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The ultralocal limit of the gravitational field and the gravitational field coupled to a scalar field
are studied from both the classical and quantum standpoints. For the classical cases, use will be
made of the minisuperspace formalism. In the quantum case, techniques for quantizing ultralocal
self-interacting scalar fields are extended to deal with the gravitational field. It will be shown that
although the singularity behavior of the gravitational field by itself is characterized by Kasner solu-
tions at each spatial point classically, the quantum case requires the addition of a repulsive scatter-
ing potential in order to have well-defined self-adjoint field operators. For the gravitational field
coupled to a massive scalar field, both the singularity behavior and when the mass terms become im-

portant in the ultralocal limit are studied classically and from the quantum standpoint. Classically,
the singularity behavior of the gravitational field is modified by the scalar field so that the solutions
are Kasner-like in a four-dimensional hyperspace minisuperspace which allows for expansions in all
three axes in space-time. The quantum case for the singularity behavior has solutions which are
confined by repulsive potential barriers to regions where only the states with the lowest "angular
momentum" can evolve out of. Adding matter terms introduces solutions that show the periodic
motion of a harmonic oscillator. For the quantum case, a discrete eigenvalue spectrum occurs for
the scalar degree of freedom. It is therefore seen that in the ultralocal limit, the quantum and classi-
cal cases are significantly different.

I. INTRODUCTION

Investigations into the quantum structure of gravitation
have focused primarily on the weak-field properties. An
interesting alternative approach first suggested by Isham'
and developed by Pilati and Isham is to study the
strong-coupling limit of general relativity in the Hamil-
tonian formulation and to quantize the theory in this lim-
it. In the strong-coupling limit, the spatial gradient terms
drop out and the full theory is recovered by adding them
in as a perturbation. This approach represents developing
a perturbation theory around the strong-coupling limit
which can give information complementary to that which
is usually obtained in a weak-field perturbation theory.

In this paper, the classical version of the strong-
coupling limit for the gravitational field will be briefly re-
viewed and a quantum formulation will be developed.
The strong-coupling limit of the gravitational field im-
plies ultralocality, i.e., that the dynamics at each spatial
point are decoupled. The quantization of ultralocal field
theories has been extensively studied by Klauder ' and
his techniques will be extended to deal with the gravita-
tional field. Both the classical and quantum versions of
the gravitational field coupled to a scalar field in the ul-
tralocal limit will then be developed and elucidated.

We will use the constraint formalism" ' for both the
classical and quantum versions of the theory. Specifical-
ly, we will eliminate all but one constraint, the super-
Hamiltonian. This defines the physically allowable solu-
tions of the equations of motion. In the quantum case,
the constraint condition is implemented as an operator
constraint defining the physically allowable spectrum of
states.

For the gravitational field by itself, classically the ul-
tralocal limit results in a collection of "Kasner universe"

solutions. Our quantum formulation introduces repul-
sive terms into the super-Hamiltonian, which produces a
scattering phenomenon in quantum minisuperspace unlike
earlier work. We therefore see differences between the
classical and quantum formulations of ultralocal gravity.

The effect of introducing a scalar field coupled to the
gravitational field in the ultralocal limit will also be inves-
tigated. We will look at the cases where the self-
interaction and matter terms of the scalar field are small
and where they effect the solutions. In the former, classi-
cally it will be shown that the solutions evolve along the
null cone of a four-dimensional space called "hyperspace
minisuperspace" which consists of a three-dimensional
minisuperspace' and a dimension for the degree of free-
dom of the scalar field. This evolution along the null
cone is the four-dimensional analog of the solely gravita-
tional solutions propagating on the null cone in minisu-
perspace. For the quantum solutions, repulsive barriers
must be introduced that confine the solutions to specific
regions in "hyperspace minisuperspace. "

In the domain where the matter terms are no longer
negligible, we will see that the repulsive terms added to
the quantum constraint introduces scattering and we also
have a discrete eigenvalue spectrum for the scalar degree
of freedom.

Section II deals with the quantization of ultralocal
self-interacting scalar fields in general. Sections III and
IV deal with the ultralocal limits of the gravitational field
and the gravitational field coupled to a scalar field,
respectively.

II. ULTRALOCAL QUANTIZATION
A. Interacting scalar fields

The techniques developed by Klauder ' for quantiz-
ing self-interacting scalar fields can easily be extended to
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deal with two or more different types of fields interacting
with each other.

Consider a classical Hamiltonian of the form

~p] x + ~pp x + ~m)

+-, ~'4~'+I'(p, 4», 0 )l, (2.1)

where p is the coupling constant between the P~ and Pz
fields. In this Hamiltonian, we have dropped the spatial
gradient terms. This type of theory is characterized by
the fact that distinct spatial points characterize statistical-
ly independent fields for all times. Because the dynamics
at each spatial point are independent, the classical-field-
theory Hamiltonian reduces to an infinite collection of
two-degrees-of-freedom Hamiltonians, one at each space
point. The quantum theory in a sense is also character-
ized by an underlying two-degrees-of-freedom system. In
the ultralocal quantum theory, we can form the non-Fock
representations of P& and Pz.

P)(x)= f f dkdQBt(x, A, ,Q)AB(x, k, Q), (2.2)

P~(x)= f f di, dQB (x, A, ,Q)QB(x, k, Q), (2.3)

where

Pp (x)„=f f dk, dQBt(x, k, Q)Q B(x,A, , Q), (2.8)

[P,"(x)P, (x)]„=f f dldQ, B'(x,A, Q)A, "Q ,B(x,i,Q) .

