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The Majumdar-Papapetrou solutions of the Einstein-Maxwell equations are generalized to asymp-

totically flat (N + 1)-dimensional space-times.

These new solutions are then used to construct

black-hole solutions in which the extra dimensions are compactified on a torus. Conjectures about
similar constructions for the vacuum Einstein equations are also discussed.

I. INTRODUCTION

Recently, a study of black-hole solutions to Einstein’s
equations in higher-dimensional space-time was made in
Ref. 1. All of the solutions discussed there are in asymp-
totically flat Minkowski space-times, that is, solutions in
which spatial infinity has the topology of S¥ ~!. A realis-
tic model based on a higher-dimensional theory must
compactify the extra dimensions beyond those of the
(3 + 1)-dimensional space-time observed at low energies.
Therefore the relevance of these solutions to the observed
world may seem somewhat remote. In Ref. 1 it was con-
jectured that these solutions may be useful in determining
the mechanism by which the extra dimensions are com-
pactified. It was also pointed out that the higher-
dimensional solutions would approximately describe the
short-range geometry of a black hole placed at a specific
point on the compact manifold. This paper provides ex-
amples of exact solutions describing such a black hole
with the extra dimensions compactified on a torus. These
examples are made using solutions of the Einstein-
Maxwell equations which generalize the Majumdar-
Papapetrou metrics to higher-dimensional space-times.

The paper is organized as follows. In Sec. II the
Majumdar-Papapetrou metrics in 3 4+ 1 dimensions are
considered. (These will be referred to as MP metrics
below.) Analogues of the MP metrics are found for
(N +1)-dimensional space-times, and the properties of
these new solutions are discussed. In Sec. III the above
solutions are used to produce an exact solution of the
Einstein-Maxwell solutions on a compactified space-time.
In Sec. IV the extension of the above construction to the
case of the vacuum Einstein equations is discussed. A toy
model is produced describing a black hole in a compacti-
fied four-dimensional space-time. Section V concludes
with a discussion of the possible physical implications of
these solutions.

The conventions of this paper are those established in
Ref. 1. In particular, the metric for (N + 1)-dimensional
flat space-time is 7,,=diag(—1,+1,+1,...). The
Riemann tensor is defined by (VﬂVB—VBV#)u”:RPmBu Y,
and the Ricci tensor and scalar are R,,=R?,, and
R =g""R,,. The speed of light is set c=1, but Newton’s
constant G is explicitly retained in formulas. The
Einstein-Maxwell action is
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For an isolated gravitating system, the mass may be deter-
mined by considering the leading perturbations of the
metric from flat space in the asymptotic region far from
the system, g,,=m,,+h,, (Refs. 1 and 2). If the metric
is chosen to satisfy the harmonic gauge condition
(h#—1m*"h®,),,=0, these leading perturbations take
the form
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Here Ay denotes the area of a unit N-sphere, and r is the

radial , coozrdinate defined as in flat space:
r=(x"4x%+ --- )2, The charge of an isolated system
is defined as

=+ [ F*as,, (1.3)

where the integral is over any (N — 1)-dimensional surface
enclosing the system. Thus asymptotically the electric
field around a point charge is
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One may note that the present definition (1.3) differs from
that given in Ref. 1 by a factor of Ay_;, which then
makes its appearance in (1.4). This particular definition is
chosen here on the rationale that while solutions must de-
pend on the dimension of space-time, definitions should
not. It is merely a matter of convenience, and one can
simply replace Q by Ay _,Q in all the formulas given here
in order that they agree with the previous definition.

II. GENERALIZED MP METRICS

In 3 + 1 dimensions it is well known that in the nonre-
lativistic limit a system of massive charged particles will
be in static equilibrium if the charge-to-mass ratio is
chosen to balance the gravitational attraction and the
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Coulombic repulsion. Majumdar and Papapetrou® in-
dependently found solutions of the source-free Einstein-
Maxwell equations corresponding to this balanced situa-
tion. Hartle and Hawking* considered the maximal ana-
lytic extension of these metrics. They found that the solu-
tion for a system of point charges may be interpreted as
the metric for a corresponding system of extreme charged
black holes, while solutions corresponding to extended
sources contained naked singularities. In this section their
discussion? is extended to space-times with N 41 dimen-
sions.

