—1
Dv

Ds

Dp

(4.&)

C's are related to the depth of the potential by

—(a] —a2)P«f p(x ) ]

+ma)a2(p, /32)xfp(x) . —

For all types of the interaction, the right-hand side (RHS)
of Eq. (3.6) vanishes if f (x) cc 5(x); then L =0 and the
boost operator K is determined. We have not been able
to find any other form of f (x) such that K can be deter-
mined. We therefore assume that f(x) is in the form of
5(x). Then, as shown in the next section, the two-body
Dirac equation (2.2) can be solved for all three types of in-
teraction.

IV. SOLUTIONS

Existence of the boost operator K implies relativistic
covariance of the system. However, since the basic equa-
tion (2.2) is not manifestly covariant it would be interest-
ing to see how the solutions conform to covariance.

It is understood that the C's are set to zero for x
~

~a.
Equations (4.4)—(4.7) can be reduced to an equation for a
single component of P. We find it most convenient to
choose P2, and obtain

2

(4.9)

In Eq. (4.9) we disregarded a 5-function term at
~

x
~

=a
which stems from the noncommutativity between p and
the potential. This can be taken care of by appropriately
matching the P's at

~

x
~

=a (Ref. 6).
Rather than keeping all types of interactions let us ex-

amine the case of type V alone in some detail. In this case
C2 ——C4 ———Dv and C& ——C3 ——O. We assume that Dv~0
(attractive) so that we have a bound state which simulates
the deuteron.

4m (E —C, )
4p Pp

——(E —C4) E —C2-
(E —Ci )(E —C3) P—
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cosA x for ~x
~

&a,
(cosA a)e ' "~ ' for x

~

~a .
(4.10)

Let us consider the even-parity bound state. It is ex-
pected that Pq is an even function of x, which can be tak-
en as

2mE/Ep2

1
x

2mP/Ep

2i—qx/ x
~

(4.19)

From Eq. (4.9) a and A are determined as
2

where N is the normalization factor which we determine
later, and

K
2

4m —1
E2 P2

(4.11) K

E
(4m' Eo —)'~

g=2 tan —.
2Ep 4

(4.20)

and

+'E D, —4'E
4 E2 P2

(4.12)

2l
A sinA x for ~x

~

&a,E+Dv
2l X——

( cosA a)i~E ix

(4.13)
e "~ ' for x ~~a.

By substituting the above $2 into Eq. (4.7) we obtain

(4.21)

The relative magnitude of the components of P varies de-
pending on P. Suppose that ~i &&1. Then P~ and Pq are
the main components when P «m. If P ~~m, then $,
and P3 become more important. This has an important
bearing on the form factor of the bound state which we
will examine in the next section. The x dependence of
P P is given by e " where ir=r)E. Therefore, when
the system is boosted, its size simply scales according to
1/E. Since P/E =v,

2 1/2
P1—
E

The other components P& and $3 are related algebraically
to P2 and P4. The requirement of continuity for P4 at

~

x
~

=a leads to

E+Dv
tan% a= (4.14)

g 2/c
tan —=

4 E (4.15)

This essentially completes the solution for the square-well
potential.

Let us now take the narrow-width limit of Eq. (4.2).
Then A ~Dv/2 and A a ~g/4, and Eq. (4.14) becomes

0, =e'" 0, . (4.22)

Equation (3.3) then implies that $p should satisfy
Hfp':E Pp' and Pfp':P'$p, where ( E',P') are related
to (E,P) by

is exactly the Lorentz-contraction factor. Although the
boost operator K has the interaction term VX, VX has no
effect on P.

Next let us briefly examine the relation between P and
the boost opertor K. Consider Pp such that HP p =EPp

and Pgp:Pgp. Here the caret on P is to emphasize that
P is an operator. Now introduce Pp defined by

Combining Eqs. (4.11) and (4.15) we find

E =E +P (4.16)

E' coshu sinhu E t

P' sinhu coshu P (4.23)

where

Eo ——2m cos(g/4) . (4.17)

The relativistic energy-momentum relation is satisfied as
expected. Since m is the only parameter with dimension
in the model, Ep is proportional to m.