(2.9)

The model function c (A, ,Q) must satisfy the conditions

f f c (A, , Q)dl, dQ=

f f A, "c (A. , Q)dkdQ(

0, c A, ,AdkdQ&co,

A,"A c A. , A dk. dA& oo .

(2.10)

(2.1 1)

(2. 12)

(2.13)

where h(A, , Q) is the analogous Hamiltonian in the A,-Q
base space. Using the commutation relations

[B( x, A, , Q),B (x,k, Q)] =5(x—x')5(A, —A, ')5(Q —Q'),

(2.6)

we can express renormalized products of the fields in the
product space by

P~"(x),= f f dkdQB (x, k, Q)A, "B(x,k, Q), (2.7)

B( xA. , Q)=A (x, A, ,Q)+c(A, , Q) . (2.4)

are defined by —oo &A, & ao, —~ &0 & oo, and
c(A, , Q) is a function of both A, and Q space in order to
represent the interaction between the two fields and is the
two-dimensional analog of the one-dimensional model
function c (A, ) The quantum form for the Hamiltonian is

H= f f f dxdl, dQBt(x, A, , Q)h(A, ,Q)B(x,k, Q),
(2.5)

—y(A, , Q)
c(X,Q) =

/

A,"+Q (2.14)

This form also allows us to express rotationally invariant
interactions between the fields. The Hamiltonian H is
given by Eq. (2.5) with h given by

These conditions can be satisfied by choosing the model
function to be of the form'

1 B 1 B 1 ay
2 a+~ 2 BQ~ 2

'2
1 a y 1 By 1 By
2 a~' 2 BA, 2 BQ

2

y nX"-' y+mn -' ya
BA, an

2(A,"+Q )

y[n (n —1)k" +m (m —1)Q ] y(y/2+1)(n A,
" +m Q )+

4(A."+Q ) 4(A,"+Q )

(2.15)

We choose n =m =2, for which h reduces to

1 a 1 B 1 ay
2 a+~ 2 BQ~ 2

a a~y+~ y

1 B2y 1 'ay 1 ay BA an
2 BQ 2 BA. 2 BQ g+Q

2

+
2(A, +Q )

(2.16)

The last term is the regularization term that makes the
operator ——,B /BA, ——,

'
B /BQ, well defined. The ex-

ponential in c(A, ,Q) in Eq. (2.14) not only gives the A, -Q
space analog of the usual potential-energy terms in the ex-
pression for h (A, , Q), but also an unexpected term,

By - By
y A, +

(2.17)
A, '+ Q'

If we look at the limit of this term as Q~O, we get (y/k)
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By/Bk which is the same type of term that appeared in
the single-field case. Here, however, this does not appear
as a typical potential-energy term of the form A."0 but
represents a complex coupling between the fields because
of the 1/(A. +0 ) dependence. This is chosen to
represent a potential-energy term because of its form
when either Q or A.~O and because it is not required to
make the kinetic-energy terms well defined.

B. Constraint formalism applied
to ultralocal theories

H;(x) = 2—g;kyar" i =0, (3.2)

where H(x) and H;(x) are called the super-Hamiltonian
and supermomentum, respectively.

Using a gauge condition proposed by Pilati, the de-
grees of freedom of the system can be reduced from 6
each for the gravitational field and its conjugate momenta
to 3 each. These are ~+,~,~,~+,~,~, where ~,~ are the
intrinsic time and its associated conjugate momentum.
The commutation relations for the gravitational degrees
of freedom are

Consider a classical super-Hamiltonian constraint that
comes from a parametrized field theory in Hamiltonian
form:

[ r+( x), m +( x')] = [ r (x),n(x.') ]=5l x —x'),

[r(x),m(x')] =5(x—x'),

[r;,r;]=[sr;,ir;]=0, i =+,—.

(3.3)

H(x)= —,'p, i (x)+ —,'m P, i (x)+ V(g,i(x))=0. (2.18)

This super-Hamiltonian can be incorporated into a quan-
tum theory as a constraint that defines allowable states of
the system to obtain the physical subspace:

H(x)=sr+ (x)+sr (x)—m (x)=0. (3.4)

It has been shown that the super-Hamiltonian can then
be written as

H(x)
i i/) =0 .

In the ultralocal quantum theory, let

H(x) f dA, Bt(x,A, )hB(x, A. ) .

We require that

H(x)
i
0) =0,

which implies that

hc (A, ) =0,
where the model function c (A, ) must satisfy

f c (X)dA. = oo,

f A."c (A, )di. & oo .

If the
~

i/ ) are the coherent states defined by'

~

1/J) =exp ——,
' f f ~

@(X,A, )
~

dxdA,

Xexp f f it(x, k)A (x, A, )dxdk ~0),

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

H =rr+ +me. + V(.r+,—r, r) . (3.5)

It has been shown that, in the case when V(r+,r, r) =0,
the constraint equation defines a Kasner universe, ' an an-
isotropic expanding universe where distances expand
along two dimensions and contract along the third. The
constraint equation (3.5) with V=O gives the result that
the path of a Kasner universe in minisuperspace is on a
"null cone. " Equation (3.4) can be considered as defining
an infinite collection of Kasner universes —one at each
spatial point.