First, the balance condition in higher-dimensional
space-times will be derived for the conventions which
were introduced above. The Newtonian gravitational
force is found as usual by considering the geodesic equa-
tions in the nonrelativistic approximation. Using (1.2)
this procedure yields

87G N —2 MM,
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where the overall minus sign indicates that the force is at-
tractive. To determine the Coulomb force between a pair
of point charges, one may insert their electric fields as
given by (1.4) into the Maxwell energy density derived
from the action (1.1). Integrating this energy density over
all space yields two divergent self-energy terms, while the
cross term in the expression yields the Coulombic interac-
tion energy. Differentiating this term yields

1 010

FCoulomb:A N1 ’
N —1

(2.2)

where the overall sign here indicates a repulsive force be-
tween two charges of the same sign. Now these forces
will be balanced for any configuration of pointlike mas-
sive charges if all of the charges have the same sign, and
the charge-to-mass ratio is
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Just as in 3 + 1 dimensions, this balance condition is also
precisely the condition for a static charged black hole to
have a degenerate horizon.

Now solutions of the source-free Einstein-Maxwell
equations corresponding to the above case are desired.
Consider the following metric ansatz:

dst=—U"Ax))dt*+ UZ}‘(xj)S[jdx idxd | (2.4)

where A=(N —2)~!. The x/ are Cartesian coordinates on
a flat N-dimensional space, which will be called the back-
ground space as in Ref. 4. For the Maxwell form choose

A=+KU Yx¥)dt , (2.5)

where K =[(1/87G)(N —1)/(N —2)]'/%. Asymptotically
U will be normalized to 1 so that the line element reduces
to flat space there, but as a consequence the Maxwell po-
tential tends to a pure gauge +K dt instead of vanishing.
The remarkable feature of this ansatz is that solving the
source-free Einstein-Maxwell equations simply requires
that U(x/) satisfy Laplace’s equation for the flat back-
ground space:
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These solutions then generalize the MP metrics to
higher-dimensional space-times.

In three dimensions determining solutions of Laplace’s
equation is a well-studied problem,’ and the results are
trivially extended to N dimensions. Begin by considering
monopole sources, in which case U takes the form

ViU =
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Considering widely separated sources one may take a
sphere enclosing each source individually, and using (1.2)
and (1.3) the mass and charge corresponding to each
source is found to be
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Therefore the charge-to-mass ratio for these solutions is
indeed the desired equilibrium ratio given in (2.3).

As expected with only one source the metric reduces to
the analogue of an extreme Reissner-Nordstrém black
hole. This fact can be made more evident by first choos-
ing standard spherical coordinates on the background
space, and then transforming to a new radial coordinate
with F¥~2=p¥—24 . The resulting metric is just that
presented in Ref. 1:
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where dQV~! is the line element on a unit (N —1)-
sphere. The vector potential here is related to that given
in Ref. 1 by a simple gauge transformation, 4 — A +K dt.
If u (and hence the mass) is negative the metric singulari-
ty at 7¥~2=0 is in fact a naked curvature singularity.
Therefore in the following analysis only positive u will be
considered. As in 3 + 1 dimensions® one is easily able to
extend the coordinate patch covered by (¢,7). One con-
structs the null coordinates

—1

dr . (2.10)
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Radial lines of constant v (v_) are infalling (outgoing)
lightlike geodesics. Now given in terms of (v, ,7), the
metric is singularity-free on the future horizon, while the
(v_,7) coordinates provide a regular extension across the
past horizon. The interior regions contain timelike singu-
larities at 7=0, and each may be extended to two dif-
ferent exterior regions. The resulting global topology is
essentially the same as for the extreme Reissner-
Nordstrom black hole in 3 + 1 dimensions,® and is illus-
trated by the Penrose diagram in Fig. 1.
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FIG. 1. The Penrose diagram for the analogue of an extreme
Reissner-Nordstrom black hole. In N +1 dimensions each
point on the diagram represents an (N —1)-sphere. There is a
single degenerate horizon at F=ry =u'/ ¥ =2 and the singulari-
ty forms a timelike boundary of the interior regions labeled 2.
The point labeled B on the horizon is an infinite proper distance
from any point a finite coordinate distance away in the adjacent
exterior region.

