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We construct a Green’s-function formalism for computing vacuum-fluctuation energies of scalar
fields in 44 N dimensions, where the extra N dimensions are compactified into a hypersphere S" of
radius @. In all cases a leading cosmological energy term u osmo «@¥/b**+* results. Here b is an ul-
traviolet cutoff at the Planck scale. In all cases an unambiguous Casimir energy is computed. For
odd N these energies agree with those calculated by Candelas and Weinberg. For even N, the

Casimir energy is logarithmically divergent:
computed in terms of Bernoulli numbers.

I. INTRODUCTION

The notion that the world possess a dimensionality
higher than four has gained credence as a natural basis for
gauge theories.! The original Kaluza-Klein five-
dimensional model® unified electromagnetism and gravity,
while higher-dimensional generalizations include Yang-
Mills fields.® The Glashow-Weinberg-Salam electroweak
model without fermions but including Higgs bosons can
be derived from a six-dimensional Yang-Mills theory* and
the revival of strings as fundamental entities necessitates
at least ten dimensions.’

Where are the extra dimensions? Presumably curled up
in a volume whose scale is set by the Planck length. The
dynamics of this compactification is but dimly under-
stood. It is plausible that a key role in keeping the extra
dimensions small is provided by the Casimir effect,® the
zero-point energy phenomenon that is the field-theoretic
version of the van der Waals force.” The confinement of
electromagnetic fields by ideal perfectly conducting paral-
lel plates,® or by a perfectly conducting cylinder,® yields
an attractive force, while a sphere gives rise to a repulsive
force.” In higher dimensions it is the topology of space
that provides the confining geometry.

The idea of Casimir compactification, that zero-point
fluctuations stabilize the geometry of the extra dimen-
sions, has been explored by several authors,'9~1¢ starting
with Applequist and Chodos.!® Candelas and Weinberg!?
showed stability could result for large numbers of scalar
and Fermi fields in 44 N dimensions, when N =3(mod4),
while Chodos and Myers!® explored graviton fluctuations
and found unstable tachyonic behavior. Until recently,
however, “for technical reasons” the dimensionality has
been restricted to odd N. In the even-dimensional case an
ultraviolet logarithmic divergence remains after all legiti-
mate subtractions. Myers'® has numerically computed the
logarithmic term for gravity fluctuations using a §&-
function technique. Here, we will restrict our attention to
scalar fields and use a Green’s-function technique; the
presumably more relevant gravitational fluctuations will
be dealt with in a subsequent paper.

The organization of this paper is as follows. In Sec. II
we will develop our Green’s-function formalism and
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U Casimir ~ (@ty /a®)In(a /b). The coefficients ay are

rederive the Casimir as well as cosmological energies for
M*xS!. In Sec. III we extend the calculation to general
odd N. The difficulties posed by N even are surmounted
in Sec. IV. Here we also find a Casimir energy propor-
tional to In(a /b), where b is the cutoff length (perhaps
Planck) and a is the radius of the internal space (perhaps*
the weak length ~ 10717 cm). We give the coefficient of
this logarithm as a sum of Bernoulli numbers. The impli-
cations of this work and the prospect of extending it to
calculating an effective potential including gravitational
fluctuations is considered in Sec. V.

II. THE FORMALISM AND N =1

We compute the zero-point or Casimir energy of a
massless scalar field in an M*xS" manifold from the
vacuum expectation value of the energy-momentum ten-
sor:

ula)=vVy(0|t®|0), (2.1)
where Vy is the volume of an N-sphere of radius a and
tAB:aAqsaBQS_%gABaCd’vas . (2.2)

The vacuum expectation values can be computed in terms
of derivatives of the imaginary part of the Feynman
Green’s function

G(x,y;x',y")=i 0| T(d(x,y)p(x",')) | 0) , (2.3)
as follows:
(0]t®]0)y= lim 3w ImG (x,y;x",p") . (2.4)

(x,y)—(x",y")

