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We discuss the generalization to curved spacetime of a path-integral formalism of quantum field
theory based on the sum over paths first going forward in time in the presence of one external
source from an in vacuum to a state defined on a hypersurface of constant time in the future, and
then backwards in time in the presence of a different source to the same in vacuum. This closed-
time-path formalism which generalizes the conventional method based on in-out vacuum persistence
amplitudes yields real and causal effective actions, field equations, and expectation values. We ap-

ply this method to two problems in semiclassical cosmology. First we study the back reaction of
particle production in a radiation-filled Bianchi type-I universe with a conformal scalar field. Un-
like the in-out formalism which yields complex geometries the real and causal effective action here
yields equations for real effective geometries, with more readily interpretable results. It also pro-
vides a clear identification of particle production as a dissipative process in semiclassical theories.
In the second problem we calculate the vacuum expectation value of the stress-energy tensor for a
nonconformal massive kP theory in a Robertson-Walker universe. This study serves to illustrate
the use of Feynman diagrams and higher-loop calculations in this formalism. It also demonstrates
the economy of this method in the calculation of expectation values over the mode-sum Bogolubov
transformation methods ordinarily applied to matrix elements calculated in the conventional in-out

approach. The capability of the closed-time-path formalism of dealing with Feynman, causal, and
correlation functions on the same footing makes it a potentially powerful and versatile technique for
treating nonequilibrium statistical properties of dynamical systems as in early-Universe quantum
processes.

I. INTRODUCTION

The effective-action formalism' based on the vacuum
persistence amplitude has proven to be a powerful method
for analyzing the behavior of classical gravitational fields
interacting with quantum matter. In this semiclassical
approach one studies a generalized Einstein's equation
(containing terms of higher derivatives of the metric ten-
sor) with a source given by the vacuum expectation value
of the energy-momentum tensor of matter-field opera-
tors. This effective field equation is derivable from the
effective action 1, which is the Legendre transform of the
generating functional W related to the vacuum persistence
amplitude (0+

~

0 ) by

(0+ ~0 )J——e' = J D&ex [ip(S[g,@] +CJ&)I,

P =2Im8'. (1.2)

where
~
0+ ) denote the vacuum states at t =+ ec. Here J

is an external source, S is the action, g is the metric of a
classical spacetime, and DN is the measure of the func-
tional integral over the scalar field W. As spacetime
evolves, the out vacuum

~
0+ ) can in general be different

from the in vacuum
~

0 ) due to particle production.
The effective action is in general complex, its imaginary
part measures the total probability P to produce a particle
pair over the entire history of the Universe:

Since the
~

0+) are different in this conventional ap-
proach (which we will call the in-out formulation) one can
only calculate the matrix elements (0+

~

T 0 ) of, say, a
tensor operator T between the in

~

0 ) and out
~
0+ )

states, which are complex, rather than the physically
relevant expectation Values of an observable (0

~

T
~

0 )
taken with respect to the same state. In order to translate,
say, the in-out matrix element to the in-in expectation
value, one needs to sum over a set of intermediate com-
plete states, which involves knowing the Bogolubov coeffi-
cients. For spacetimes with high symmetry where mode
decomposition is readily available this is a feasible but
often cumbersome task. One can also use functional
transforms' to relate these quantities but these are more
likely to be of formal than practical value. In the conven-
tional formulation since both the in and out states need to
be specified in the asymptotic regions, solution of the ef-
fective geometry and fields is by nature a boundary-value
problem rather than an initial-value problem. If one can
devise a functional integral method formulated with
respect to the same initial state, one may hope to be able
to calculate the physically relevant quantities like the ex-
pectation values in a more convenient way by solving the
equations of motion with given initial Cauchy data. Such
a formalism indeed exists. It was first proposed by
Schwinger" and later developed by Keldysh, ' Koren-
man, ' and many others. The nonrelativistic formulation
has since been applied to problems in statistical mechanics
and condensed-matter physics. A relativistic field-
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theoretical formalism was developed lately by Zhou
et al. ' (We refer the reader to their review on this sub-
ject and references to previous work. ) Extension of this
formalism to curved-spacetime problems has recently been
carried out by Jordan. '

In the in-in formalism we let the in vacuum evolve in-
dependently under two different external sources J+(x)
and J (x) and compare the results with a common state

~
g) in the future. The generating functional 8'[J+,J ]

is defined by

(1.3)

where
~
P) is a common eigenvector of the field operator

4~ at some large time t*, i.e.,

e„(x,r")
~
q) =q(x)

~
q) . (1.4)

1~&k' l- (1.7)

The effective field equation in curved space has been
shown by Jordan' to be real and causal up to two-loop
order. He also described the relation among the different
G-reen's functions and the modified Feynman rules in per-
turbation calculations following closely the flat-space
counterparts.

As one can easi1y see, in the in-in formalism, doubling
the sources and fields increases the number of Feynman
diagrams which need to be included. This excess baggage
adds some technical complexity, which may be the pri-
mary reason why this formalism has not been in wider
use. Nevertheless the advantage one gains makes it
worthwhile. As was pointed out earlier since the effective
action and field equations are now real and causal, the re-
sults are more easily interpretable physically. The other
advantage is that the different Cxreen's functions, i.e., the
Feynman and Wightman functions or the causal and
correlation functions are now treated on the same footing
(as different elements of a 2&&2 matrix) obeying the same
set of (matrix) equations. ' These features make the in-in
formalism particularly useful in tackling problems in sta-

The set
~
P) is complete and orthonormal. In the path in-

tegral representation, this can be thought of as a sum over
paths which go forward in time in the presence of J+
from the in vacuum

~

0 ) to a state
~

0) defined on a hy-
persurface X of constant time t* and then backwards in
time in the presence of J to the in vacuum. Thus it has
acquired the name "closed-time-path" formalism. %"e
will use the abbreviation "CTP" or "in-in" to denote this
formulation as distinct from the "conventional" or "in-
out" formalism. The in-in effective action can be defined
as the Legendre transform of 8':

r[P+,y ]=W[J+,—J—
]—J+ P++J P —, —(1.5)

where P
+—=+6W[J+,J ]/5J—+. When J+=J =0,

they are the expectation values of +0 with respect to
~0 ), ie.,

P+(x)=P (x)=(0 4 (x) ~0 ) .