Next consider the case of two monopole sources in
which U has the form

M M2

VTt N (2:11)
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r

Examining the components of the Maxwell field strength
and the Riemann tensor in an orthonormal basis, one
finds that they remain finite as 7, —0 and in fact they are
independent of u, there. This indicates the singularity at
r;=0 is only a coordinate singularity. To construct expli-
citly a coordinate system which is nonsingular there, be-
gin by transforming to polar coordinates about r, =0. If
1 and p, are separated by a in the background space and
0 is the angle measured from the u;—pu, axis (see Fig. 2),
then r, is given by
ry2=r24+a%—2ar,cosf . (2.12)

Introducing a new radial coordinate given by r,=R*, U
takes the form

M M2
U= H2
R TR0
. (2.13)
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FIG. 2. The exterior background space for the MP solution
with two black holes is shown in (a). The two monopole sources
1 and u, are at the points r; =0 and r, =0, respectively. In the
space-time these points are actually the horizons of the two
black holes. Passing through r; =0 one enters a region where
the background space is as shown in (b). The surface U =0 in
this space is actually a point in the space-time and the location
of the curvature singularity.

Now construct coordinates

dvy =dt+[V(R,0)dR + W(R,0)d0] , (2.14)
‘where
V(R,0)=ARM1yt+2
u u 14+A
—ARM ! [1421 4 2 . (2.15)
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For (2.14) to be a valid coordinate transformation, the
term added to dr must be an exact differential which re-
quires W /3R =0V /96. Hence W is defined as

v
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where the integration constant is chosen such that

W(R =0,0)=0. One finds that near R =0

_204A)N =2)
a1y

With these coordinates the metric becomes

W~ R*sin6+O(R?) . (2.17)
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which is nonsingular at R =0. Therefore we may extend
the manifold to negative values of R with

[ad! K2
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where
ri?=|R |*+a®*+2a |R |*cosh . (2.20)

This last step requires some extra comment. There is a
problem arising from the fractional exponent
A=(N —2)~"! occurring in various places. In fact no
problem occurs for odd values of N. If R is negative, one
has r{=R*=—|R |* and (2.20) follows immediately
from (2.11) by naively continuing r; to negative values.
The problem occurs with even N, in which case
ri¥ ~2=R is only valid for positive R. The same situa-
tion occurs for the single monopole solution discussed
above. For even N the transformation 7V —2=r¥ 24
is only valid outside of the horizon 7~ 2> . Construct-
ing a sensible isotropic radial coordinate 7 inside the hor-
izon requires 7V 2=up —#~ 2, For even N in the metric
(2.18) one encounters expressions with R™* with even M,
and for negative R one defines these expressions as
(RM)*. The exceptions to M being even are in r, and V,
and one may check that (2.19) and (2.20) provide the
correct interior metric for even, as well as odd N, by con-
sidering the continuity of the components of the electric
field across the horizon in an orthonormal frame.

To facilitate the discussion one may introduce a set of
background space coordinates in the interior region R <0
with

Fi=|R |*, Pl= P>+a*+2aF cosh . 2.21)
Now the metric and the vector potential have the form
given in (2.4) and (2.5) with
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Here U has the functional form of a potential for a source
—u, at 7, =0, and another monopole with u, at a dis-
tance a along the 6= axis (see Fig. 2). Near 7, =0, U
has large negative values, and near 7, =0 it has large posi-
tive values. Therefore there is an intermediate surface on
which U =0 and the metric becomes singular. One sees
that this metric singularity is actually a true singularity
from the Maxwell field invariant

dR d6—

~ £2Au,* " 'dv L dR + M (d 6% + sin0d QN —2) 4 O(RY)
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which diverges as U-—0. In (2.22) U is normalized to 1
at asymptotic infinity. This value is then the dividing
point for equipotential surfaces which enclose the point
7,=0 and those which enclose 7,=0. Therefore the
singular surface U =0 encloses the point 7; =0. It should
be stressed that the background coordinates were intro-
duced to simplify the examination of the interior region.
The actual geometry of this region bears no resemblance
to that of the background space illustrated in Fig. 2(b).
For example, 7, =0 and t=const does not label a point
but a surface with a finite volume Ay _ ;'Y P, while
the surface with t=const and U =0 is actually a point
with zero volume.
The transformation between v and v _

vy=v_+2 [ V(R,0)dR (2.24)