The Lagrangian term in (2.2) makes no contribution to
(2.1). In our approach the point-splitting limit in (2.4) is
necessarily taken with a spacelike separation. We here
have used x to stand for the four Minkowski coordinates
and y for the coordinates on the N-sphere. Because of the
translational invariance in x, we can express G as an in-
verse Fourier transform, by

d*k ik (xk—xm) ,
G(x,y;x",y")= f 7€ B R Y 2 O
(2m)
(2.5)
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and in terms of which the vacuum energy can be simply
expressed as

—iVy
202m)*

where the contour ¢ of @ integration is both ¢_ and ¢
shown in Fig. 1(a) and is chosen to give the imaginary
part needed in (2.4). The reduced Green’s function g sat-
isfies

(VN2+k#ky)g(,V,,V'»k}‘kA): —S(y —'yl) ’

ula)= dk [ dow’gyykik), (26

(2.7)

where V2 is the Laplacian on S and 8(y —y’) is the ap-
propriate & function.

The N =1 and 2 solutions are familiar from electro-
dynamic and acoustic phenomena; however, g can be
found for all N by expanding in N-dimensional spherical
harmonics:

2

M
VY (p) = — — Y"(p) (2.8)

a

whose eigenvalues and degeneracies are
MP?=I1(1+N—-1),
(2.9)
D, — 2I4+N—1)(I +N =2)!
" (N — D!
D,

ula)=—

(a} (b
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FIG. 1. The w plane for odd N showing the Green’s-function
contours used and the branch cut for the two B=0 points
{B=[(N —1)/2]*+a’w*—a®k?}. (a)is for k > (N —1)/2a and
(b) is for kK <(N —1)/2a. The poles in the sum in (2.10) are
only at B==+(N —1)/2,£(N +1)/2,+(N +3)/2, ... .

Use of the generalized addition formula for hyperspheri-
cal harmonics

2 Y,m(y)Ylm*(y)z—

leads to the following expression for the energy (2.6):

(2.10)

i 3 2 <
(2 J &% [, doo 2 M ko)
where the integrand’s dependence on w? has been used to combine the two parts of the ¢ contour to only one on the right
¢ as shown in Fig. 1.

As is obvious from (2.10), the vacuum energy of a massless scalar in M*xS" is a linear sum of vacuum energies of
massive scalars in 4 dimensions. The mode sum on / diverges for N > 1 and the momentum integrals diverge for all N.
To obtain finite Casimir energies we can subtract off divergences identifiable as contact or cosmological terms from the

outset or we can insert cutoffs. Because the / sum is finite for the N =1 case we consider that case first. The masses

(M;*=1?) and degeneracies (D=1, D;, ,=2) give

5 D am 2 212
2 M ki COthlma (ke e
arm 2
T ki_o) 2 1+ J2ma k| 2.11)
.

The sum has been written as an asymptotic part and a
remainder. The asymptotic part produces an infinite
“cosmological term” in the energy and is either subtracted
off completely or regulated by inserting a cutoff
(@max~b ~!, b is presumably at the Planck scale) resulting
in a cosmological energy density,

1 © amr

d3k 2 d CEE .

(27 ) f fk ww (02— K22
Vi

~ 807%°

ucosmo(a):

(2.12)

where V| =2ma. Here we have taken an abrupt cutoff in

w; however, any other technique also yields
Ucosmo < V1 /b°. It is important to notice that the sum in
(2.11) has only simple poles; however, the part that we
identify as a cosmological term and subtract off has
branch points at o= +k. For odd N, including the N =1
case, the branch cuts are drawn away from each other on
the real w axis out to + « (see Fig. 1). The remainder of
(2.11) produces the unique Casimir energy and is easily
evaluated by (1) integrating over the 47 solid angle in the
momentum element d >k, (2) distorting the contour ¢, to
one along the imaginary o axis, ®=i{(— o <& < =), and
(3) replacing & and k by plane polar coordinates
k =K cosf, £=K sinf, and integrating over first 6 and
then K. The result is
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1 w 4 ) T 2 m=Il+(N-1)/2, (3.1)
cuime=— 3 [, (@K)'d(aKP o —
3&(5) —5.0558076x 1073 2.13) in terms of which M;? and D; of (2.9) can be written as
T 2° ’ . functions of m %
where § is the Riemann § fl'unction: M, 2=m?—[(N—1)/2],
1 w x5 (3.2)
S=To IR Ll (2.14) 2
po__2 | 2 |[N=3
Equation (2.13) is the result first obtained by Appelquist (N =) 2
and Chodos. !°
2
2 | N=5 2 42y, 2
III. THE GENERAL ODD-N CASE X |m°— 2 (m-—1m
The Casimir energy for arbitrary odd N can be extract-
ed similarly. We first define a new mode index m, The sum in (2.10) becomes
& DI _(12 i Dr,n
o M12/02+k2—£02 m=0m2_32
2 < Dp L 2
=a’ ¥ |—5 2 +polynomial in m* and ° |, (3.3)
m=0 m _B