The field equations satisfied by the expectation values are
given by

tistical physics, where the interest usually lies in the
causal and correlational properties of a system as a func-
tion of time. Whereas in problems in particle physics and
quantum cosmology one may be more interested in the
transition amplitude between the initial and final states, in
statistical physics one is more likely to be interested in the
correlation between states and the causal properties of the
system, whereby the present formalism is better adapted.
Indeed our interest in this formalism has been mainly
directed at its potential in the treatment of statistical
properties of quantum processes in curved space. These
include, for example, statistical distribution of particle
production and their back reaction, quantum dissipative
processes, real-time finite-temperature theory, dynamical
critical phenomena in the early Universe„and quantum
radiance and thermodynamic suitability of black holes.
As for problems in quantum cosmology (or more precisely
in the semiclassical approximation) like those treated in
Refs. 3—8, we feel that the in-in and the in-out formalism
each can address a different aspect of the problem better
than the other. The suitability of these methods depends
on the question one asks. If one is interested in, say, find-
ing the rate of particle production with back reaction, the
in-out effective action is sufficient. The same is true for
studies of quantum tunneling and vacuum stability, as in
these cases it is the transition amplitude between two vac-
uum states which is relevant. As for regarding the capa-
bility of the in-in formalism in yielding an equation of
motion of the initial-value type as an advantage, we feel
that again it depends on what one knows and what one
wants to find out in the problem: When one asks ques-
tions in cosmology concerning the conditions of the
Universe near the Planck time, the out state or the Fried-
mann universe is certainly a better understood and well-
defined state than the in state, and it is not clear physical-
ly whether the initial-value problem is really a better-
posed problem than that of the boundary-value problem.
On the other hand, if one is interested in the evolution of
the background geometry as a result of back reaction of
particle production, the complex effective geometry in the
in-out formalism is not so easy to interpret. The fact that
the in-in formalism yields a real and causal equation is
then certainly an advantage. As mentioned earlier, there
have been attempts ' to translate the complex geometry
to real quantities (via Bogolubov coefficients or functional
transforms), so even for these purposes the in-in formal-
ism is not completely indispensable. Despite this it is
perhaps the most direct and convenient way of achieving
these goals. In addition, the real and causal results of the
in-in effective action make it easy to identify and discuss
the dissipative properties of semiclassical theories (e.g.,
resistive versus reactive effects as coming from the imagi-
nary and real parts of the equation of motion in the fre-
quency domain). The in-in formalism is also a good start-
ing point for the study of nonequilibrium quantum statist-
ical processes.

In this paper we briefly introduce the in-in formalism
and apply it to two problems in curved spacetime: one is
the dissipation of anisotropy through quantum effects in a
Bianchi type-I universe, the other is a self-interacting field
theory in the Robertson-Walker universe. The purpose of
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this study is twofold. As most of the earlier discussions
on the in-in formalism have been quite formal, we want to
make it more approachable by applying it to some already
familiar physical problems, thereby demonstrating its ver-
satility, power and wieldiness. Secondly, we want to use it
to get results which would not easily be reached by other
methods. In Sec. II we give a brief summary of the
methods first in flat space and then in curved space. We
include only those parts which are necessary for our latter
discussion, although we will try to make it self-contained.
In Sec. III we study the back reaction of particle produc-
tion in a Bianchi type-I universe with small anisotropy.
We derive a real and causal field equation for the aniso-
tropy. Our analysis based on the in-in effective action
closely parallels the method and reproduces all the major
results of the in-out formalism obtained in Ref. 5. In Sec.
IV we study a (m) massive A,P theory in a Robertson-
Walker spacetime with arbitrary coupling g to the curva-
ture R. This example serves to illustrate the use of Feyn-
man diagram techniques in this new approach. We calcu-
late the expectation value of the energy-momentum tensor
(T„) to second order in m, g and first order in A, . The
free-field problem has been studied by Hartle ' using the
in-out effective-action approach, and by Davies and Un-
ruh' who computed (T„„)with explicit particle modes.
The interacting field problem has been considered by
Bunch, Panangaden, and Parker' and Birrell, Davies, and
Ford' using S-matrix theory and adiabatic wave func-
tions. This example shows how the above results can be
obtained in a unified manner via the in-in formalism. For
example, it confirms that corrections to particle produc-

tion due to self-interaction appear already to first order in
In Sec. IV we end with a few general remarks, indicat-

ing also how this formalism could be usefully applied to
the consideration of related problems in field theory and
statistical mechanics in curved spacetime.

II. BASIC FORMALISM

In this section we will give a short introduction to the
in-in formalism first in flat spacetime and then its exten-
sion to curved spacetime. To avoid overburdening the
discussion we wi11 go into details only in those parts
which differ from the in-out formulation, with which we
assume the reader to have some familiarity. Consider the
Heisenberg representation for the field operator +H and
states for an interacting field theory such as the
theory with classical action

(The metric signature is + ———throughout. ) As the
(self-)coupling constant k is adiabatically switched off at
t~+ ~, the theory becomes free in the distant past and
future. The two special Heisenberg states, the in vacuum

~

0 ), and the out vacuum
~
0+ ) coincide with the free

field vacuum in the past and future asymptotic regions,
respectively. (In flat-space theory, usually

~

0 ) =
~
0+ ),

but we do not need to assume this; in curved spaces, often
)&

~
0+).) If the field is coupled to an external, c-

number source J(x), the Heisenberg states will evolve in
time according to

~0 ) (Jt)=Te pxi f dt' f d x J( xt')@
H(

xt')
~

0 (2.2)

where T means temporal order. The vacuum persistence amplitude defined as

Z[J)=(0+(0 )x=(0+ Texp i f d xJ(x)@x(x) 0
)

contains all the dynamical information about the theory. It has a path-integral representation

Z [J]= f DC& exp Ii (5 [N]+J+)],

(2.3)

(2.4)

where the integral is over all field configurations. For massive field theories like (2. 1) one usually adds an imaginary part
( —iE) to the mass to account for the boundary conditions. Z[J] generates the time-ordered matrix elements of a prod-
uct of n Heisenberg fields between the in and out states

(0+
~

T[CJH(x] ) &PH(x„)]
~

0 ) =( i)" — Z[J]6
5J(x ]) 5J(x„) J=0

(2.5)

As per earlier discussion, what one would like to find is a functional which generates expectation values with respect
to the in state. Following Schwinger, "we introduce two external sources J+(x) and J (x) and consider the quantity

z[J+,J-]=, (0 io ),+. (2.6)

In contrast with the in-out formalism, where one lets the in vacuum evolve under the influence of an external source and
compares the result with the out vacuum, in the in-in formalism, one lets the in vacuum evolve independently under two
sources J+ and J, and compare the results in the future. We may rewrite (2.6) as

Z[J+,J ]=f Dd(0 Texp —i f de f d'xJ (x)dx(x) d)

Texp i dt d xJ+x+0 x 0 (2.7)
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where T denotes antitemporal order. Here
~
P) is an element of a complete, orthonormal set of common eigenvectors of

the field operators at some late time t*

@H(x,t*)
~
p) =p(x)

~ p) .