is divergent at R =0. (Note that this divergence is in-
dependent of 6, and hence is not determined by f wde.)
Therefore the (v, ,R) and (v_,R) coordinate patches
only partially overlap, and the coordinate transformations
(2.14) give inequivalent extensions of the exterior region.
With v the metric is regular on the future horizon, while
it is singularity-free on the past horizon when expressed in
terms of the coordinate v_. Each interior region has a
timelike singularity at U =0 and (2.24) provides two ine-
quivalent extensions of these regions to different exterior
regions. Hence ignoring the presence of the second source
at r, =0, the topology of the black hole at r; =0 is analo-
gous to that of the single monopole solution illustrated in
Fig. 1. Examining r, =0 one also finds a second black
hole with a new set of extensions. In general one need not
identify any of the regions found in extending the original
coordinate patch, and one is lead to an infinite array of
coordinate patches illustrated in Fig. 3. Of course one
may choose to identify any equivalent regions to reduce
this infinite array (see Ref. 4 for an especially simplifying
choice).

For the general case of an arbitrary number of mono-
pole sources (2.7), the above results will also hold. The
metric (2.4) is singular at r, =0, but a suitable choice of
coordinates will reveal that the geometry is actually regu-
lar. Each source will correspond to a black hole, and as
the number of sources increases the global topology of the
maximally extended manifold will become more and more
complex.

There are many solutions to Laplace’s equation (2.6)
other than the simple monopole solutions discussed above.
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FIG. 3. The most general extension of the MP metric with
two monopole sources. There are three types of regions: E is
the exterior region, I, is the region inside the horizon at r; =0,
and I, is the interior region for the horizon at »,=0.

In 3 4+ 1 dimensions, Hartle and Hawking* proved that
for any of these alternative solutions the corresponding
MP spaces contain naked singularities. The trivial exten-
sion of their analysis to N 41 dimensions is given here,
and the same results are still found to hold.

Consider a solution U of (2.6) which approaches unity
in an asymptotic region of the background space. Hence
(2.4) provides an asymptotically flat MP metric which
may be extended inward until U either diverges or be-
comes zero. In the latter case along some curve approach-
ing U =0, the field invariant F?’=—2K¥V,U/U'**)?
diverges indicating the presence of a naked singularity. If
U diverges it may do so either at a point or along some
extended region in the N-dimensional background space.
If there exists an equipotential surface which contains the
point where U diverges (as would occur for a dipole
source, for instance), then a naked singularity occurs by
the following argument. Approaching the point along the
specified surface, U is constant but V; U must diverge, and
therefore F? diverges at this point. Therefore to avoid a
naked singularity, U must diverge when approached in
any direction from a region of finite U. This may be ex-
pressed by saying that | U | must be bounded below at
the singularity. In the case of a point divergence one may

extend a theorem from potential theory in three dimen-
sion® to show that U must then have the form

Ux)= 7;7_—1 +f(x9), (2.25)

where p is a constant, r is the background distance from
the singularity, and f(x/) is a regular function at r =0.
This is the case of monopole sources considered above.

The case of extended singularities is more interesting.
Close to the singularity one may assume that U ap-
proaches the form for a “flat” source. Then it is easy to
show for an M-dimensional source in an N-dimensional
space, U diverges no faster than

Nem=z, N-M>2, (2.26)

where %° are coordinates tangent to the singular surface
and 7 is the orthogonal distance away from the surface in
the background space. The behavior given in (2.26) leads
to a divergence in F2. In the special case of N —M =2,
U has a logarithmic divergence which again leads to an
infinity in F2. (Of course for N —M =1, no divergence
occurs.)

This result was somewhat unexpected. In 3 + 1 dimen-
sions the result that extended sources lead to singularities
is ensured by a theorem’ requiring any spacelike cross sec-
tion of a stationary horizon to have spherical topology.
This property seems to continue in higher dimensions
here, since the only nonsingular solutions have horizons
whose topology is that of an (N —1)-sphere. It was noted
in Ref. 1 that the proof of the theorem mentioned above
cannot be applied in more than 3 + 1 dimensions. In fact
simple examples can be constructed of objects with ex-
tended horizons by adding extra flat dimensions to a vac-
uum black-hole metric. Examining those solutions in the
asymptotic regions, one finds that h,, =0 for a or b being
among the extra dimensions. A nonrelativistic source is
inappropriate for such gravitational fields. One requires
extra stress components T = —08,,T /(N —M —1)
parallel to the surface (a,b >N —M) for an M-
dimensional source in N + 1 dimensions. This situation is
similar to a cosmic-string solution® which is equivalent to
an extra flat dimension added to a (24 1)-dimensional
metric. Considering the case of a nonrelativistic source,
the exact solution for the exterior of a static homogeneous
dustlike M-dimensional source in an (N + 1)-dimensional
space-time (with N >3 and N —M > 2) is

