
PHYSICAL REVIEW D VOLUME 35, NUMBER 2

First-order formalism treatment of R +R gravity

15 JANUARY 1987

Bahman Shahid-Saless
Department of Physics, Campus Box 390, University of Colorado, Boulder, Colorado 80309

(Received 27 November 1985)

We show that the field equations of R +R gravity formulated via the first-order formalism are
different from those derived in the second-order formalism. These new field equations lead to a new
set of connection coefficients that are conformally metric and in general not fully metric compatible.
This conformally metric theory is unique in the sense that the conformal gauge field is readily iden-
tifiable in terms of the trace of the energy-momentum tensor and its derivatives. This identification
leads to a new set of differential equations that can be interpreted as evolution equations for cosmo-
logical quantities. The importance of these equations in the early Universe is discussed.

INTRODUCTION

The idea of extending the Einstein-Hilbert action of
gravity to include higher-derivative terms has been around
for decades. ' Recently the motivation for examining
such extended Einstein's theories (EET's) has been due to
their renormalizability, and their being ghost-free. They
have also been predicted as the low-energy limit of the
heterotic superstring theory.

It is well known that these EET's satisfy the "crucial"
tests of general relativity (GR) in empty space. Nieh and
Rauch have found a class of them which are not renor-
malizable but satisfy unitarity and Birkhoff's theorem
(BT). This has lead many to investigate their properties in
regions where the energy-momentum tensor does not van-
ish. These investigations, however, have used a second-
order formalism where the connections are considered to
be the metric-compatible connections of GR—the Chris-
toffel symbols (CS's). In this paper we assume arbitrary
connections and vary the action as if the metric and the
connections are independent fields, i.e., via the first-order,
"Palatini" method. We arrive at a new set of field equa-
tions, different from those obtained via second-order tech-
niques.

Simple analysis of the new connections reveals that this
theory is a subclass of "conformally metric" theories in
which the covariant derivative of the metric is proportion-
al to the metric by a vector field. Weyl was the first to
consider such theories. Smolin ' has considered these
theories in the light of the possibility of the existence of
conformal symmetry in the early Universe. This symme-
try would then be broken at later stages in the evolution of
the Universe. In this paper, the Weyl field can be identi-
fied in terms of the trace of the energy-momentum tensor
and its derivatives. Furthermore, new conserved quanti-
ties can be derived from the new Bianchi identities. These
are the modified energy-momentum tensor components.

It is worth mentioning that in standard GR, the Pala-
tini formalism and the second-order formalism yield the
same results. The former, though, because of its generali-
ty is even more appealing when one considers gravitation
in the quantum era. In fact there is no a priori reason to
assume any dependence between the metric and the con-

nections if the strong principle of equivalence is not as-
sumed to be true. We will consider the implications of the
existence of a nonvanishing Weyl tensor on the strong
equivalence principle.

In Sec. I of this paper, we start with a quick review of
Weyl's conformal metric theory. A more detailed treat-
ment can be found in Ref. 9. In Sec. II, we construct and
vary our action to derive the field equations and in Sec.
III, the connections. In Sec. IV we discuss the transfor-
mation properties of the connections and their implica-
tions on Einstein's equivalence. Section V will be devoted
to our new differential equations and their interpretations.
Cosmological solutions to these equations will be the sub-
ject of a future paper. A recipe for calculations will be
the subject of Sec. VI and our conclusions, the subject of
the last section. The metric signature is ( —1,1,1,1) and
we use Weinberg's" conventions.

I. WEYL'S CONFORMAL GEOMETRY

In the Weyl conformal geometry one abandons the re-
quirement that the covariant derivative of the metric ten-
sor vanishes. Instead one considers that the covariant
derivative of the metric is proportional to itself by a vec-
tor,

~aFpv=bagpv ~

where b is the Weyl field. Under a conformal rescaling
of the metric given by

g„„=g„Q(x)

we get

(1.2)

I,=b, +2@ '(x)a,n(x) . - (1.4)

Equation (1.1) can be solved for the connections in
terms of g& and b to give

(1.3)

The vector field, under such transformation, transforms
like
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r
pv , (—5 „b +5 P„g—„„b ), (1.5)

Note that R is identified with its variational properties
in a geodesic frame. That is,

R „=a„I„„—aVI „+I"„I "I,„—I "„I
(0) 1 1

Rpv=Rpv —
2 Dp~v+ 2 Dv~p 2 gpvD 6

1 2—
2 bPbV + 2 gPVb

R =R'"—3D.S+-,' b'.