We will assume t*=+ ao for all practical purposes.
From the definition (2.6) and (2.7) we obtain the following useful relations:

Z[J J]=1, Z[J+,J ]=(Z[J J+])*

( i)"— ' =(0
~

T[&PH(x&) . 4H(x„)]
~

0 ),a"z [J+,J-)
aJ+(x, ). . aJ+(x„) „,

(2.8)

(2.9)

(2.10)

(i) ' =(0
~

T[4H(x~) @H(x ))
~

0 ),aJ-(x, ). aJ-(x ) „,
an+mz J+

aJ (x, )
. aJ (x )aJ+(y, ) aJ+(y„)

(2.1 1)

X T[@H(xi ) . 4 H(y„)] t
0 ) . (2.12)

Observe that Z generates expectation values other than the time-ordered ones. Z [J+,J ] has a functional-integral rep-
resentation

Z[J+,J ]=ID4&+(x)D& (x)expIi(S[4+]+J+N+ —S [4 ]—J @ ) I, (2.13)

W[J+ J ]= i lnZ[J+—J ] (2.14)

where JN denotes jd x J(x)4(x). S* indicates that in
this functional, m carries an +i e term. The integral in
(2.13) is over all field configurations which coincide at
t = t* (in practice, t*= + oo ). We do not require the
fields to go to zero as t~ oo (eventually we may consider
that i E is switched off in this region), nor do we require
a, @+ ~, , =a, C& ~, , As in the in-out formalism, it

is easier to work with the generating functional defined as

malism, P, the common value of P + and P, is real and
depends causally on J, the common value of J+ and J
The reality of P follows directly from P being the expecta-
tion value of the Heisenberg fields with respect to some
state. As for causality, let us compute the functional
derivative ap(x)/a J(x') using (2.9):

ay(x) . a'z
aJ(x )

=
aJ+(x )aJ+(x)

which generates normalized expectation values. Let us
consider the classical fields defined by

aw [J+,J-] -, ,
aw[J+,J-]

aJ+(x)
' aJ-(x)

a2Z
+ aJ (x')aJ (x) (j+ J— J)

(2.19)

where J +,J* are the solutions of

(2.16)

P
—+ =+ ~ w[J*+,J* ] .

BJ+—

We then have

(2.17)

(2.18)

Equations (2.15) or their equivalent (2.18) are the equa-
tions of motion for P. As different from the in-out for-

(2.15)

If J+ =J =J, then P + =P =P is the expectation value
of the Heisenberg field with respect to the state which
evolved from

~

0 ) under the influence of the source J.
The in-in effective action I is defined as the Legendre
transform of 8' i.e.,

1[4+ 4 )=11'[J*+J* l —J*+4++J*

From the definition (2.7) it is easy to show that this is
zero whenever t'& t. Thus P(x) depends only on values of
J in the past of x (from Lorentz invariance, we may say
"in the past light cone of x"). Jordan' has demonstrated
these properties to the two-loop order. Observe that in
practice only one of the equations (2.18) need be solved.
Since I [P,P] is identically zero, we have the identity

ar - - - ar
ay+ ay-

So if J+ =J =J, (2.18) always has a solution with

P +=/ =P and each of the equations in (2.18) implies
the other.

As in the in-out approach, exact computations of Z, 8'
or I are usually impossible except for some special cases.
In general one needs to resort to perturbative methods.
Observe that the path-integral representation (2.13) of Z
has the same form as the in-out path integral for a theory
of two scalar fields, and therefore the perturbative evalua-
tion of Z may proceed exactly as in the conventional case.
For example, 8' will be the sum of all connected graphs
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of the two-component field theory, while I wi11 be the
sum of the one-particle-irreducible (1PI) graphs. Likewise
background-field techniques can also be carried over to
this case. However, in these calculations it is important to
note that N+ and 4 are not independent integration

I

variables, but are linked through the boundary conditions
on the hypersurface at a common time t* in the future.

Let us consider the specific example of a A,P field (2.1).
In the free field theory the path integral (2.13) is Gaussian
and Z takes on the form

Zr„,[J+,J ]=exp —f d x d x'[J+(x)K++(x,x')J (x') —J+(x)K+ (x,x')J (x')

—J (x)K +(x,x')J+(x')+J (x)K (x,x')J (x')]

The kernels K++ and K are symmetric, and K+ (x,x')=K +(x',x). They are related to the classical fields P-+(x)
of Eq. (2.15) by

())) +(x)=f d x'[K++(x,x')J+(x') —K+ (x,x')J (x')],
(x)= f d x'[K +(x,x')J+(x') —K (x,x')J (x')] .

One can introduce an alternate representation for the fields as

()+( )=(xZ[J+.J ]) '(0 Texp —i f d x'J C&x

X@H(x) Texp i f
L

T exp i d x'J+NH
t &t

0),d x'J+4

Texp i f d x'J+(I)H

(x)=(Z[J+,J ]) '(0 Texp —i f d x'J @x 4x(x)

X Texp —i, d x'J
t'& t

(2.21)

(2.22)

From the Heisenberg equations of motion or a free field, the canonical commutation relations, and (2.22), it is easy to
show that

(2.23)( +m )(t
+—(x)=J+-(x) .

As t~ —(x), (t)+ ((tJ ) contains only negative (positive) frequencies, and as t~+(x), ())+(x) goes into (t (x) and
B,()I) (x) goes into B,p . A positive-frequency wave is defined as possessing the form exp( icot), (o&—0. The solution
of (2.23) is

p+(x)= —f d x'[bF(x —x')J+(x')+4+(x —x')J (x')],
(x)= —f d x'[b, (x —x')J+(x') +b.D(x —x')J (x')],

where

(2.24a)

(2.24b)

b,F(x —x')= f
b,D(x —x')= f
b, +(x —x') = f

(x —x')= f

d4I ip(x —x')( 2 2+ .
&)

—I

(2')
d'

eip(x —x')( 2 2 ~

)
—1

(2m. )

d4
e ip ( x —x )2~].$(p 2 m 2

)g (~ 0
)

(2m. )

d4I eiP(x —x )27r]$(p2 m2)g( i20)
(2m)

(2.25a)

(2.25b)

(2.25c)

(2.25d)

are the Feynman, Dyson, and positive- and negative-frequency Wightman functions, respectively. Comparing (2.21) and
(2.24) we may write

Zr„,[J+,J ]=exp f d xd x'[J+(x)bF(x —x')J+(x')+J+(x)b+(x —x')J (x')

—J (x)b, (x —x')J+(x') —J (x)b,D(x —x')J (x')] (2.26)

From (2.26), (2.9), (2.10), and (2.11) we find, for a free field,
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(0
i

T[C&H(x)&PH(x')]
~

0 ) =ihz(x —x'),
(0

~

T[&H(x)NH(x')]
~

0 ) = —ibD(x —x'),
(0

~

4& (x')4 (x)
~

0 ) = i b.—+(x —x') .