2F —2F/(N =2)
1——% 26 2H l—ﬁK—
dsi=— r ar?+ |[1— & 1+ | (@r2gridoV-M-1)4 4 Sapdy®dy®, (227
K K
1+ r ! 1+
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where y? are the M tangential coordinates and
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These solutions for M > 0 are all singular if continued to
rX¥=p. The MP metrics for extended sources are similar-
ly singular since they are exterior solutions for charged
dustlike sources with no extra stresses.” It is possible to
form nontrivial extended solutions with matter fields by
considering the Riessner-Nordstrom solution with equal
electric and magnetic charges. This solution has
F,,F*¥¥=0 and therefore simply adding extra flat direc-
tions produces a valid solution for the higher-dimensional
Einstein-Maxwell equations containing an extended hor-
izon with nontrivial “hair.”

As a final comment on these solutions, recall that in
3 + 1 dimensions, the Maxwell field strength and its dual
are both two-forms. Therefore a duality rotation may be
applied to the MP solutions leading to a static solution
with massive sources carrying both electric and magnetic
charges. As discussed in Ref. 1 in higher (N +1)-
dimensional spaces the dual to the Maxwell field is an
(N —1)-form field. If one is willing to consider such a
field, duality rotations may be performed to the general-
ized MP solutions to yield static solutions with massive
sources with both Maxwell electric charges, and general-
ized (N +1)-dimensional magnetic charges. Such
(N —1)-form fields could also be used to extend the above
construction for solutions containing extended horizons
with a nontrivial flux of matter fields.

COMPACTIFIED SOLUTIONS

Now the construction of compactified solutions from
the higher-dimensional MP metrics is discussed. First the
simplest example with a black hole in five dimensions will
be considered. The construction is relatively simple.
Consider an open five-dimensional MP metric with an in-
finite line of identical monopole sources u equally spaced
with separation a. Then U becomes

+ oo
v=1+ 3 £,

n=-—oo rn

3.1

Pal=x24y?+z%+(w +na)? . G.D
The resulting metric (2.4) and Maxwell vector potential
(2.5) are periodic in the coordinate w with a period a.
Therefore one may simply choose to identify the points
with w and w +a. Spatial infinity for the new space-time
then has the compactified topology S2xS!. Therefore
the new solution may be described as a charged five-
dimensional black hole in a Kaluza-Klein background
M*xS'. One may regard this construction as finding the
MP solution for a background space R3X[—a/2,+a /2]
with periodic boundary conditions by placing image

sources in the intervals [na —a/2,na +a/2]. The ex-
pression (3.1) for U may be summed to the closed form

sinh27 2
a

U=1+ e
ap cosh2mr — cos2r
a a

sinhm 2 coshm
=14+ a a_ (3.2)
ap sinzﬂ% + sinhzvg

where p?=x2+y?+z2. These expressions are still rather
unwieldy, but explicitly display the periodic dependence
on w. For p,w <<a, the latter expression in (3.2) is easily
seen to simplify to

(3.3)

This expression is the single monopole solution for five-
dimensional asymptotically flat Minkowski space plus a
constant which is essentially the potential at r,=0 due to
all of the image sources, and terms which vanish as
ro—0. This reduction explicitly demonstrates that the
short-range geometry is described by the solutions con-
structed in noncompactified space-times. One can check
that the surface gravity, the area of the horizon, and the
topology are not affected by the external potential. The
topology of the region ry <a is similar to that of an ex-
treme Reissner-Nordstrom black hole as illustrated in Fig.
1. The topology of the asymptotic exterior region differs
though since w is periodic. Define two quantities

172

3m m, (3.4)

T 4G
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which are the mass and the magnitude of the charge for
the single source in (3.3) if it occurred in an open five-
dimensional space.