Since the ultralocal limit was employed and spatial points
are dynamically decoupled, the problem of dealing with
an infinite-degrees-of-freedom super-Hamiltonian has
been reduced to an infinite number of three-degrees-of-
freedom super-Hamiltonians. In other words, this can be
looked at as independent super-Hamiltonians at each
space point. From this viewpoint, use can be made of
Misner's minisuperspace formalism. '

In a flat minisuperspace, the super-Hamiltonian can be
written in the general case in the form

hi/(x, A, ) =0 . (2.26)

Therefore the constraint equation can be written as a con-
straint on the Hilbert space spanned by P. This constraint
formalism can easily be extended to include more than
one field.

i/(x, k) EL, (2.25)

then the constraint equation (2.18) is satisfied if

B. The quantum case

r(x)= f f f dp dp dQB (x,p,p, Q)Q

XB( x/3+, P,A), (3.6)

Following Pilati, we will represent the remaining grav-
itational degrees of freedom and their conjugate momenta
by the non-Fock expressions:

III. ULTRALOCAL GRA VITY

A. Classical case

H ( x) =g 'i Gjki(x)n'J(x)n"'(x) =0, (3.1)

The classical Hamiltonian formulation of gravity in-
volves four constraint equations per space-time point.
These can be written in the ultralocal limit as

~(x)= f f f dp+dp dQBt(x, p+,p, fl) i—
XB(x,P~, /3, 0),

r+(x)= f f f dp+d/3 dQB (x,p+, /3, 0)p+

XB(x,P+,P,0),

(3.7)

(3.8)
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~+(x)= f f f dp+dp dnB'(x, p+, p, &) —i
ap

XB(x,P+,/3, Q),

r (x)= f f f dp dp dII, B (x,p,p, fl, )p

XB(x,P+,P, fl ),

(3.9)

(3.10)

vr (x)= f f f dp+dp dAB (x,p+,p, Q) i-
mp

straint equation hg=0. This can be solved when h is
given by Eq. (3.17) to yield solutions of the form

f(x, u, p, Q) =e+ 'r'-"I~e+-'~'"' [a(x)u]'/ J„(au),
(3.18)

where a (x) + p (x)=0, p (x)+y (x) =0.
In the coherent-state representation, we can define the

states

i f) =exp ——, f f i
g(x, u, P, Q)

i
dxdR

Xexp f f g(x, u, P, Q)A (x,u, P, Q)dxdR
~
0),

)&B(x,P+,P,Q) . (3.1 1) (3.19)

We can define the quantum commutation relations

[B(x,P+,P, $1),B (x', P'+, P', f),')]

=5(x—x')5(p+ —p'+ )5(/3 —p' )Sly —0'), (3.12)

where B(x,p+,p, Q) = 3 +c(/3+, p ). The Hamiltonian
constraint can be represented by

H(x)= —f f f dp+dp dnB"(x,p+,p, n)

a2 a2
X

dP ' dP '
a2

2 + V(P+, P )

&&B(x,P+,P,Q), (3.13)

where V(p+, /3 ) gives the regularization-type terms for
the kinetic-energy terms. As was pointed out, V can be
determined from the model function c(p+, p ) and the
condition

hc (/3+, P ) =0 . (3.14)

In earlier work, the choice c(p+,p ) =1 was made. This
then gives V(/3+, p )=0. With this choice of the model
function, the conditions that the model function must
satisfy in order that the fields be well defined are not
satisfied. The independent degrees of freedom of the
gravitational field can be looked at as independent mass-
less scalar fields. With this, the choice

c( +, )= 1

fp 2+p 2
(3.15)

which leads to well-defined field operators, will be made.
The quantum Hamiltonian constraint which defines the
allowable spectrum of states is then given by

H(x)= —f f f dp+dp df), Bt(x,p+,p, f), )h

where g(x, u, P, Q) is given in Eq. (3.18) and dR represents
a generic differential depending on the coordinate system
chosen for the degrees of freedom of the gravitational
field. These states form the physical subspace. From Eq.
(3.17), when /3+ +P is large, the repulsive term is
negligible. This corresponds to a model function that is a
constant. In this case we would get that the states look
like "quantum Kasner states. " For the high-energy limit,
the degrees of freedom are decoupled, but at lower energy
they are coupled through the repulsive term.

In analogy with work done on quantum cosmological
models, the repulsive term can be considered as a scatter-
ing potential where, as 4y /(p+ +p )~0, one gets the
asymptotic incoming and outgoing states of the system
which correspond to Kasner states. In earlier work done
on the quantum ultralocal limit of the gravitational field,
there was no scattering potential present because of the
choice of model function c(p+,p )=1. Our solutions
are independent cosmological-type solutions at each spa-
tial point. Applying the coherent-state representation
turns these into solutions of field operators. We see in our
formulation a scattering phenomenon in the quantum ul-
tralocal case not present classically.

IV. GRAVITY COUPLED TO A MASSIVE
SCALAR FIELD IN THE ULTRALOCAL LIMIT

A. The classical case

We will now discuss the ultralocal limit of a massive
self-interacting scalar field with the gravitational field.
First, the ultralocal limit will be discussed classically, then
in the next section the resulting theory will be quantized.
The super-Hamiltonian and supermomentum that result
from putting the theory in Hamiltonian form are given by

ij I
g

—1/2R + —1/2 2+ 1/2 ah~

with

XB(x,P+,P,Q), (3.16) ~

g 1/2m 2y2+ 1/2 V( y ) 0

H; = —2~;J j+p(b; =0,
(4.1)

(4.2)

h=
Bp Bp

4y
BQ p +p

(3.17)

It is convenient to make a change of coordinates where
u=(p+ +p )' and /=tan(p+Ip ). As was shown, if
the states