For interacting fields, we write

(2.27a)

(2.27b)

(2.27c)

Z [J+,J ]=exp 4
a4 a4

X
4I aJ+(x)' aJ-(x)' Zr„„[J+,J ] . (2.28)

With Zr„, given by (2.26) and (2.25). From (2.28); the
evaluation of Z, 8' or I proceeds as usual. There will be
two kinds of vertices, "+" vertices coming from the
8 /0 J+ term, and "—" vertices coming from the
8 /BJ term. There are three kinds of internal legs,"+ + ", "——," or "+—", distinguished by the signs of
the vertices, the external source or the background fields
to which they are attached. The corresponding Feynman
rules are given by Eqs. (2.27a)—(2.27c) as can be seen by
writing them as derivatives of Z~„,. Observe that, ac-

cording to Eqs. (2.27c) and (2.25c), the momentum flow-
ing through a "+—"line is always on the mass shell.
Also observe that "+—"lines never appear as external
lines in the effective action, because they are eliminated by
the Klein-Gordon operators which remove the propaga-
tors from these external legs.

To adopt the background field methods it is convenient
to think of the pair (N+, 4& ) as a field doublet in some
internal space. In particular, for the one-loop effective ac-
tion we will find

+m i@+——(p +)

]=~If+l —~[4 ]——»D«
+m'+i@+ —(p )

2

(2.29)

Z [J+,J—
]=Z [J—]*Z[J+]

8'[J+,J ]= W'[J+) —W*[J ],
(2.30a)

(2.30b)

In computing the inverse, however, it is important to keep
in sight the right boundary conditions. P

+ and Q must
satisfy the conditions stated following Eq. (2.23). As in
the conventional approach infinities appear in the theory.
The in-in effective action can be rendered finite by adding
to the classical action the same set of counterterms as in
the conventional formalism. ' The crucial observation
here is that a primitively divergent graph in the in-in ef-
fective action contains only vertices of the same sign. If
there were vertices of different signs, at least two internal
lines would be of "+—"type (the graph is 1PI), the cor-
responding momenta would be on shell, the corresponding
loop integral would be finite, and the graph would not be
primitively divergent. Now the graphs of the in-in effec-
tive action with all vertices of the same sign are just the
graphs of the in-out theory plus their complex conjugates,
so the primitive divergences must be the same. Once the
primitive divergences are controlled, it is only a matter of
combinatorics to show that the overlapping divergences
disappear as well.

An important particular case of the in-in vacuum for-
malism is that when either J+ or J does not induce any
transition from the vacuum to n-particle states. For ex-

ample, if J does not create particles, the in vacuum
evolves only by acquiring a phase, which is given by the
vacuum persistence amplitude Z[J] of Eq. (2.3). So we
have, in this case only,

1[4+0 ]=1[4+]—1*[4 l. (2.30c)

Here, functionals of a single argument refer to the con-
ventional in-out approach. Equation (2.30c) shows that
the conventional effective action may be considered as a
particular case of the in-in one. For a massive A,P theory,
a constant source (and in particular, a zero source) does
not cause transitions from the vacuum.

The extension of the in-in formalism to curved back-
ground geometry does not pose any new problem over and
above those encountered in the conventional in-out ap-
proach. ' ' Of course for a general geometry there will
not be a preferred "time, " but still one can define in and
out states on Cauchy surfaces X+— in the far past and fu-
ture, and use an evolution operator of the form

U[X+,X ]=P exp i f d x& gJ(x)d&H(x),— (231)

where P stands for path ordering and V is the spacetime
volume sandwiched in between these Cauchy surfaces.
Surfaces of constant time now should be thought of as
Cauchy surfaces, and all spacetime integrals should refer
to the invariant measure d x( —g)'~ . In particular, the
same boundary conditions on the background (classical)
fields hold, although now the definition of positive-
frequency must be decided on a case-by-case basis in ac-
cordance with the appropriate normal-mode decomposi-
tion. As in the usual approach, the definition of the vacu-
um states depends on whether there exists positive-
frequency modes in the asymptotic regions. The form of
the propagators in (2.25) alters, but Eqs. (2.24), (2.26), and
(2.27) still hold.
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The graphs which express the perturbative expansion of
the in-in functionals are the same as in flat-spacetime
theory, although one loses the convenience of a globally
defined momentum representation. One observes that for
the few well-known field theories studied in curved space,
those which are renormalizable in flat spacetime are also

I

renormalizable in curved background, and that the coun-
terterms for the in-in effective action are the same as
those of the in-out formalism.

The semiclassical theory of gravity may be thought of
as an approximation to a fully quantized theory. The
in-in effective action for quantum gravity is given by

I [g&+,P+,g&,P ]= i —ln J Dh+~h&~/+DE D(ghost fields)

Xexp(i [S[g„+„+h„+,P ++/+] —S[g„+h„,P +P ]

+(gauge-fixing, ghost, and tadpole terms)] ), (2.32)

where g„-„ is the gravitational background field, h„- the fluctuation field, and P -+, P-+ represent the matter background
and fluctuation fields. The field equations for gravity have the form

(2.34)

—JP++ (2.33)
~S pv

The physical gravitational field g&, in the presence of a source J and background matter fields P, is obtained under
the conditions J" + =J" =J"",P + =P =P, and g„=g„=g„. Write S[g„,P] =Ss[g„]+S/[g„,P] where
subscripts g and f denote gravitational and matter fields, respectively. The semiclassical approximation amounts to
neglecting the fluctuations of the gravitational fields and ghosts in (2.32), whereby one obtains

]=S [ +]—S [ „ l+I/[ „+ 0'+ „.0 ]

ff [g„+„,p +,g„,p ]= ( —i )ln J Dg+Dp exp [i (Si [g„+,p + +p+ ] S&[g„,p—+p ] + tadpoles ) ] . (2.35)

The field equations become

„'.[g„]= —J„— +„,[g„0g„4'] .