Standard Kaluza-Klein theory!® begins with the Ein-
stein action in five dimensions and expands about a back-
ground space-time of M*xS!. The massless modes ob-
served in four dimensions are those which are independent
of w and include the graviton arising from the four-
dimensional metric, a U(1) gauge field from extra off-
diagonal components of the metric, and a scalar from the
last diagonal component of the metric. It should be
stressed that the action (1.1) considered here contains an
elementary Maxwell field. Therefore the gauge field in
the present solution is totally unrelated to the Kaluza-
Klein gauge field. The higher-dimensional Einstein-
Maxwell action may seem less aesthetic than the pure Ein-
stein action usually considered in Kaluza-Klein theories,
but it appears that elementary gauge fields will be neces-
sary to produce a realistic grand unified theory.!! In the
solutions considered here the Kaluza-Klein scalar or the
dilaton does play a nontrivial role since exp(2¢)=g,.,
=U?*. The action (1.1), when compactified on M*x S
and restricted to massless fields as is appropriate for the
asymptotic region of the black-hole solution, becomes
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[e 167rG4R L FOED g d*x , (3.5)
where G4=G/a is the effective four-dimensional
Newton’s constant and the gauge field has also been res-
caled 4Y=v4a 4. R"™ is the Ricci scalar calculated
with the four-dimensional metric taken as the components
of g with u,v=0,1,2,3. In (3.5), terms involving both
the Kaluza-Klein gauge field and the fifth component of
the Maxwell potential have been neglected. The unusual
couplings of the dilaton in the reduced action lead to some
strange properties of Kaluza-Klein solutions.!? It is often
convenient to redefine the four-dimensional metric by a
conformal transformation involving the dilaton which re-
moves the dilaton coupling to the Ricci scalar and diago-
nalizes the kinetic terms of the graviton and the dilaton.
This transformation is not performed here.

The first expression in (3.2) is useful to examine the
asymptotic limit p— o0

—217'3

U_,l_*_ﬂ&_’_ﬂe)q)
ap ap a

cos2‘n'—z—)+ 0. (3.6)

Examining the asymptotic properties of the metric and
Maxwell field one finds that
172
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M., is the mass determined by comparing g with (1.2),
and may be called the gravitational mass because it ap-
pears in the Newtonian force law derived by examining
nonrelativistic geodesics. One may also consider comput-
ing the inertial mass of the solution using a gravitational
stress-energy pseudotensor? of the five-dimensional metric
to find M, =3mu/4aG,. That these two masses do not
coincide is not a violation of the equivalence principle, but
rather a result of the long-range dilaton field and its
unusual coupling in (3.5) (Ref. 12). Note though that the
inertial mass coincides with M5 given in (3.4) and that
Q| =1Qs5|/Va.

Considering | Q | /M,,,, for (3.7) one finds that it
differs from the balance ratio (2.3) appropriate for N =3
by a factor of V'3/2. This may seem curious since it is
expected that any number of such objects will remain in
static equilibrium. A solution appropriate to describe
such a situation could be found by simply extending the
above construction to include several parallel lines of
sources with equal spacings in the five-dimensional back-
ground space-time. The disagreement with (2.3) is simply
a result of the force laws (2.1) and (2.2) for point sources
in 3 + 1 dimensions being inappropriate. One should in-
stead calculate the force per unit length for parallel line
sources in 4 + 1 dimensions. In that case one finds that
Coulomb’s law is actually unmodified in this particular
case but the effective Newton’s law is replaced by

i GM M,

FNewton: - 3 (3.8)

r

This describes the effective long-range interaction between
two point masses in M*Xx S, but breaks down when r ~a.

The factor 4/3 in (3.8) leads to the discrepancy between
(3.7) and (2.3). This factor also gives an explanation of
why M,,,, is larger than M, by exactly the same fac-
tor. Of course such factors would simply be absorbed into
the definitions of mass and charge of an observer in the
low-energy Kaluza-Klein world, and no discrepancies
would be apparent to him. One may also note at this
point that an uncharged body such as a four-dimensional
Schwarzschild black hole is expected to attract the objects
described by the new solutions above. This expectation
arises from considering the behavior of the corresponding
objects in an uncompactified five-dimensional space.