~ g) satisfying H
~
g) =0 are coherent states,

then the constraint equation reduces to a base-space con- [P(x),p(x')]=5(x —x') . (4.3)

where V(p, g) in Eq. (4. 1) represents a self-interaction
term for the scalar field and p is a coupling constant that
measures the strength of the interaction. The commuta-
tion relation for the scalar field and its conjugate momen-
tum is given by
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For the gravitational field, we choose the same commuta-
tion relations as were considered for the gravitational field
alone in Eqs. (3.3). Because the degrees of freedom of the
gravitational field are independent of the scalar field, the
same gauge condition used for the gravitational field by
itself can be chosen and, taking the ultralocal limit of the
super-Hamiltonian, we get

scalar field. By choosing Pilati*s gauge condition for the
metric tensor discussed in the preceding section and
representing the super-Hamiltonian as we have in Eq.
(4.7), we have defined a hyperspace minisuperspace at
each spatial point that is flat and four dimensional. This
four-dimensional space is useful because we can define a
Lorentzian metric that is given by

—37./2
H=

—3w/2 ds' =Gz~dg dg (4.10)

+e '~ V(p, g) =0 . (4.4)

By a conformal transformation and by redefining P,p by
the transformations

where Gzz ——diag( —1, 1, 1, 1) or

ds' = d7 +—dr+ +dr +dP
The H=0 constraint can now be written as

2

(4.11)

P(x) =&3P'(x), (4.5) dZ
= —36m P e '—4V(p, g)e3 (4.12)

p(x) = —p'(x),1

v'3 (4.6)

the super-Hamiltonian constraint can be written as

H =vr+ +m —a +p' +9m P' e '+ V(p, g)e '=0 .

(4.7)

The rate of change of an operator with respect to the in-
variant supertime parameter Z is defined by

F= =[FHj .
aZ

(4.8)

Using this relationship, we get the following equations of
motion for the field and their moreent:

~= —2~,
jr= —27m P e '—3e 'V(p, g),
T+ 27T+

~+ ——0,
=2'

(4.9)

These equations of motion describe the paths through a
"hyperspace superspace" parametrized by the invariant
supertime Z. This space consists of the three degrees of
freedom for the gravitational field with an added dirnen-
sion for the degree of freedom associated with the scalar
field. Because spatial points are decoupled through the
ultralocality condition, the dynamics can be described by
paths through an independent "hyperspace minisuper-
space" at each spatial point. The ultralocality condition
here reduces the dynamics of the fields to the dynamics of
independent four-degrees-of-freedom systems at each spa-
tial points. Hyperspace rninisuperspace consists of min-
isuperspace, the finite-dimensional analog of superspace
and the one degree of freedom of the scalar field. The
super-Hamiltonian in the ultralocal limit constrains the
system to an allowable path in each "hyperspace minisu-
perspace. " The constraint is reminiscent of the form for
those occurring in the minisuperspace models for which
our treatment of the gravitational field by itself was
analogous to, but here with an added dimension for the

Since the right-hand side of Eq. (4.12) is negative, the
dynamic evolution at each space point in hyperspace min-
isuperspace is timelike and becomes null as V(p, g)~0.

When T~ —oo, which represents the singularity
behavior, the matter terms in Eqs. (4.7) and (4.12) become
negligible. We get that

H= —a +a+ +m +p

c& =0.
dZ

(4.13)

(4.14)

~= —2~,
T+ —2K+ )

(4.15)

(4.16)

(4.17)

vr =0, (4.18)

(4.19)

p=O . (4.20)

Equations (4.15)—(4.20) imply the momenta are indepen-
dent of the supertime Z. We want to look at the line ele-

Equation (4.14) shows that the path of the system at each
space point in the four-dimensional hyperspace minisu-
perspace is on the null cone. Also, obviously Eqs. (4.13)
and (4.14) describe the motion in this space of a massless
scalar field coupled to gravity. The super-Hamiltonian
here is the four-dimensional analog of the three-
dimensional super-Hamiltonian of Eq. (3.3) that defines a
Kasner universe. We can therefore say that Eqs. (4.13)
and (4.14) define a "Kasner-like" universe solution at each
spatial point. We can consider this to represent the singu-
larity behavior at each spatial point. It also represents the
strong-coupling limit of the gravitational field coupled to
the scalar field. In this limit the mass terms of the scalar
field become negligible. It will be seen that the addition
of the scalar field will affect the singularity behavior of
the gravitational field.

The four-dimensional Kasner-like universe solutions
that are described by Eqs. (4.13) and (4.14) have different
properties than the three-dimensional case. The equations
of motion we obtain from Eq. (4.13) for this case are sim-
ply
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ment in space-time. Following Liang' and Francisco and
Pilati, we choose a synchronous reference frame where

go; ——0, goo ———1, and choose dZ =dt. If we rescale the
time parameter so that dt=(1/6')d(lnt), then we get

3

gp2 1 (4.33)

If the scalar field is ignored for the moment, it is easy to
obtain the condition

d7+
7+— —2' +

( I /6vrr)dr

therefore

(4.21) Equations (4.32) and (4.33) define a Kasner universe. The
line element in space-time for the Kasner universe is given
by

7T+
7+—

3 ~7
(4.22) CB = —dT +TdX'+1 dg +r dZ2 P2 2 Ps 2 (4.34)

and Equations (4.32) and (4.33) require that one of the p's be
nonpositive. '" For example,

7T+
ln7 .

3 ~
(4.23) 1—Y &p1&0 (4.35)

We also get

1

37
and

7= ——,
' ln7 .

For the scalar field, we have

3777'

(4.24)

(4.25)

(4.26)

This is why, for the Kasner universe, two of the axes are
expanding and one is contracting.