In (2.36), g& and g& must be identified only after the
variation has been taken. Until that point, g„ is to be
considered as just another matter field. This ensures that
BI //Bg& is covariantly conserved, since I / —Ss[gz ] is
invariant under coordinate changes.

From discussions above, it is clear that
2( —g)'~ Bl //Bg+"" corresponds to the expectation value
of the stress tensor of the matter fields, taken with respect
to the state which evolves from the in vacuum under the
influence of combined gravitational and matter fields g„,
and P.

In cases where there is a preferred notion of "time, "
such as in static spaces or conformally static spaces like
the Robertson-Walker universes, it may be more con-
venient to forsake a fully covariant formulation and use a
preferred coordinate system with these special properties
to express the effective action. We will do this for the
quantum cosmological problems to be studied.

For treating problems of statistical field theory in
curved space, the closed-time-path functional formalism
can be generalized by considering initial states as
described by a density matrix. " ' ' We wi11 consider
problems of this nature in our later work.

III. ANISOTROP Y DISSIPATION:
REAL AND CAUSAL EFFECTIVE ACTION

AND FIELD EQUATIONS

In this section we will consider the dynamics of a
radiation-filled Bianchi type-I universe under the influ-

ds =a (ri)(dil —e " dx'dxj),2P; (g) (3.1)

where a is the scale factor and the anisotropy matrix
p;J.(il) is symmetric and traceless. g= f dt/a is the con-
formal time (a prime denotes d/dg). The gravitational
action is

Sz —— d x —Z
' Az+~&R +a»Rp p

+a2tiR„R" +a3&R ), (3.2)

where tr = ( 167r6 )
' and we have added the generic R

terms in (3.2) to cancel the anticipated ultraviolet diver-
gences. In conjunction with dimensional regularization
we will use an n-dimensional form of the action (the form
of R,R„R",R„R"P can be found in Appendix B of
Ref. 5). The scalar field action is given by

S/= ,
' J d"x( -g)'" g~.~„aa.e " Re'

4(n —1)

(3.3)

For a free field theory the action is one-loop exact. Only
the gravitational coupling constants need be renormalized.
Their counterterms ' ' are given by

I

ence of a massless conformal quantum scalar field. We
will derive the effective field equations governing the evo-
lution of the metric with back reaction from particle pro-
duction, using the semiclassical closed-time-path (in-in)
effective action. We will assume that the reader is fami-
liar with the conventional in-out approach to this problem
as discussed in Ref. 5, whose notation we will adhere to
here.

The Bianchi type-I metric has the form
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where e=n —4. The bare quantities a&z, azz take the
form

ai 2ii
——iM'{ai 2+[180(4ir) «] (3.4b)

where p is a renormalization constant with units of mass.
For simplicity one assumes that one can choose a renor-
malization point at which the p-independent A and the u;

I

1$g =Q, Q~=Q, 5ag ——0,
180(4') «

(3.4a)

are zero. We will assume that the anisotropy is small and
consider perturbation expansion of the effective action
and field equations up to quadratic order in p (p =pjp'j
measures the shear).

To zeroth order in p our problem reduces to that of a
spatially flat radiation-filled Robertson-Walker (RW)
universe with a conformal quantum field. In this case the
integral over fields does not contribute to the equations
for the conformal factor. The terms containing the poles
in a& zz are total g derivatives and may be discarded. The
gravitational action of the RW universe with one-loop
quantum correction is given by

r[g+] = f di) —6ira' + [180(4ir)2]
a' 4

(3.5)

The variation of I with respect to a yields Einstein's
equation with a quantum source given by the trace anom-
aly of the scalar field. This equation being of higher or-
der, it admits many solutions, amongst which are the con-
formally complete ones. For P&0 as a result of particle
production the conformal vacuum is no longer stable,

~

0 &&
~
0+ &. We must then distinguish two anisotropy

fields, Pj (g) and Pj (g). However, only the equations
I

which follow from the variation of 1 with respect to p+
need be considered [cf. the discussion following Eq.
(2.19)]. Now terms like —Ss[Pj. ] which yields no contri-
bution when varied with respect to p;j may be dropped.
In the same way, we will omit in what follows terms
which do not contribute to the variation with respect to
p,.j . The gravitational action, expanded to second order in
P has the form

(3.7)

Sz ——f dr/ Tr(isa P' +[180(4ir) ] '{3« 'P" +3 in(pa)P" —[(a "/a)P' +(a'/a) P' —P" ]I)+0(«) . (3.6)

The scalar field action can be written as Sf =Sf '+Sf' +Sf +O(p ), where Sf ' is given by (3.3) with the isotropic
form of g", and

"xa" ' cj;cgc

S(2) f dn n —2 ~
p pij@2+pikp jg q&g

8(n —1)
(3.8)

The scalar field contribution is, from (2.35),

rf[P+,P ]= i ln f DP+D—P exp{i(sf[P+,P+] Sf[P-,P ])I—

= —iln D +D expi S ' + —S''

X {1+iS' [P+,y+] iS" [P , y ]+—iS" [P+-,0+-1 iS ' [P , 4 ]---
(S [P i/i ]) — (S [P i/i ]) +S [P (6 ]S [P iI) ]+0(P ) I . (3.9)

To compute the functional integrals with respect to the isotropic action and take its logarithm is equivalent to comput-
ing each term as a sum of Feynman graphs and retaining only the connected ones. The two-point functions in the RW
space are given by

(P+(x)P+(x') & =i[a (rj)a(rj')]' " bF(x —x'),

(P+(x)iI) (x') &
= i [a(rj)a(rj')]' —"~~A, +(x —x'),

(3.10a)

(3.10b)

(3.10c)

where b, F ~ and b, are given by Eqs. (2.25a)—(2.25c) with m =0. The terms in the in-in effective action which contri-
bute to the variation with respect to P+ are

r [p+,p-]= —'((s'"[p+,y+])'& —(s'"[p+,y+]s"'[p-,y-] & .
2

(3.1 1)

One can now begin to notice the difference from the conventional approach, i.e., the second term in (3.11) is new. We
now use (3.7), Wick's theorem, Eqs. (3.10) and (2.25), to get
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2
—((S"'[P+,P+])2& = —i f f d"x d"x'PJ (r))Pq((ri') f e' '"

(2rr)"
n
q

q lq J p q
k

p q
I

q
2 + ) ~ 1

p q
2 + ) ~ 1

(2m. )"

—i(S")[P+ y+]S)"[P-,y-]&=2i f f d"xd"x P+(~)Pk ,(~ -)

X f e'~'" " ' J q'q~(p —q)"(p —q)'[2~i|)(q )8(q )](2~)" (2'�)"