where B2=[(n —1)/2]*+a*w?*—a’k? The polynomial
terms make no contribution to (2.10) and can be discard-
ed. Notice that from (3.1) the m sum should start at
(N —1)/2; however, since D,, =0 for 0<m <(N —3)/2
we can start at m =0. The sum of pole terms in (3.3) can
easily be evaluated as

3 1 S cot(mB) — (3.4)

m2=0 m*—pB* 2B
Since D}g//B’2 is a polynomial in 8%, the —1/28% term in
(3.4) makes no net contribution to (2.10) and can be dis-
carded. The remaining cot(sf3) term contains both the
divergent cosmological energy and the finite Casimir ener-
gy. In Fig. 1 the branch cuts for 8 are shown as well as
the distorted ¢, contour which avoids the =0 branch
points. As in (2.11) we write the cotw3 term as an asymp-
totic part plus a remainder; the former yields the cosmo-
logical energy

1
23

Vi
U cosmo & pN+4 (3.5)
The remainder yields the finite Casimir energy. It is best
evaluated by following the three steps described after
(2.12):

1 «© 4 2y i

ula)=————R (aK)'d(aK)'Dg———7— ,
6472’ e/, f Ble—2mB_1)
(3.6)
where now
2
B= N-11| _ 22
5 .

The integral in (3.6) is most easily evaluated by changing
from K to S as the integration variable. The contour for
B which comes from 0 < K < « is not suited for extract-
ing the Casimir energy. This energy is most easily com-
puted by integrating /3 first vertically,

B=%+iy, 0<y<o,

and then horizontally,

N -1
2

B=x+icw, >x>0.

The nondivergent part of the integral on the horizontal
part of the new contour is imaginary and hence does not
contribute to the Casimir energy (3.6). By substituting

N—-1 .
B= A
(3.7)
d(aK)*=—BdB=—ipdy
into (3.6), we have
1 bl 2 2
uCasimir(a):_WRe fO [y —!(N—I)Y]
Dy —2"— ldy . (3.8)
x iy ez”y_l y . .

For N >1 this is nothing more than a sum of Riemann ¢
functions at odd integer values 4+ N,4+N —2,...,3.
For example, the N =3 and N =5 expressions are
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1 L(7)5(7)  13L(5)E6(5) | 4T(3)&(3) 1 s
uzla)= — =—1(7.5687046...X107°),
’ 2mat | @2n) (2m)’ (2m)? a*
(3.9
1 L(9)E(9)  103T(T)E(T)  604T(5)E(5)  192I(3)E(3)
usla)=— 4 95 7 s 3
384ma (2m) (2m) (27) (27)
=%(4.283038 1...x107%),
a
1
respectively. Results for larger N are graphed in Fig. 2 ia? 3
and agree with the findings of Candelas and Weinberg. '? =T o) f d’kI(c,,2), (4.2)

IV. THE EVEN-N CASE

In the case where the internal space is a sphere SV with
N even, we find a cutoff-dependent divergent cosmologi-
cal energy exactly as in the odd-N case [see (3.5)]; howev-
er, now the Casimir energy also diverges. The divergence
is logarithmic in a /b and fortunately, the coefficient of
that logarithm is independent of the actual cutoff tech-
nique used. We evaluate u (a) of (2.10) by shifting the in-
dex mode as was done in Sec. III, with

m‘:’l+an s
2
2
M, =m?— V-1 , (4.1)
2
2 N -3 2
’ 2 —
Dm=n_10 [’" { 2 ]
2
% |m2— N2_5 M2 (5)?m

The mode index m is now half-integral and, because of
the vanishing of D,,, the sum on m can start at 5. If
D,,/m(m?—[3?) is again factored into a pole term plus a
polynomial as in (3.3), the polynomial contributions van-
ish, and the remaining energy can be written as

CASIMIR ENERGY x a“
.