Adding the scalar field in the limit as 7~ —~ results
in a four-dimensional "Kasner universe. " The same pa-
rametrization as in (4.28) can be used in this case and p;
can be defined by Eq. (4.30) because the degrees of free-
dom of the gravitational field are independent of the sca-
lar field in this constraint formalism. While Eq. (4.32)
still holds, Eq. (4.33) is no longer true. Because of our
super-Hamiltonian (4.13), we get rr+ +n =m —p in-
stead of ~+ +m =~ . This gives

and therefore

1

pin~~.

3' (4.27)

3

apl 1 2p2/ 2 (4.36)

We can redefine the gravitational dynamical degrees of
freedom by

p) ——r+ +v 3r, /3q ——r+ —v'3r, pg ———2r+,

instead of Eq. (4.33). Choosing 2/3p =q, we get
3

g p =1—q'. (4.37)

(4.28)

where g,./3; =0 and g =detg;~. = e ". In this parametriz-
ation, the metric tensor g;z can be written as

2( —7.+P) )
e

Equations (4.32) and (4.37) are the same equations for the
p s as obtained by Belinskii and Khalatnikov by different
means ' when they investigated the effect of a massless
scalar field on a cosmological singularity.

In Eq. (4.37), q can vary in the range
2( —~+P, )

e (4.29) (
2 )1/2( &( & )I/2 (4.38)

2( —z+P&)

If we set

m-++v 3~
P1=

3

1+—,
3

'

rr+ —v 377
P2= +

3 3
'

giJ
2p27

2pg

p;=1 .

77+ +—
3 ~ 3'

then we can write Eq. (4.29) as

2p i

(4.30)

(4.31)

(4.32)

The added degree of freedom from the introduction of the
scalar field now allows p1,p2,p3 to all be positive, which
means that in this case at each space point instead of hav-
ing the typical "Kasner universe" solution with two ex-
panding and one contracting axes, here we have allowable
solution where all three axes are expanding. When q & —,

'

or q & ——,', this is the only solution. This type of solution
will be called "quasi-Kasner. " Belinskii and Khalatnikov
further show that these results hold when the p s and q
are spatially dependent as in our case.

The solutions in this case have some interesting proper-
ties. Depending on the values for q, the solutions are ei-
ther the Kasner universe solution or the quasi-Kasner
universe solution. It has been shown ' that even if the ini-
tial solution is a Kasner universe, adding the g R term
(which is small near the singularity) to the super-
Hamiltonian introduces scattering which will evolve into
a quasi-Kasner universe with all the p s positive. For the
case of the gravitational field by itself, the g R term
scatters the system from one Kasner universe solution to
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The equations of motion are

r(x) = —2vr(x),

~(x)=0,
r+(x) = 2m. +(x),
~+(x)=0,
$(x)=2p (x),
p(x) = —18m P(x),

(4.40)

H(x)=0 .

From Eqs. (4.40), m, sr+ are constants of motion (indepen-
dent of the supertime Z); therefore, we can write

m. +(x)=a(x), vr (x)=p(x), rr(x)=y(x),

so we can write the super-Hamiltonian as

H = —y (x)+a (x)+P (x)+p (x)+9m P (x) =0,
(4.42)

where —y (x)+a (x)+p (x) + p (x) &0. Using the
equations of motion for P,p, we get

another. Therefore, even classically, new features appear
when adding the scalar field in this limit.

When ~ gets larger, we can start seeing the effect of the
potential terms of the scalar field. When ~~0, with the
self-interaction term V(p, g)=0, the super-Hamiltonian
of Eq. (4.7) becomes

H(x) =~ (x)+m.+ (x)+m (x)+p (x)+9m P (x) =0 .

(4.39)

—,P (x)+ 18m P (x) =2[y (x)—a (x)—P (x)], (4.43)

r(x) = —2y(x)Z,

r+(x) =2a(x)Z,
(x) =2P(x)Z,

(4.45)

we can write the solution in Eq. (4.44) as

P(x)= (r —r+ —r )sin(36m Z) .
6mZ

(4.46)

Equation (4.12) can be written as
2

ds'

dz =4[y (x) —a (x)—P (x)]sin (36m Z) . (4.47)

We can get an idea of the effect of the super-
Hamiltonian when ~& 0 in the general case by looking at
Fig. 1, where we can see the general behavior of the poten-

where 2[y (x)—a (x) —p (x)])0. We see that the classi-
cal constraint equation (4.39) defines a harmonic-
oscillator-type solution for the scalar degree of freedom
with positive energy given by the constants on the right-
hand side of the equation. The solution of Eq. (4.40) is

P(x)= [y (x)—a (x)—P (x)]' sin(36m Z),1

3m

(4.44)

where we have chosen /=0 at Z =0. The solution de-
scribes a system in the scalar field degree of freedom at
each spatial point scattering off the walls of the potential
executing simple harmonic motion. Since

+( ~ REGION

+&o REGION

V(y ~)
FIG. 1. Intrinsic time regions.
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tial term as a function of P and vr T. he scalar field degree
of freedom in this case consists of harmonic-oscillator-
type solutions for a potential that is contracting. The
super- Hamiltonian in this formalism defines the allow-
able paths in hyperspace minisuperspace. It is a con-
straint on the possible values of the degrees of freedom of
the system. In the case of the constraint that we are deal-
ing with, p~O so V(p, g) can be neglected, the trajectory
for the scalar field degree of freedom parametrized by the
supertime Z is confined to a parabolic potential that is
closing with increasing ~. In a sense, the description of
what occurs in this formalism is that there is "scattering"
off the walls of this potential. Our description of what
occurs for the classical field theory in the ultralocal limit
is that the solution consists of these solutions at each spa-
tial point.