(3.12a)

X I 2vri 6[(p —q) ]8(p —q ) I . (3.12b)

Since the anisotropy depends only on g we may integrate over the space variables to get (setting V = 1)

((S(1)[p+ y+])2& f J d~ drip +i
(J)p+kl(h )f eire(vl vl )—'

2 2~'
n

( —i)f q;qjqkqI(q +is) [(co—q ) —q +iE]
(2m. )"

(3.13a)

i (s'"—[P+,(5+]S")[P,P ] & =2 f dr)dr/'P+'~(g)P "'(q') f e' '"
277

dn
X qqq q, 2 6q L9q

(2~)"

X I2vri6[(co —q ) —q ]8(co—q )I (3.13b)

Observe that if the argument of both 5 functions must vanish in Eq. (3.13b), then co=+2q . Since q must be positive,
we may write

—i ( 'S"[P+ P+]S"'[P,P ] & =2 f f dridq'P, + (ri)P~((ri') f . e' ' '8(co)
2&

q i k 1X i f q'qjq q [2rri6(q )8(qo)]
(2n. )"

X I2m.i6[(co—q ) —q ]I (3.14)

One could compute (3.14) by force, but it is perhaps more suggestive to note that the q integral in Eq. (3.14) (including
the i factor) is simply twice the imaginary part of the p integral in Eq. (3.13a), computed according to the Cutkowsky
rules. Now the "+ + graph" in Eq. (3.13a) is also the scalar field contribution to the in-out effective action (see Ref.
5). It can be written as

—1 ci)—((S'"[p+ y+])'&= f f d~d~ p+( )p+'( ) f e"~
2 —~ 2m' 4(4') (n —1)

from which it follows that

—(CO +iE)
e + —,ln

4~p
(3.15)

~ (S(1)[p+ y+]S(1)[p—
y

—
] & 2 J f d d ip+( )p

—
ig( ) J rcpt(q —g')

2'7T
(3.16)

( —1)co
i vr8(co)

4(4') (n 1)—
Observe that only the "+ + " term is divergent; therefore, the pole term is the same as in the in-out approach. It is con-
venient to introduce the notation

n

( ) f |cog2~' 2

I„(ri)= f e' "co"m 8(co) .
de j~ n

277

(co +is)—
4~@

(3.17a)

(3.17b)
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Comparing (3.6) and (3.15) we observe that the pole parts cancel, leaving a finite residue. Finally the equation for P;~ is
(we redefine p to absorb inessential constants)

a
+ (Sg+I f) ~ &+ & &

———2a (a P,'J. )+ [P,'~ln(ij, a)]+d 2, 1 d2 l d
90(4~)' dr)

2a' a"
+

a a

1 0O 1 00f dri'P;J (ri')R4(ri —q') — f dg'/3; (q')t I4(g'—g') = —J,J (ri ) .
30(4~)' 30(4~)'

(3.18)

Here we have introduced an external source J,z in order to be able to switch on the anisotropy in the far past.
The difference between (3.18) and the equations deduced from the conventional approach ' lies exclusively in the term

containing the I kernel. When this term is omitted, the resulting equation is neither real nor causal. This becomes obvi-
ous if we write

1—ln
2

—(co +ic.)

4~p
=ln —i—,vr.

4'
(3.19)

R4(g) = f co (coscog)ln
dc() 4

2' 4~p
. ~ d4—i —5(g) .

2 dn'

(Here and hereafter we choose the cut of the logarithm along the negative real axis. ) The nonlocal part of (3.18) is given

by the kernel

K„(q)=(R„+iI„)(g)= e' "co" ln + sgn(co)i corp n

-~ 2m 4' 2

de) j~ g i (co i E)
—Oo 2n 4' (3.20)

To obtain the second identity in (3.18), observe that

ln
~

co
~

+i sgnc—o =co '+im5(co) =(co i E)—
Bco 2

It is clear that for even n, K(g) is real, because the real part of its Fourier transform is even and its imaginary part is
odd. It is causal, because all the singularities of the integral lie in the upper complex half plane. We observe that a
causal and nonlocal equation could not have been derived from an action functional depending solely on P+ as in the in-
out approach. In fact one can eliminate the variable co completely. Consider the sequence of functions

d CO (a+i u)F„(g)= e' +'"'"(cr+icu)"ln(o. +icy),2'
then

(3.21)

n!ri ' "8(g) (n )0),
F„(ri)= '

( —1)"
( —n)! [g( —n +1)—inrun]H(ri) (n &0),

(3.22)

Here, P(z) =(dldz)lnI (z). In principle one should use the formula for n =4, but the resulting ri' integral would not be
well defined (this implies incorrectly applying the definition of the Fourier transform of a distribution). We will obtain a
well-defined expression if we write

QO 00f dq'P&(g')K4(ri —g') = f dpi'13J(g') — F,(g —g')
00 0O an'

dg',
&

g' ln g —g' — 2
a'

0O
(3.23)

The term containing g(2) is really a local term and can be absorbed in a redefinition of the unit of mass p, in Eq. (3.18).
In order to find the actual evolution of P;~ it is convenient to integrate both sides of (3.18) once with respect to g.
The resulting equation is
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2—Ka p'j+ [[In(pa )]p~j) +
30(4~)' dg 90(4'�)

a'
a

a"
+ p',

30(4~)
7l

d4
P~ In(g —g')= —f d7)'Jj(g')= —c j(g') . (3.24)

If the source J;J operates only in the distant past, we may
take c;j to be a constant for all finite values of rj. Al-
though Eq. (3.24) is different in form from those obtained
from the in-out approach, its solution appears to be
similar to the real part of the solution from the latter, as
given in Refs. 5, 6, and 7. In particular, Eq. (3.24) admits
the conformally complete solution with p' going to a con-
stant as q ~—oo, while approaching the classical
behavior P,'j-cjoy as rj~+ oo. This is the case be-
cause the behavior of p;J. is dominated by the local terms
in both limits.

Since our primary aim is to establish the in-in formal-
ism and to find out how much qualitatively new physical
information it contains, we will not pursue the details of
the solutions. To this end it is convenient to leave the
nonlocal part of Eq. (3.18) written in the frequency
domain as in Eq. (3.20). The in-in effective action being
real and causal (in time domain) yields equations whose
imaginary terms (in frequency domain) can be unambigu-
ously identified with dissipative processes. The kernel K4

acquires (in frequency domain) an imaginary part because
(and only because) the conformal vacuum is unstable in
the presence of anisotropy. It is in this sense that the dis-
sipative nature of particle creation can be made more pre-
cise in the semiclassical context.