In the way we obtained the boost operator K in Sec. III,
it was crucial that f (x) is in the form of 5(x). That sug-
gests that the two-body system is not covariant if the well
width is finite. This can be seen as follows. In taking the
limit of a~O, if we retain terms next to the leading, we
obtain

We have confirmed this for an infinitesimal transforma-
tion, i.e., for e'" =(1+iuK), by operating with K that we
determined in Sec. III on P. In doing so we realized that
P has to be normalized in an invariant way, i.e.,

—i(P' —P)X

=2'(E/Eg)6(P' P) . (4.2—4)

Of course, Eo(P P) is a relativi—stic invariant.
transformation (4.22) retains the normalization of p in the
sense of Eq. (4.24). The normalization factor N of Eq.
(4.19) determined in this way is

4m ~ cos2(g /4) +P1+aE tan(g /4)
(4.18)

Hence, the relativistic energy-momentum relation is not
satisfied.

Returning to the 6-function limit, we obtain the wave
function

N =r)EO l(8m ) . (4.25)

In addition to the even-parity bound state so far dis-
cussed, there is an odd-parity bound state. For this state
Pq is an odd function of x, and hence cosA x of Eq. (4.10)
is replaced with sinA x. Consequently, tan in Eqs. (4. 14)
and (4.15) are both replaced with —cot. Equation (4.16)
remains valid, but Ep becomes
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ED ———2m sin(g/4) . (4.26) p(g)= f dx2 ~pp(xl, x2) ix (5.2)

This solution, with EQ (0, should be reinterpreted in the
light of the vacuum hole theory. We do not attempt it in
this paper, but we do not think that this solution can sim-
ply be dismissed either. Let us add that the solutions for
scattering states can also be obtained. The scattering
phase shifts for even- and odd-parity waves can be defined
in a way exactly analogous to the nonrelativistic case.

We have discussed the vector-type interaction at length.
Other interactions can be handled in the same manner.
For types S and P, all trigonometric functions are re-
placed with corresponding hyperbolic functions. For ex-
ample Eq. (4.15) becomes tanh(g/4)=2m/E. T. he wave
function ft of Eq. (4.19) applies to all three types of in-
teractions. In other words, from the form of the wave
function alone one cannot tell which of the three interac-
tions has been used.

where we used x& and x2 instead of x and X. As an
operator therefore we write the density as

p(g)=5(x) —g) .

Similarly we define the current operator at g by

(5.3)

j(g) =fz~6(x) —g) . (5.4)

[p(0),K]= —ij(0),

[j(0),E]= —ip(0),

(5.5)

(5.6)

The conservation law [H,p]=[Pj ] is satisfied. Because
of translational invariance p(g) is related to p(0) by

p(g)=e ' ~p(0)e' ~, and similarly for j. It is easy to con-
firm that

V. FORM FACTOR

Let us first motivate ourselves to look into the form
factor. The structure of a composite system such as the
deuteron can be probed by means of electron scattering.
From the measured cross section one deduces a form fac-
tor F(Q ) where Q is the four-momentum transferred by
a virtual photon and is related to the three-momentum
transfer q by Q =q0 —q . One then relates F(Q ) to,
say, the charge density distribution in the target. If the
target is assumed to be fixed and its charge density with
respect to its center is p(r ), then F(Q ) is given by

F(Q )= f drp(r)e'~'

(5.1)

Here it is understood that qa ——0, q =—
f drp(r)= 1, and (r ) drp( ~ )r . If F=(Q )is knotwn

up to large values of (y, one can determine p(r) by
Fourier transforming F(g ).

On the theoretical side the usual practice is to solve the
Schrodinger equation for the deuteron with some ap-
propriate nucleon-nucleon potential, and calculate p(r)
and F(Q ) by means of Eq. (5.1). This is of course an ap-
proximation. In the actual scattering process the deuteron
is not at rest. In particular, when the momentum transfer

q is very large the deuteron suffers a big recoil. Can one
still use the static distribution p(r) to calculate F(Q )?
This question cannot be answered within nonrelativistic
quantum mechanics in which the structure of a bound
system does not depend on the c.m. momentum.

Let us consider a one-dimensional simulation of this
problem by means of our relativistic model. We call our
two-body bound system the "deuteron" in this section.