' 4 L P L
° B 10 15 20 25 30 35 a0
DIMENSION - N ODD

FIG. 2. Plot of ucasimir Xa* for odd N.

where the functional I in (4.2) is the contour integral in
the w plane:

D’

Ie,P= [ dwaﬂ?‘*nw) : (4.3)
The function = in (4.2) is the infinite sum

Sw= 3 M (4.4)

me1, m>*—p?
B is again
2
B=a’w*—a?kiy+ N—;—-l— R (4.5)

and ¢ is the right-hand contour shown in Fig. 3(a). The
m sum in (4.4) necessarily diverges unless we regulate it in
some manner. Here we simply subtract a constant,
1/(m + % ), from each mode, i.e., we write

==Y+ +B) =Y+ —B)—2y+2L(1)], (4.6)

where m'=m +%, and &(1) is an infinite constant. The

(Nt 4 9) (N1 - 3)

cy In| +in In - ix

Are) >

FIG. 3. The o plane for even N, showing the Green’s-
function contours used and the branch cuts for 3=0. (a) is for
k >(N —1)/2a and shows the cuts Re(B)=+(N —1)/2. (b) is
for k <(N—1)/2a and shows the branch cuts for
In[(N —1)/2+p].



35 SCALAR CASIMIR ENERGIES IN M*xS" FOR EVEN N 553

digamma function ¥(z) is defined by . N1 1
d VD T T s
Y(z)=—1InI'(2), (4.7) -
@z 1 1
and y=—9(1)~0.57721... is Euler’s constant. The di- N _sv o R T ,
gamma function ¥(z) is analytic over the complex plane (N —5)/2+B 2B @8
except at z=0,—1,—2,..., where it has simple poles (L _gy=uw(+ )t .
with residues all equal to —1. To evaluate (4.2) we use V(3 —B)=y¢(3 +p)—mtanBm,
the identities and the representation
|
N—1 N-—1 1 © tdt 1
B |=1In e R Ty (4.9)
i 2 p 2 Bl N —1£28 fo e?™_1 [z2+[(N—1)/21-B]2

which is valid for Re[(N —1)/2+3] > 0. We connect the branch points =0 by the branch cut as shown in Fig. 3. We
choose the branch cut in In[(N —1)/2+ 3] to run along the negative real w axis starting at B=—(N —1)/2 (i.e., for
w=—k) as shown in Fig. 3(b). For the + sign this choice makes (4.9) valid in the w plane to the right of the line
Re(B)= —(N —1)/2. The branch cut for In[(N —1)/2—f] is drawn to the right from B=(N —1)/2 (i.e., for o=k) on
the positive real w axis making (4.9) valid for the — case to the left of Re(B)=(N —1)/2.

Using (4.8) and (4.9) we can rewrite (4.6) as

1

S(w)= L + L TIPNT —— Z —m [ Y Lyp
(N—3)/24+B " (N—5)/2+PB 1y (N—1)/2+B 2
T © tdt 1
—t 2 —r+&(), (4.10)
+ > anmf3+ fo 1 | AN —1)/24 BT y+¢&

valid for RefS> —(N —1)/2 (see Fig. 3). The constant —y +£(1) makes no contribution to (4.2) and will be discarded.
We rewrite the logarithm term in (4.10) as

2
N—1 1 N—1 2 1 (N—=-1)/2—-p
—1 =—11 — S P e Lt )
n|=>—+8 Lln > B+~ N _1/25B |’ 4.11)
and identify the first term as producing most of the cosmological energy density:
-2
— a 1
Ujogla)= — P fd3k1(c+,—71n(a2k2-—aza)2))
2 o o D,
__4a 2 278
=7 [, Kk [ doo 3
a? 1/b , (e ,Dp
=07 [, doo® [ dkik -
_ 1 aV . N(N—1) aV—2
274N +4) N + D[N = D2 pY¥+* 7 2472 (N +2)[(N —1)1]? pV+2
2
o ! - (4.12)