In (3.6) the next-to-leading contribution is explicitly
shown. From this term one can see that the higher modes
of the metric, dilaton, and gauge fields are exponentially
suppressed as expected for the interpretation of these
modes as particles with mass 27#/a in the usual low-
energy expansion. Typically in examining Kaluza-Klein
theory such modes are ignored since the masses are typi-
cally of the order of the Planck mass and are hence
deemed irrelevant for a discussion of low-energy field
theory. Despite the potential involving such massive
modes, the mass of the black-hole solution is neither
quantized nor necessarily large. The mass (3.7) is deter-
mined by the free parameter u which may be made arbi-
trarily small. This freedom reflects the fact that one is in-
vestigating a classical solution. For a realistic theory, the
charges of the matter fields will be quantized and hence
the charge of a black hole resulting from the gravitational
collapse of such matter will also be quantized. Therefore
a “physical” black hole may be expected to have a charge
and mass on the order of the Planck scale. Perhaps equal-
ly interesting is that the parameter u can be made arbi-
trarily large without producing singularities or affecting
the asymptotic scale of the compactified dimension.

One may also note that the interpretation of the higher
modes as massive particles is only applicable in an
M*xS' background or asymptotically in the black-hole
space-times. In the solutions given here the size of the
compact dimension grows as one approaches the black
hole. In fact for ¢t =const and p=0, the proper distance
from w =0 to w =a is infinite. This divergence is related
to the well-known fact that for the extreme Reissner-
Nordstrom solution, the point labeled B in Fig. 1 is an in-
finite proper distance from points in the exterior adjacent
region (which holds for arbitrary space-time dimensions).

An essential difference between the solution considered
here and previous nontrivial Kaluza-Klein metrics'2~'* is
that it is only independent of w asyptotically. Alterna-
tively one may say the 9/0w is only an asymptotic Killing
vector. Presumably this lack of symmetry could be
detected in scattering particles off of such an object. The
lack of w symmetry would result in the excitation of non-
trivial modes about the compact direction in the scatter-
ing process which would be observed as the production of
particles with Kaluza-Klein charge. This is not a very
practical experiment though because energy conservation
would require that for low-energy scattering these excited
modes be bound states, and so these particles would sim-
ply appear to be absorbed by the black hole.

Since asymptotically the higher modes are exponential-
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ly suppressed, one is left with a certain amount of
nonuniqueness. In 3 4+ 1 dimensions asymptotically flat
source-free static solutions are characterized by the
asymptotic invariants such as mass and charge. In an
asymptotically M*X S! spaces, solutions are characterized
by the mass, and the vector, and scalar chargesl4 (of both
the Kaluza-Klein and Maxwell fields in this case). If one
now also allows the w invariance to be broken new solu-
tions must be considered which only differ from those
above by exponentially suppressed factors. Therefore the
surface integrals are insufficient to characterize solutions
in asymptotically M*xS! spaces. For example, the solu-
tions considered here would be indistinguishable at large
radii from a solution with exact w symmetry produced by
compactifying the five-dimensional MP solution for an
appropriate line source. In this example though, the latter
metric will be singular at p=0.

The construction described at the beginning of the sec-
tion may be extended to higher dimensional spaces. Begin
with a background space R™ and place identical mono-
poles on an (N — 3)-dimensional lattice to produce the po-
tential

+ 0
U=1+ 3 V7
n;=-—oc

r(ni)

rn)=x>+y*+z%+ | w+n;e; [2 ,

where w is the position vector in the (N —3)-dimensional
background subspace and e; are N —3 basis vectors for
the lattice. Identifying points up to lattice vectors n;e;
then yields a solution in a compactified background
M*x TV =3 This procedure may be generalized in the
obvious manner if one wishes to place more than one
source in the basic unit cell of the lattice. The effective
four-dimensional Newton’s constant is G4, =G /V and the
Maxwell potential is rescaled as 4'¥'=v'V A4 where in
these expressions V is the asymptotic volume of the com-
pactified torus.

One can determine the leading long-range behavior of
the potential (3.9) by replacing the discrete sum by an in-
tegral:

dw
Vv (p2_+_ ’WIZ)(N—Z)/2
7.7.(N72)/2 1

VTUN—-2)/2) p

(3.10)

where p?=x2+y2?422. Deriving the mass and charge of
the compactified black hole from this asymptotic formula
one finds

172
N-—-1

1
2 N-2

J__L]% =(47G4)'"?