B. Quantum case

The super-Hamiltonian constraint in Eq. (4.7) is im-
posed in the quantum formulation by turning the con-
straint into an operator constraint on the state vectors

~
g). This defines the allowable spectrum of states. As in

the discussion of the gravitational field by itself, use will
be made of the coherent-state representations to study the
ultralocal quantum theory. We will proceed to construct
a Hilbert space and a representation of the canonical com-
mutation relations. The Hilbert space is a Fock space de-

fined in terms of creation and annihilation operators:

A(x, /3+, P,A, A, ), 3 (x,P+,P,A, A, )

satisfying

[A(x, /3+, P,A, A, ),A (x, /3+, P, A, A. )]

(4.48)

and

=5(x—x')5(/3+ —P'+)5lA —A')5(A, —A. ') (4.49)

3 iO)=0. (4.50)

For the gravitational field coupled to a scalar field, the
super-Hamiltonian is intrinsic time dependent, unlike that
for the gravitational field by itself. We expect the ground
state to depend on the intrinsic time; therefore, in this
case, the model function is chosen to be a function of the
intrinsic time.

The gravitational degrees of freedom are given by the
variables ~+,~,~+,~,~,~, while the scalar degrees of
freedom are given by ((},p. The ultralocal representations
of these operators is given by the expressions

We are interested in the "translated Fock" representa-
tions. For the case of the gravitational field coupled to a
scalar field, these are defined by

B(x,A, /3+, P, A, A, ) =A(x, P+,P, A, A, )+c(P+,P, A, A, ) .

(4.51)

r+(x)= j f f f dp+dp dAdA. B"(x,p+,p, A, A. )/3+B(x, /3+, p, A, A), .

~+(x)= i f f—f f d/3+d/3 dAdA, B (x,P+,P, A, A. ) B(x,P+,P, A, A, ),
ap

(x)= f f f f dp+dp dAdAB(x, p+, p. , A, A)p B(x,p+,p, A, A),

vr (x) = i f f f—f d/3+dP d

AdAB�
"(x,P+,P,A, A)B(x,,P+,P,A, A. ),

Bp

r(x)= j f
~(x) = i f—
y(x)= f f
p(x) = i f—

f f dP+dP dAdABt(x, /3+, P,A, A)AB(x, P+,P,A, A),

d +d dAdkB x, +, , O, , A, B x, +, , A, k

f f d /3+ d/3 d A d A, B ( x,p+, p, A, A. )AB ( x, p+,p, A, A. ),

j f f dp+dp dAdABt(x, p+, /3, A, A) B(x,p+,p, A, A, ) .

(4.52)

with

XB(x,P+, /3, A, A. ), (4.53)

Equation (4.7) for the classical super-Hamiltonian can
be written in the quantum case as

H(x)= —f j f dp+dp dAdA. B (x,p+, /3, A, A.)h

the regularization terms. In order to link the dynamics
with the field representation

a' a' a' a'
8/3 BP BA c)A

—V(P+,P,A, A, ) c(P+,P, A, A. ) =0 . (4.54)

BP+ BP BA. BA

where V(p+,p, A, A, ) contains the interaction terms and
Based on the form of the classical super-Harniltonian, it is
reasonable to assume
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V(/3+, P,Q, A)=9m X e + V(p, A. , Q)+v(/3+, /3, Q, A),
(4.55)

the interaction of the scalar field and the gravitational
field shut off. If we choose

where the self-interaction term V(p, A, ,Q) has been
separated from the regularization terms given by
U (/3+, /3, Q, X). Equation (4.54) can then be written as

then

c( +, ,Q, A. )= 1

~/3 '+P 2+A,' —0'~' (4.58)

BP B/3 BA, BQ

—V(p, A. , Q) —U(/3+, /3, II, A, ) c =0 . (4.56)

a a

0/3 B/3 BA
2

4y(y —1)
BQ /3 +/3 +A. —Q2

(4.59)

We must solve for the model function c(/3+, /3, A, A, ) that
satisfies this equation. The mod e1 function
c(/3+, P,Q, X) that yields the pseudofree theory when
both the self-interaction terms and the interaction between
the scalar field and the gravitational field are shut off by
taking A, ~O needs to be found. The interaction terms
would then be added by including the y(X, II) term in the
exponential portion of the model function, as was shown
in Sec. II. For the pseudofree case, when X~O, Eq. (4.56)
becomes

a' a' a' a'
+U (/3+, p, 0,A. )

ax an

—y(A. , Q)
c( +, ,A, A, )=

~P +/3 +A, —0 (4.60)

Using the relationship

a' a' a' a'h=
8/3 B/3 BA. Ml

With this choice, h is still Lorentz invariant, as it is in the
classical case. The last term is a regularization term for
the kinetic energy. To add the interactions, we consider a
model function of the form

X c(/3+, /3, Q, X)=0 . (4.57

We wish to maintain the "Lorentz invariance" of the
quantum version of the classical super-Hamiltonian with

1 a a a a

B/3 BP Bk BQ

we get h in its most general form:

(4.61)

ah=
B/3+ 8/3 Bk

4y(y —1)
gII2 /3 2+P 2+ g2 II2

4 ~ ay n ay
ax+ an

A,2+/3 '+/3 ' —O2 BX2

2

ay ay
an2 an

2

(4.62)

The potential-energy terms break the symmetry in the
problem. As in the classical case, both the 0,~0 and
n~ —oo limits will be investigated. First, from Eq.
(4.55), as Q~O,

V(/3 /+3, Q, A)=9m I, + V(p, l )+U(P+,P,Q, A) .