7204 N —1)/2 b°

The constants in (4.12) depend on the cutoff technique used. We include them because they are easy to compute and be-

cause they illustrate what kind of subtractions must be made in the final dynamical equation for a. The remaining terms
of (4.7)

S(0)=2(0)+y =51+ 5 1n

, (4.13)

contribute two more terms to the cosmological energy (~1/b* and ~1/a%b?) as well as produce the Casimir energy
(~1/a*). To evaluate these we integrate ='(w) along the ¢, contour and subtract its integral along the two-part ¢
contour [see Fig. 4(a)]:

Iy, 3)=I(cy,=)—I(c, %) . (4.14)
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Equation (4.10) without the constants and with the cosmological logarithm term subtracted [see (4.13)] gives a valid ex-
pression for ='(w) along ¢ . However, along ¢ . the remaining log and tan terms combine as

(N=1)/2—F
(N—-1)/24p

with the — (+) sign being valid in the first (fourth) quadrant. The combined terms in (4.15) vanish exponentially fast
away from the real o axis and contribute at most a polynomial in k? to (4.14). In (4.2) integrals of n powers of k? pro-
duce contact terms, i.e., terms o« (V?)"8(x—x’) and vanish in (2.4) before the limit is taken. The remaining terms of
2'(w) which contribute to (4.14) are

+7 T tanmf= — | 4.15)

1
7 In e F2mib |

5w

i

1
1 1 1 2
[(N—372+8] T TN—s12+81 7 T i g T D)
1

tdt
2
M f - ‘zzju[(zv—l)/zﬁLB]2

These terms are analytic to the right of ¢, and hence can simply be subtracted from 2'(w) in the c, integral of (4.14), i.e

/24 B

(4.16)

I(c,,2' =2, )=1(c,,2')—I(c ,,2,,). (4.17)
Using (4.6), (4.8), (4.9), and (4.16), we can express
) B B B B/2
5,=%-3, = + +o 4 + -
* [(N—3)/2]2—b’2 (N —5)/2)— B (L2—p " [(N—1)/2)—pB
_f 1 1 + 1 _ 1
B+(N—1)/2+it B+(N—1)/2—it ' B—(N—1)/2—it B—(N—1)/2+it
(4.18)

for |Ref8| <(N —1)/2.
The part of u(a) in (4.2) not given by (4.12) is

(@) —upgla)=— [dkIe,,s,). (4.19)

)t

Because 2, is odd in S the only contribution to I(c,,=,) comes when ¢, skirts the branch cut in B(w) [see Fig. 4(a)]. If
we replace ¢, by a contour completely encircling the cut we get twice (4.19), i.e.,

(@) —t)p5(a)= — [ d’k1c,3,), (4.20)

2027 )*

where cg is shown in Fig. 4(b). This integral is evaluated by distorting ¢ to ¢, (a complete circle at w = « ), and pick-
ing up residues at the poles of (Dg/B)Z,(w). All terms in 2, when integrated around ¢, produce polynomials in k?
and hence contribute only contact terms to (4.20). There are only six poles in =, which are not canceled by zeros in
Dg/p3 and they are (with independent + signs)

B=+x(N-1)/2,
and (4.21)
B=+(N—1)/2+it,

giving
ula)—ugla)=— (2:7_)2 fo“’dk k2 [—%DOk +2Im fo“’ ez,:’t Dit[k2+[i(N—l)t—tz]/aZ}l/Z}
1 1 © dt 1 1 .
- 32m2b* - 872 fo 2m__ Im [b4D,t+ 22 D,,[I(N—l t—1t°]
SO U PV 2 S {0 VT S B N
204 b 2 4 4

XDy [i(N —1)t —tZ]Z] ) (4.22)
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(a) (b}

FIG. 4. Contours in the w plane used in evaluating I(c,X).
(a) is for k > (N —1)/2a and shows the contours ¢, and ¢ .
() is for k <(N —1)/2a and shows the six poles in £, as given
in (4.21).