(1.6)

where [&„I are the usual CS's of GR.
One can then define a conformally invariant curvature

tensor, the Ricci tensor and the curvature scalar by the
usual definitions and one gets

5R„„=Vp(51 P„„) V—„(5IP„p) . (2.3)

R= —KT. (2.4)

III. THE CONNECTIONS

Varying the action with respect to connections gives

Note that these equations differ from the ones derivmi
via second-order formalism. ' ' They are void of co-
variant derivatives of R and the trace of the field equa-
tions is identical with that of GR:

Here D„ is the covariant derivative associated with CS s,
and a superscript zero in parentheses denotes the metric-
cornpatible quantities:

V„[&—g g ~(1+2aR)]=0 .

After some manipulations, this equation yields

(3.1)

D~gp„=O .

The Bianchi identity

(1.9) —ZaR, a

1+2 R gP (3.2)

VpR pv~+V+ pp„+V+ p„p 0—
still holds; however, the identity

R (0)aP R (0)Pa
PV PV

does not hold in general. It is replaced by

R ~p +R~p„——Hp„g ~,

where H„„=B„b„d

+A„.

—
lsoo one finds that

R„—R = —2H„

(1.10)

(1.12)

(1.13}

2aR
V~ = g1+2aR

(3.3)

0'
I „„=' +'(5„R„+5Q„g„g R —).P~ 1+2~R

The trace equation (2.4} tells us

(3.4)

Comparing the above equations with Eq. (1.1) helps
identify this equality with that for conformal invariance.
That is, one identities —2aR /(1+2aR) with the Weyl
field and the connections are simply

II. DERIVATION OF THE FIELD EQUATIONS
—2o'R p 2a

b T,1+2cxR 1 —2aKT
(3.5)

A. The action

B. The field equations

Varying the action with respect to the metric g„gives

G„„+2aR (R& —
~ g&„R)=KT& (2.2)

where 6„„is the Einstein's tensor, k = —SING, and a a
parameter as yet unknown that has units of 1/(mass) .
[In the quantum era, one expects a to be of the order of
1/(m „„,„) .]

We choose the simplest action that satisfies Birkhoff's
theorem and has no torsion. [In general all combinations
of R (R,R&„R"",R ~rsR ~r ) can be included. Topo-
logical invariance eliminates one. The other two are
dependent for isotropic and homogeneous models. ] We
also limit our analysis to matter fields for which the La-
grangian density does not involve the space-time connec-
tion explicitly. The inclusion of a cosmological constant
at this time is avoided since addition of such a term in the
field equations is straightforward. The action is given by

A = Iv' —g (R +aR2+ W,«„)d x . (2.1)

So the Weyl field is nonzero wherever the trace of the
energy-mornenturn tensor varies with respect to the coor-
dinates.

IV. TRANSFORMATION PROPERTIES
OF THE CONNECTIONS

In the derivation of the field equations, we assumed the
existence of a geodesic frame, a frame where the connec-
tions vanish. Here we construct such a frame by noting
that the connections transform just like the CS's. This is
because the modifications to the CS's are tensors. Thus,
under a coordinate transformation,

ax& ax' ax' ax' a'x~r"„.=r
ax p ax - ax axP ax pax

(4.1)

A quadratic transformation given by

x"=x'" x'"
~ p+ —,

' 3"„i(x'"——x'"
~

p)(x'" —x'
~ p) (4.2)

causes the connections to vanish, provided that

(4.3)



35 FIRST-ORDER FORMALISM TREATMENT OF R +R GRAVITY 469

~oSjl v=bagPv (4.4)

The vanishing of the connections in a particular frame
however does not mean that the metric is Minkowskian
there, because the covariant derivative of the metric is not
in general zero, and, therefore, from Eqs. (3.2) and (3.3),

G"
P ] 2&~T

—:0.

VG„=—b G„
and, therefore,

(5.3)

(5.4)

Therefore the strong principle of equivalence is in gen-
eral disobeyed. The frame in which the connections van-
ish is not necessarily the frame in which the metric is flat.
If the parameter a is as small as one expects, non-
equivalence cannot be measured at the present time for
any known cosmological or astrophysical phenomenon. It
could only be observed at the Planck time.