(4.63)

From Eqs. (4.62) and (4.63), we can conclude, as Q~O,
that the form of h is

a' a' a'h=
BP B/3 BA,

a2

an
4y(y —1)

P 2+/3 2+ g2

12 —9m A. —V(p, i,)+3m .
g2+/3 2+P 2

(4.64)

Equation (4.53) with /t given above is the quantum analog
of the classical constraint (4.39). We see from these equa-
tions for h that although classically the scalar field is cou-
pled only to the intrinsic time in the ultralocal limit, in
the quantum case, it is also coupled to the other dynami-
cal degrees of freedom of the gravitational field. Even

hP(x, /3+, /3, Q, A, ) =0, (4.65)

where h is defined by Eq. (4.64). We will look at two ap-
proximate cases for this equation, when /3+2+P 2»A,
and when k »P+ +/3

We will first look at the case where P+ +P »A, .
Using a binomial expansion and keeping the highest-order
terms, Eq. (4.65) becomes

when there is no scalar field present, we still get an in-
teraction between the degrees of freedom of the gravita-
tional field that regularizes the kinetic energy terms. The
justification for this is that the states are prepared for the
interaction, the effects of which can never fully be shut
off. In general relativity, the interactions can never be
fully shut off.

As was done in Sec. III for the gravitational field by it-
self, a constraint of the form H(x)

~ P) =0 can be imple-
mented by finding the states p that satisfy h1/=0 and
then using these states to define a coherent-state represen-
tation which satisfies the constraint condition defined by
H(x). Let us look at the physical subspace of states that
satisfy the equation
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a2 a2 a2

ap ap ax
+

a2

BA

4)'(]' —1)
/3 2+/3 2

As in the classical case, the self-interaction term V(p, l. )

will be shut off, so we are looking at the pseudofree limit.
The solutions to this constraint equation are

—9m A. —V(p, A, )+3m /=0 . (4.66)

q(x, u, y, n, g) =e+'En[2 J/2~—(/4(J—)
—(/2e 9m x /2~ (3m/)]e' " 4r(r —() —(/4]' /[a(x) ](/2J ( ( ) ) (4.67)

where j must be an integer, but n need not be and

a (x)+e (x)+5 (x) =0 . (4.68)

The constraint equation (4.66) is now represented by the
constraint on the allowable constants (constants in

/3+, /3, n, A, space) given in Eq. (4.68) with the physical
subspace given by Eq. (4.67). Equations (4.67) and (4.68)
represent the solutions of the constraint equation near
0=0. Let us compare this to the classical solutions. In
the classical case near r~0, in the P degree of freedom,
the system is confined to a parabolic potential, while in
the gravitational degrees of freedom the system is free. In
the quantum case, we have a repulsive potential well in
the gravitational degrees of freedom as in the case of the
gravitational field alone with the system scattering off the
well. The degree of freedom associated with the scalar
field in the classical case exhibited simple harmonic
motion. Here, of course, this degree of freedom is quan-
tized and has bound states with discrete eigenvalues.

For the case where A, )&/3+ +f3, the constraint
equation (4.65) becomes

a' a' a' a'
a /3 a/3 aA, an

4~(~ 1)—
k2

—9m k —U(p, A, ) /=0, (4.69)

where we will again take the limit p~0, so V(p, A, )=0.
The solutions to this are

consists of bound states that have a discrete eigenvalue
spectrum.

The constraint equation on the allowable eigenvalue
spectrum for the degrees of freedom of the system at each
spatial point is given by

y (x)+5 (x) —p (x)=a„(x) . (4.73)

We can also look at the case for the super-Hamiltonian
when n~ —co as we did classically in Eq. (4.13). We
want the potential terms to drop out here also as they did
in the classical case. Therefore we want y(k, n) =0 when
A~ —~. In this case we get, for h,

This represents shutting off the interaction between the
intrinsic time and the scalar field. It also represents the
quantum constraint in the pseudofree limit for a massless
self-interacting scalar field coupled to the gravitational
field. This constraint in the /3+, /3, n, k space is "Lorentz
invariant. " The last term represents a singular potential
well ~

The constraint equation h(t(x, p+,/3, n, k)=0 can be
solved by making use of the four-dimensional Lapla-
cian. ' Because of the form of the repulsive well, we
can divide "hyperspace minisuperspace" into two regions.
First, when /3+ + p '+A, & n, Eq. (4.74) becomes

h= a' a' a' 4~(] —»
a/3 ' af3 ' aA. ' an' f3 '+f3 '+A' n', —

(4.74)

t//( /3 /3 n A, )=B (k)
(4.70)

1/2

a' 3a2+—
~p p ~p

L 4]/(y —1)

p p

(4.75)

(3 g2)(2a + ()/4

Q exp
—3 A2

L '(3m', ) (4.71)

B„(X)=(12m)'" "'"+"
1 (a +n +1) where p =/3+ +/3 + A. —n )0, and L represents the

magnitude of an "angular momentum operator. " When
n ) /3+ +/3 + k, with p =n —/3+ +/3 +A, )0,
Eq. (4.75) still is valid. The solution to this equation are
of the form

a„=6m (2n +a +y + —,
' ), (4.72) 1+[1+4y(y 1)+4J(J 1))1/2~ J ( gp Mpiu7 7Y/~

where a = —,(16y —15)'/ and L„' are Laguerre polyno-
mials.

Here the scalar degree of freedom has a a discrete
eigenvalue spectrum with eigenfunctions localized in the
positive and negative A, half-plane because of the infinite
repulsive well at A, =O. The scalar field degree of freedom

where B/(r&(a, 8,$) is the four-dimensional analog of the
three-dimensional spherical harmonics that satisfy

L BM„(a,0,$)=4J(J+1)B~„(a,&,$) .