TABLE 1. For even N the Casimir energy has the form
Ucasimir = (1/a*)[ay In(a /b)+ By ], where a is the radius of SV
and b is a cutoff at the Planck length. The coefficient ay, given
here, is independent of cutoff technique.

N ay

2 —8.0413637x10°°
4 —4.9923466x 10~*
6 —1.3144888x 103
8 —2.5052903x 103
10 —4.0355535x 1073
12 —5.8734202x 1073
14 —7.9931201x103
16 —1.0373967x 102
18 —1.2999180x 102
20 —1.5854933x 102

The first three terms are additional contributions to the cosmological energy density and the latter the Casimir energy:

U Casiois = = [y In(@ /b) + By »
a

where

1 ® dt . 212
ay= Im{D;[i(N —1)t —t ,
v="o Jo o D | 1%}

and

1 ®© dt 1 . 272
Bv==57 Jo Ty |3 MIDli(N =Dt =T}

+ Re{D;[i (N —1)t —t2]*} arctan N—

Here we have given meaning to the divergent logarithms
by cutting the frequency off at 1/b, where b is presum-
ably at the Planck scale. The coefficient ay in (4.2) is in-
dependent of the cutoff technique, e.g., the same result is
obtained by a &-function regularization method. The

CASIMIR ENERGY x a' /1n(a/b)
c P o o
s R
]
R SRREAER
.
.
L L

.

-.055 P!

]

060 L L L L ! aad
°

s
5 10 15 20 25 30 35 40
DIMENSION - N EVEN

FIG. 5. Plot of ay for even N, where ucasimir ~an In(a/b)/

a*.

(4.23)
(4.24a)
(N —1)%2 414
ln—*—~—-16 +1
1
] . (4.24b)

coefficient of the log is easily expressed in terms of Ber-
noulli numbers since

o dre?* 1 | By
= 4.25)
fo eZm_l 4k (
The first few values are
__1-(_L B LB
02—872 7| Be| —7 [ B4
ZA%:—8.0413637X10-5,
12607
—1
as= o5 (e | Bs| =3 | Bs| + 5 | Ba )
= 49923466x 107, (4.26)
50240
1
ag=—— (55 | Bio| =3¢ | Bs | +75" | Bo | =% | By |)
Si8
:-il—;z-l.3144888><10—3.
316807

Values for larger N are tabulated in Table I and graphed
in Fig. 5. On the other hand, the values of By are depen-
dent on the cutoff technique employed. We merely note
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that with the form given by (4.24b), the values for By are
smaller in magnitude than ay by a factor of 2 or more,
typically, as well as opposite in sign for N >4. In any
case, for the model we have in mind (Ref. 4) a/b~10'
and the unique logarithm term dominates.

V. CONCLUSIONS

We have developed a simple and physical scheme for
computing the Casimir energy of a scalar field in 4+ N
dimensions, where the extra N dimensions are compacti-
fied into a hypersphere of radius a. The known results!?
for odd N are confirmed, while for even N, the Casimir
energy contains an irreducible logarithm divergence.!®
This weak infinity is assumed cut off by the Planck scale
b, that is, interpreted as In(a /b).

In this paper we have been primarily concerned with
developing a careful Green’s-function treatment of vacu-
um fluctuation phenomena, rather than using the formal-
istic §-function prescription. This work is thus comple-
mentary to previous efforts on the electrodynamic and

chromodynamic Casimir effect.!” In subsequent papers
we will treat the gauge-field and graviton fluctuations as
well as consider other geometries for the internal space.
In principle, such extensions of the Green’s-function tech-
nique should pose no serious difficulties. We will then be
able to make contact with realistic gauge/gravity models.

However, at this intermediate stage we point out that
we have now brought the theory of even-dimensional
curved-space Casimir forces to about the stage the theory
of such forces has reached for the bag model of QCD:
there a logarithm divergence persists after all contact
terms have been removed, and which is also estimated by
physical arguments.!” In both cases, the idealized
geometry used is too extreme.
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