With the identification of b„, one can easily show that
H„„vanishes, and one has

( 1 2aK—T)
(5.5)

Looking at Eqs. (1.8) and (2.4) we can form a differen-
tial equation,

We define a new energy-momentum tensor that is now
conserved:

Rp ——Rp. KT =R—' ' —3D b(T)+ —,b (T), (5.6)

where b is now a function of T and its derivatives as de-
fined by Eq. (3.5). Similarly Eqs. (1.7) and (5.1) give

This, however, may seem to trivialize the theory. H&
is gauge invariant and will always be zero. Furthermore,
one can always gauge the Weyl field away by a conformal
gauge transformation and the vanishing of both b„and
Hz would lead us back to GR. It is therefore necessary
to include matter which is not invariant under conformal
transformations, at least classically. Equation (3.5) would
then prevent the gauge field from vanishing by an arbi-
trary conformal gauge transformation.

In the quantum era, the problem becomes more in-
teresting. Even if the whole theory, including the matter,
is conformally invariant at the classical level, renormali-
zation effects bring about anomalies which breakdown the
existing conformal symmetry. This breakdown manifests
itself in the form of the well-known anomalous trace of
the energy-momentum tensor. After such a symmetry
breakdown, the Weyl field becomes nontrivial and cannot
be set to zero. Equation (4.4) would then imply that the
existence of a conformal anomaly results in a violation of
the strong equivalence principle. Since anomalies are
quantum-mechanical effects, violations would be of the
order of Planck's constant or smaller (there is a factor of
a in front of T„„).

(0) 1 1 2R pv Dpbv 2 gpvD 'b
2 b&b&+ 2 gp&b

(KT„,g„„KT—+ ,—ag„KT )—.
1 —2uKT

(5.7)

These differential equations must be satisfied at all times.
They will serve as evolution equations for T and T„.

One must worry about the consistency of these equa-
tions. It can be shown that Eqs. (1.7) and (1.8) are in fact
consistent with the Bianchi identity (5.3).

The above differential equations will tell how various
cosmological quantities such as energy density, pressure,
and temperature change as the Universe evolves from
Planck time to the inflationary era. The solutions to these
equations are presently under consideration. They will
constitute the subject of a future paper.

VI. RECIPE FOR CALCULATIONS

Physical calculations are a bit more subtle in this
theory. The metric itself does not supply all the tools one
needs to study different cosmological models. The con-
nections, the curvature tensor, Ricci tensor, and the cur-
vature scalar are all dependent not only on the metric but
on the form of the energy-momentum tensor and its coor-
dinate derivatives. The matter-energy distribution there-
fore plays a more fundamental role in this theory than in
standard GR.

Recently there have been some efforts to guess the form
of the energy-momentum tensor around the Planck time. '

It is believed that a straightforward generalization of our
theory to ten dimensions and the use of the results of such
works may help us find solutions of the evolution equa-
tions and lead us to interesting predictions about compac-
tification and early Universe evolution. This is currently
being pursued by the author.

It is also interesting to note that in the radiation-
dominated era, the trace of the energy-momentum tensor
vanishes if one takes the equation of state to be p = —,'p.
Standard GR cosmology will hold at this time.

V. DIFFERENTIAL EQUATIONS

From the field equations (2.2) and the trace equation
(2.4) one can express the Ricci tensor in terms of the
energy-momentum tensor:

(5.1)

and similarly the Einstein tensor,

K 2G„(T„„,ag„„KT ) . ——(5.2)

Just as in GR these quantities are defined once the dis-
tribution of matter-energy is given. The Bianchi identity,
(1.10), however, with the definition of the covariant
derivative of the metric, (1.1), can serve to identify the
conserved quantities. Starting with (1.10), one can show
that

R„„= (KT„,g„KT+ , ag„—K T )——
1 —2~SCT
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CONCLUSIONS

We have applied the Palatini formalism to an extended
Einstein-Hilbert action (2.1). We have found the follow-
ing.

(a) The field equations are different from those derived
by using a second-order technique.

(b) The new theory is a subclass of conformally metric
theories first introduced by Weyl.

(c) This theory has a unique geometry in which the
Weyl field is a function of the curvature scalar or the
trace of the energy-momentum tensor —and its deriva-
tives.

(d) Einstein's principle of strong equivalence is violated
to leading order of a if the derivative of the trace of the
energy-momentum tensor is nonzero. This is important
especially when conformal symmetry breaks down. The
existence of conformal anomaly results in the violation of
the equivalence principle.

(e) A set of differential equations are found that
describe the space-time evolution of the relevant cosmo-
logical quantities. These must be satisfied for the theory
to be self-consistent.

Full implications of this model are yet unknown.
Modifications to standard GR would manifest themselves
most, where/when thermodynamic configurations are
rapidly changing. Our only hopes to observe such effects
would be either in astrophysical phenomena or in the ear-
ly Universe.
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