We may obtain a quantitative check on the relationship
between the imaginary part of K4 and particle creation if
we consider the energy density of the fields, a To. This
can be found from the conservation law

(a To)'= —a' I f pj—+ I'f4 0
Ba " gp+j

The contribution of the nonlocal terms in (3.16) to the en-

ergy density is

dg' '. g' dg" 'J g" E4 g' —g"
30(4m. )

(3.25)

As g~ oo we may write this in terms of
P;j(cu)= f drje ' "P,j(rj), ie.

ln + sgn~ Tr *u co —ia)
30(4~)2 —~ 2~ 4vrp 2

(3.26)

We see that in the limit g~op, the contribution of the
real part cancels off, while the imaginary part gives a pos-
itive definite contribution

pp
——

2
des 2' co Tr co co . 3.27

120(4rr)

The spectrum of particle pairs created by a given anisotro-

Py history Pj(g) is

P(co) = [co TrP*(2')P(2')] .
30(vr )

This shows that the imaginary part p& responsible for par-
ticle production indeed gives the total energy of particles
created in the whole history

p~ = f der(2')P(co) . (3.29)

Although Eq. (3.27) for the energy of created particles has
the same form as in the in-out formulation, the actual nu-
merical result may differ. As the in-in equation for P;J is
different from the in-out equation, the evolution of p,j
will be different, and so will the numerical value of pz.
The difference could arise from the specification of the
vacuum: we must give not only the state of the matter
field but also that of the gravitational field. The gravita-
tional out vacuum need not be the same as the gravita-
tional in vacuum, as the background is affected by the
quantum matter fields present. Therefore, it is not clear
that a particle count from comparing the in and out vacua
should agree with that of comparing the in vacuum with
itself. The fact that the numbers we get are close enough

I

(because the large time behavior of p;j is the same in both
formulations) shows that the approximation of having
neglected the quantum nature of the gravitational field is
consistent within the given accuracy.

To convince ourselves that the particles in (3.28) are
really the created ones, it is enough to see that as q —++ oo

all the vacuum-polarization terms fade away and a To
reduces to p&+const. In other words, the newly created
particles weigh on the same footing as any classical radia-
tion originally present. Moreover, the K4 is the only non-
local kernel leading to a real causal equation with the
right amount of particle production. This is so because
reality and Eq. (3.25) determine the imaginary part of K4,
and causality implies a Kramers-Kronig relation which
then fixes the real part up to local terms.

We conclude that the in-in formulation of the anisotro-
py dissipation problem yields quantitatively similar results
as the usual in-out formulation, with the additional ad-
vantage that (a) the field equations are real and causal, so
that the solutions can be identified with dynamics of
physical fields and geometry, (b) the formalism provides
an unambiguous description of the dissipative nature of
cosmological particle-production processes.

IV. INTERACTING FIELDS:
VACUUM EXPECTATION VALUE

OF THE STRESS-ENERGY TENSOR

In this section we present a calculation of the in-in ef-
fective action for self-interacting quantum fields. This
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example will serve to illustrate higher loop calculations,
renormalization of the in-in effective action, and calcula-
tion of vacuum expectation value of the stress-energy ten-
sor. Consider a nonconformal A,P theory on an isotropic,

I

spatially flat Robertson-Walker background. The metric
is that of Eq. (3.1) with P=O. The gravitational action is
given by (3.2). The scalar field action in n dimensions is

S = f d "xa "(g) —,a ca~+ ——m + g+ R1 1 1 (n —4) ~ A, 4f 2 P 12 (n —1) 4!
(4.1)

I [a+,a ]=Ss[a+]—Sg[a ] i ln—jDP+DP exp[i [(Sf+Sf")(P+,a+) —(Sf+Sf")(P,a )]I . (4.2)

Introduce a change of variables P
+—=(a+—)' "~ X +—. The Jacobian of it is simply the path integral in the free conformally

invariant case, which we know is a constant. After this transformation, we get

I [a+,a ]=Sg[a+]—Sg[a ] i ln f—Dx+DX expIi[(Sf+Sf')(X+, a+) —(Sf+Sf')(X,a )]], (4.3)

where

where R is the scalar curvature and (=0,—, denote minimal and conformal coupling, respectively. We assume that in
the infinite past m, (——,, and X are adiabatically switched off. This defines the in vacuum to be the conformal vacuum
and also defines a particular model, which has been explicitly constructed in Refs. 7 and 16. We will make a perturba-
tive expansion of the in-in effective action in powers of these parameters, specifically to first order in A, and to second or-
der in M =m +(g—

6 )R. Therefore we will consider graphs with no more than two loops. We will need to know the
two-loop counter terms in Ss", and the one-loop counterterms in Sf' (we do not include a background scalar field). These
have been computed in Ref. 21. To this order there is neither wave function nor coupling-constant renormalization. As
k and M are adiabatically switched on, conformal invariance is broken and the vacuum becomes unstable. We must now
consider the full CTP effective action as a function of two variables a+, a

['

Sf(X,a) = f d "X —,
' ~~"a„xa~—', M'X' — ', X' (4.4)

4 1 2 A.MSf'(X,a)= f d x —a', X'+O(&')
2 (4~) e.

(4.5)

Here again, E=n —4 and M =I + (g ——, )R, where R is the n-dimensional scalar curvature. We have effectively re-
duced our problem to that of a flat-spacetime theory with position-dependent (when n&4) interactions. Expanding up to
the desired orders we find (keeping only terms which contain a +)

r=s, +sr,
AI = —— d xd x' (a M )+(x)(a M )+(x')(X+ (x)X+ (x'))l 1

2 4

——,'( 'M')+( )( 'M')+( ')(X+'( )X+'( ')),

+ —,'(a M )+(x)
~

(a M )+(x')(X+ (x)X+ (x')),
(4~) E

—(a M )(x) 2 (a M ) (x')(X+ (x)X (x')),
(47r) F.

6
d xd x'd x" (a M )+(x)(a M )+(x')(a ')+(x")(X+ (x)X+ (x')X+ (x")),4X4!

(a'M')+(x)(a'M')+(x')(a ') (x")(X+'(x)X+'(x')X (x")),3

4~4!

(a M )+(x)(a M ) (x')(a ')+(x')(X+ (x)X (x')X+ (x")),6
4X4!