In order to have well-defined solutions as p~O, it is re-
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FIG. 2. Hyperspace minisuperspace near singularity.

quired that

J(J+1)&y(1—y) . (4.78)

V. CONCLUSION

We have looked at the ultralocal limit of the super-
Hamiltonian in both the classical and quantum cases for
the gravitational field coupled to the scalar field. We also
developed the quantum version of the gravitational field
by itself.

In the classical cases the ultralocal limit allowed us to
consider that the dynamics at each spatial point are
decoupled and we were able to treat the fields at each spa-
tial point as finite degree of freedom systems. We then
made use of Misner's minisuperspace formalism' to

For both cases that we have discussed, when
J(J+1)& y(1 —y) and p~0, $~0. Only when
J(J+1)=y(1 —y) is /&0 at the 13+ +P +k =0
barrier. Looking at Fig. 2 we see that the condition
P+ +P + X =0 represents a singular potential that
extends infinitely far out from the origin and for
A~ —oo divides the space into three regions. Regions A
and C are the regions where f3+ + 13 +A, & fl, while
for region B, 0 &/3+ + P +A, . For J(J+1)
& y(1 —y), the physical subspaces defined by the con-
straint equation for these regions are disconnected. In
other words, solutions cannot cross the asymptotes de-
fined by the potential barrier and are constrained to evolve
in their respective region. We expect that this produces
scattering from the asymptotes. Only when
J (J+ 1)=y( 1 —y ), which would give the lowest allow-
able "angular momentum states, " are the regions connect-
ed.

determine the effect of the super-Hamiltonian on "hyper-
space minisuperspace, " i.e., minisuperspace with an added
degree of freedom for the scalar field. With the addition
of the scalar field, the super-Hamiltonian becomes a con-
straint equation for a four-degrees-of-freedom system in
the ultralocal limit. We looked at the constraint when
~~ —ao, which represents the singularity behavior of
gravity coupled to a scalar field. In this limit, which also
represents the strong-coupling limit of the theory, we
found that the solutions were "quasi-Kasner"; i.e., they
evolve along the null cone of the four-dimensional "hyper-
space minisuperspace. " For the gravitational field by it-
self it had been found that the solutions also evolve along
the null cone, but in a three-dimensional minisuperspace.
We found that the quasi-Kasner solutions in four-
dimensional space have different properties from the Kas-
ner solutions in three-dimensional space. The quasi-
Kasner solution has the property that because of the add-
ed degree of freedom of the scalar field all three axes can
expand. This is the same result that was obtained by Bel-
inskii and Khalitnikov ' by entirely different means. Our
final solution for this limit was that of a collection of
quasi-Kasner solutions, one at each spatial point.

When ~=0 we found that the matter terms of the sca-
lar field have an effect on the allowable solutions of the
super-Hamiltonian. Specifically, for the case where we
had a massive scalar field that had no other self-
interaction terms, the solutions in the scalar degree of
freedom are those of a harmonic oscillator. We surmised
that at larger ~, i.e., ~p 0, the solutions are the same, but
with this harmonic motion in the scalar degree of freedom
becoming stronger.

We also developed quantum versions of these cases. We
generalized Klauder's work ' on the quantization of
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self-interacting ultralocal fields and reexamined Pilati s re-
sults for the ultralocal quantization of the gravitational
field by. itself. Our results differ from this earlier work in
that in order to have well-defined field operators we re-
quire an infinite repulsive well at the origin of the three-
dimensional space underlying the ultralocal field. This
produces solutions to the super-Hamiltonian which can be
described as a scattering phenomenon where, far from the
potential well, the solutions are Kasner-like. Our asymp-
totic states far from the scattering potential are the same
as Pilati's.

Quantizing the ultralocal limit for the gravitational
field coupled to a scalar field, we looked at the cases
where 0,=0, and where 6~—cc, which represents the
strong-coupling limit. We found that near 0—0 we still
had scattering from a repulsive well, but also solutions
that have a discrete eigenvalue spectrum in the scalar de-
gree of freedom where, in the classical case, we had a
harmonic-oscillator-type solution.

Looking at the solutions to the Hamiltonian constraint
when A~ —ao, we found that the repulsive well we intro-
duced resulted in solutions that are constrained to regions
defined by p+'+p +A, &II or 0 &/3+ + p +k,
and with the solutions unable to evolve through the poten-
tial barriers defined by p+ +p + A, =Q, except for
the lowest "angular momentum state. "

We have looked at the physical subspace defined by the
quantum super-Hamiltonian in the ultralocal limit near

the singularity and when matter effects become impor-
tant. We would like to 1ook at the physical subspace for
the ultralocal limit in the general case for the interaction
of the intrinsic time and the self-interacting scalar field.
In order to do this, we must solve the equation for y (X,II)
appearing in the model function that gives this interaction
in the k-A space. This equation can be solved numerical-
ly.

An important aspect of these ultralocal theories is that
they could serve as a starting point for a perturbation ex-
pansion which could give information that is complemen-
tary to that which is usually obtained in a weak-field per-
turbation theory. To develop a perturbation expansion
around an ultralocal limit requires adding in the gradient
terms. The method of doing this is currently unknown.
However, Francisco and Pilati have looked at this prob-
lem for the gravitational field by itself when the term g R
begins to become important in the super-Hamiltonian.
They develop an approximation to the quantum evolution
in this case that makes use of the results of the mixmaster
universe' model of Misner for a homogeneous universe,
which may be useful.
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