Imagine that the deuteron with momentum P meets a vir-
tual "photon" with momentum q. The photon is absorbed
by the proton (particle 1) in the deuteron, transferring
momentum q. Let the deuteron momentum in the final
state be P'

~

We have to introduce the density and current through
which the photon interacts with the deuteron. We define
the density in the state t)fop, associated with particle 1 at
position g, by

Q =q0 —q-=(E' E) —(P' —P)—
and F(g ) is what we call the form factor. Some details
underlying Eq. (5.7) are given in the Appendix. For
q =0, Eq. (5.7) is reduced to Eq. (4.24); hence F(0)= l.
The F(Q ) can be expressed as a product of two invariant
factors, i.e.,

(5.8)

The factor .p' (Q ) is the Fourier transform of the (nor-
malized) spatial overlap between (t p and Pp, i.e.,

~ ( Q') = —,ri(E'+E)

X f dx exp[ —ri(E'+E)
~

x
~

+iqx/2]
2

1—
4ED

2

1 — 1+
4g 4ED

(5.9)

In deriving Eq. (5.9) the following identity has been use-
ful:

Q'
(E'+E ) Q 4E()—(5.10)

The other factor S(Q ) is related to the change in the spi-
nor components of P, i.e. ,

4Eo
(5.11)

which means that p and j form a Lorentz vector.
The photon interacts with p and j. The relevant matrix

elements can be evaluated as follows. For p we obtain

pI r = ~ I p
r

=2wo(P' P —q) — F(Q ), (5.7)
2ED

where
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Hence, we obtain

I

'

1 g2F(Q') = 1 — 1+
4TI 4Ep

(5.12)

The matrix element for j can be worked out in the same
manner, with the result

P'+P
jp P=2rr6(P' P q—) — F(Q ),

2Ep
(5.13)

where F(Q ) is the same as that for pp'p.
In order to see the rationale for introducing the form

factor F(Q ) in the way as above, it would be useful to re-
call that, for a charged boson field the current is defined
by

J = [y'a y —(a '(t'')y]
2m

(5.14)

where m is the mass of the boson. The matrix elements
for the interaction between this j" and a photon take ex-
actly the same form as Eqs. (5.7) and (5.13), except that
Eo and F(Q ) are replaced with m and unity, respective-
ly. The deuteron is a boson, but it is a composite particle.
Its internal structure gives rise to the form factor F(Q ).

In the usual naive approach one would start with the
static density, i.e., the density in the rest frame with
P =0.

0 x
pst

—=nEpe (5.15)

F„(Q )= 1+
I p

(5.16)

In this case it is understood that qp
——0, and hence

q = —Q . Also $(Q )=1 and one does not distinguish
F(Q ) from ~ (Q ). It is clear that F„(Q ) is different
from F(Q ) of Eq. (5.12). From p„ the mean-square ra-
dius is obtained as

Here
~

x
~

/2 is the distance from the center, which corre-
sponds to r of Eq. (5.1).' Note also that this p„ follows
from the relativistic wave function I)) of Eq. (4.19). One
then obtains the form factor as the Fourier transform of
psst~ &-e-

2 —1

4g =B/m =2&&10 (5.20)

(5.21)

where n ( =2) is the number of the particles in the system.
The F„ in Eq. (5.21) is obtained from F„(g ) by replace-
ing Q with Q l(1 —Q l4EO ). Mitra and Kumari'
proposed a modified prescription:

. (I —n)

F(Q )= 1 — F„
4Ep'

(5.22)

This modified version is of particular interest in the sense
that, when applied to our model, Eq. (5.22) leads to the
correct form factor (5.12). It seems to us, however, that
this agreement is fortuitous. The first factor in the RHS
of Eq. (5.22) (1 —Q l4Eo )

' coincides with $(Q ) of
Eq. (5.11). In its derivation ''' this factor of Eq. (5.22)
stems from the Jacobian for the transformation between
the two frames representing the initial and final states of
the target. On the other hand, ,~w of Eq. (5.11) is due to
the change in the spinor components of P.