6
4~4I ( 'M') ( )( 'M') ( ')( ') ( ")(X+'( )X '( ')X '( ")), (4.6)

We observe that the graph (X (x)X (x')X+ (x")), does not contribute because the corresponding integral is finite.
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Introducing the Feynman rules [Eq. (2.25)] and the kernels RO, IO from Eqs. (3.17), we get

I

b, l = f f dq dry'(a M )+(q) (a M )+(q') +Ro(ri ri—') +2(a M ) (ri')iIO(q —g')
2(4'�)' E'

f f
dydee'(a

M )+(g) (a M )+(g') +Ro(g —g') +2(a M ) (g')iIO(g —g')z z+
(4m) e

2(4m )
f f f dydee'dry"(a M )+(g) (a M )+(71')(a ')+(g")

X +Ro(g —g")5(g —g") 5(g' —ri" ) +Ro(ri' —g")

+(a M )+(ri')Io(ri g")Io—(g' —g")

+2i (a'M') (q')(a ')+(q") +Ro(ri g") I—o(ri" —q')z — ~ —.+

+2i(a M ) (ri')(a ') (v]") +Ro (q' —g") Io(g' ri")—
E

Finally, after a straightforward calculation we obtain

—l
dg a+ M+

2(4~) e

1

2(4'�) f f dydee'(a M )+(g)[(a M )+(ri')Ro(q —g')+2(a M ) (ri')iIO(ri —ri')]

+ 4 f dna+ M+ [e +e 'lna+ ——,'(1na+)~]
2(4n. )

dydee'a ~ + g' a ~ + g'lna+ ggo g —g'+ a ~ g'lna+ gilog —g'
(4'�)'

+(a M ) (q')lna (ri')iIO(ri —g')]

2(4m. )
4 f f dydee'(a M )+(ri) I(a M )+(ri') f dg"[Ro(g —ri")Ro(g" —g')+ID(g ri")Io(g" —r—i')]

+2(a M ) (ri') f dry"[R (g —ri")iIO(ri" g')+ Ro (q"——71)iIO(g —q")] I .

Up to first order in A. and second order in M we have

(4.7)

2(4~) e 2(4~) e 180(4m) e

where as before we are assuming A=a& ——a2 ——o.3 ——O,p=1. The full effective action is therefore I =Sz+1"f,~here S~
is Einstein's action, and

2

+90a "M lna ——(lna )
2

+nonlocal terms, (4.8)

the nonlocal terms being the same as in Eq. (4.7).
We see that overlapping divergences have canceled out, as expected. To better appreciate the content of Eq. (4.8), let

us compute the trace of the energy-momentum tensor

T= —a If[a+,a ] ~a+
The variation is to be taken with a held constant. We get, after identifying a and a
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1 aT(g)=conformal anomaly —
2 2 f dq' (a M Ina)(g')

2(4n) a

J dr)' [a M (lna) ](g')
4(4vr) a c)a r)

g M g' dg" a M g" Ko g' —g"
(4m) a c)a(rl)

f dry' (a M )(rl') J dg"(a M )(g")[Ina(g)a(g')]Ko(rl' —71")
(4~) a c)a r))

f dry' lna(r)') (a M )(g') f dq"(a M )(q")Ko(g' q")—
(4vr) a c)a(rl)

+ 2M2 g ~ s rsr ~ rgb pg

(4') a Ba(g)
(4.9)

Ko is the kernel defined in Eq. (3.18). We observe that T is real and depends causally on the evolution of the conformal
factor.

In the massless, free field case ( m = A, =O), the nonlocal term in (4.9) reduces to the one computed by Davies and Un-
ruh' (the local terms need not be identical since they depend upon the renormalization prescription). This reconfirms
that (4.9) represents the in-in expectation value in the state which reduces to the conformal vacuum in the conformal lim-
it. The contribution of the nonlocal terms to the energy is, in the limit g~ oo,

b, (a To)= J dr)a'a T(rl)

f dr) (a M )(g) f dg'(a M )(g')Ko(g —g')
(4~)'

g 2M2 g gg' g 2M2
(4vr )'

J dry (a M )(rl) J dr)'(a M lna)(r)')Ko(rl —g')
(4~)'

f de (a~M lna)(g) f dg'(a M )(g')Ko(g —rl') .
(4~)'

Introducing the Fourier transforms of Ko, a M, and a M lna, we obtain
T

h(a To)= J dc@(2') 1+ ln
~

a M (co)
~

—2 Re[(a M lna)(co)[(a M )(co)]*]
4(4rr )' (4~)' 4~@ (4~)'

(As usual the dependence on the renormalization scale p
is only apparent, since the full effective action is p in-
dependent: a change in p would be compensated by a
change in the renormalized gravitational constants and
M .) We find, as discussed in Sec. III, that particle pro-
duction depends only on the imaginary parts of the ker-
nels in the frequency domain. This also reaffirms that
self-interaction enhances particle production, and that the
correction appears already to first order in the coupling
constants.

In summary, we have computed the in-in effective ac-
tion and the expectation values of the energy-momentum
tensor. Renormalization requires only counterterms for
the in-out effective action. The equations for the back-
ground metric are real, causal, and nonlocal, the nonlocal
terms being related to particle-production processes.

V. REMARKS

In this paper we have given an expository introduction
to the in-in or closed-time-path functional formulation of
quantum field theory in curved spacetime and applied it
to two concrete model calculations in quantum cosmolo-
gy. These models chosen for their simplicity and generali-
ty serve to illustrate the characteristics of this method in
contrast to other ones in use.

As discussed in the Introduction the main advantages
of the in-in formulation are essentially twofold. (a) Its
ability to produce real and causal equations of motion
offers more physically interpretable results. (b) Its capa-
bility of dealing with different two-point functions (the
Feynman, causal, and correlation functions) on the same
footing offers the possibility to include statistical mechan-
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ical descriptions of quantum fields in a natural way.
From the technical viewpoint the closed-time-path

method does not involve difficulties much beyond those
of the in-out method. A11 the major techniques of quan-
tum field theory such as Wick's theorem,
renormalization-group theory, background-field methods,
etc. , can be adapted to this formalism. The closed-time-
path effective action contains the usual effective action as
a particular case.

Because of the above reasoning, the closed-time-path
functional formalism has the potential to become an im-
portant tool for discussing quantum and statistical pro-
cesses in curved spacetimes, especially for dynamical and
nonequilibrium systems like that occurring in the early
Universe and in black holes. Problems like particle pro-

duction and back reaction, finite-temperature field theory,
transport theory, dissipative processes, dynamical critical
phenomena are all amenable to treatments by this formal-
1sm.

Rote added in proof. After this work had been accepted
for publication, we received a paper by R. Jordan [Univer-
sity of Texas —Austin report (unpublished)] on a related
problem.
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