As we pointed out earlier, F is a product of two factors
and W, and to each of them the relativistic correction

is sizable. For their product, however, the correction be-
comes small. One naturally wonders as to whether this
remarkable cancellation is peculiar to the interaction
current that we have examined, or it is a general feature.
In order to have some insight in this regard, let us consid-
er the following problem. Instead of the vector current
(p,j), suppose there is an interaction in which the scalar
density appears. By the scalar density we mean

which is a measure of the difference between F and F„.
To our pleasant surprise, therefore, F„ turned out to be a
very good approximation. The effect of boosting is large
for each of the two factors in F of Eq. (5.8), but for their
product the effect is small.

There have been a few heuristic attempts at relativizing
the form factor. Licht and Pagnameta" proposed a sim-
ple prescription. In terms of our notation, their F is relat-
ed to F„by

2 (1—n)/2 2

F( )= 1 — F„
4ED 1 —Q l4E

aF„(g')
2

QQ
2

X
g2 p

2

2

(
x 1

2 8(2)EO)

which is related to F„and F by

(5.17)
s(g)=PI6(xI —g)+$26(x2 —g) . (5.23)

As expected s(0) commutes with K. The relevant ma-
trix element is given by

Sp'p = d p S p e'

= 2rro(P' P q)(EOIm )w (—Q'—) . (5.24)
'2

2
r)F(Q ) x

gg2 Q =0
1

2Est+ (5.19)

If this was for three dimensions, the factor 2 in the left-
hand side of Eqs. (5.18) and (5.19) would be 6. Note the
additional term in the RHS of Eq. (5.19).

Let us have a quantitative idea about the difference be-
tween F and F„ for the "deuteron. " We denote the deute-
ron binding energy by B. Then Ep ——2m —B, and

~IPI~(x I 0) +~2028(x2

Its matrix element is given by

(S.25)

This time only a (Q ) appears. Since s is a scalar it is in-
sensitive to the "spinor rotation" and hence the factor S
does not appear. It is grossly misleading to use F(Q ) for
sz p in place of ~ (Q ).

As the last such example let us mention the pseudosca-
lar density, defined by
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—= f dg(p ~
P(g)

~ p )'

—E=2rr5(P' P——q)
2m

1/2
Q ~c (Q2)

Q2 4Q 2

(5.26)

Comparison of Eqs. (5.12), (5.24), and (5.26) shows that
the different interactions probe different form factors of
the bound system.

IV. SUMMARY AND DISCUSSION

By means of solvable examples in one space dimension
we illustrated various features of the relativistic two-body
problem. In particular, we examined how the energy and
the structure of a bound system change when it is boosted.
The relativistic energy-momentum relation is satisfied as
expected. The size, e.g. , the mean-square radius, of the
bound system exhibits exact Lorentz contraction. In this
connection, however, see question (ii) below. We also
pointed out that the relation between the form factor
F(Q ) and the "form" of the bound system is quite intri-
guing. Our model is obviously very simplistic. It is un-

fortunate that the interaction is restricted to the form of
the 6 function. Because of this perhaps the model is short
of revealing rich dynamical features of the relativistic
two-body problem which are yet to be discovered. Even
with such restrictions, however, we would like to em-
phasize that a solvable relativistic two-body problem is a
rarity.

Before ending let us mention some of the questions

which came across our mind in the course of this work.
(i) We obtained the boost operator K when the interac-

tion f(x) is in the form of 6(x). Is there any other form
of f(x) for which K can be constructed? In that case the
RHS of Eq. (3.6) would not vanish, and consequently
L&0. To be interesting the interaction has to be able to
support a bound state.

(ii) The bound-state wave function of our model exhib-
its exact Lorentz contraction. Is this a general feature of
relativistic two-body problems? Lorentz contraction im-
plies that the wave function simply scales when P is
changed. How does the interaction in the instant form
manage to yield such a wave function?'
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APPENDIX

=2tr5(P' P —q)(Pp'
~

p(—0)
~ Pp )

The next step is

(A 1)

Let us give some details regarding Eq. (5.7). There are
two steps involved. The first one is

oo

pp, p
— d p. e-"&po e"& p e'&

(Pp ~
p(0)

~
Pp) = f dx f dXtt p'Pp&(x~)

=(Ppt'Pp) —+p f dx f dX& X+— exp[t'(P P')X g(E'+—E)
~

x
~

]—

2
WP NP x =+0 (EI ~) Q

rl
(A2)
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