172 2N 1 172
M—2N— . B.1D)
M—1N—2

M—2
87G
TOM M

The latter expression above is for the case where an
(N +1)-dimensional theory is reduced to background
with M +1 noncompact dimensions. Hence in all of the
compactified cases | Q | /M is less than the balance ratio
given in (2.3) and yet these object will remain in static
equilibrium. This problem is again resolved by the fact
that for the units adopted here the effective Newton’s law
(2.1) and Coulomb’s law (2.2) are modified by overall nu-
merical factors in the compactified spaces.

At short range |w| << |e;| these black-hole solutions
will appear very similar to the solution for a single source
in N dimensions. Quantities such as the surface gravity
and the area of the horizon are unchanged in the compac-
tified space. Near the horizon the topology is also similar
to that of the analogue of the extreme Reissner-
Nordstrom black hole as illustrated in Fig. 1, but of
course the asymptotic region is more complicated because
some of the directions are compact.

IV. VACUUM SOLUTIONS

If one wishes to consider the effects of black holes in
quantum gravity, it may be more appropriate to consider
vacuum solutions for Einstein’s equations. Extending the
construction of the previous section would call for solving
for an infinite set of black holes on a regular lattice in
N +1 dimensions. Such a proposition at first sight may
seem unreasonable since without the Maxwell field there
is nothing to balance the gravitational attraction of the
black holes, and so it seem unlikely that nonsingular vacu-
um solutions would exist. Therefore first a toy model will
be considered in which a four-dimensional space is com-
pactified down to three dimensions. Then it will be ar-
gued that the existence of this solution suggests that there
should also be nonsingular solutions in higher dimensions.

Begin by considering static axisymmetric solutions of
Einstein’s equations in 3 + 1 dimensions. In this case the
metric may be reduced to the form!’

ds?=—e?Udt? + ek~ U(dr2 +dz2)+e ~2Ur%d¢? . (4.1)

For this form of the metric, solving Einstein’s equations
requires that U be an axisymmetric solution of Laplace’s
equation:!®

19 3
+r ar+az2 U=0. (4.2)

82

V2U(r,z)= 5
ar

Given a solution for U, k may be solved by quadratures.
The Schwarzschild solution results in choosing the
Newtonian potential for a rod of length 2GM and mass M
(Ref. 16). By considering the sum of potentials for a
number of nonoverlapping rods, one finds solutions
describing several of black holes on a common axis.
These solutions are given by'®

!
U=2Ui, k:Z zkij: (4.3)
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U‘_=%lnp;+[5,-—ZGM,~ ’ kij=kﬁ=llnPi@'+(Z—Z,~—GM,-)(z—zj+GMj)+rj
pi+pi +2GM; 4 " pipj+(z—2,—GM;)(z —z;— GM;)+r
ilnﬁ;pj+(2—zi+GM.~)(z —2z;—GM;)+r? , )
4 pipj+(z—2z+GM;)(z —z;+GM;)+r?
with
pi=[r*+(z —z;—GM;*1'?, p;=[r’+(z —z;+GM;)*]'/*. 4.5)

In these solutions the constants of integration have been chosen to give an asymptotically flat space and regular horizons.
The metric is singular on the axis at the rods but if the mass of the rod is positive this is actually only a coordinate singu-
larity indicating the presence of a horizon. This singularity can then be removed by an appropriate coordinate transfor-

mation.!°

The solution though does have coordinate singularities on axis in between the rods.!” On the axis one has

0 ifzigzj and z <z;+GM; or z>z; +GM; ,
(Z,—-ZJ—GM,—GMJ)(Z,—ZJ+GM,+GMJ)

kij|r—0=

1
kg =7 In

The kg- are directly proportional to the Newtonian force
between the ith and jth rods. Therefore on the axis be-
tween two rods, k is proportional to the total Newtonian
force between all of the rods below the given point and
those above that point. Moving along the axis as a rod is
crossed, k changes by the total force on that rod. To
avoid a conical singularity on the axis one must identify
the angular coordinate ¢ modulo 2wexp(k)|,—_o. There-
fore if ¢ is to have period 27 so that the asymptotic re-
gions are nonsingular, then the regions between the rods
will all have conical singularities.!” These conical singu-
larities can in some sense be interpreted as struts needed
to balance the gravitational attraction between the black
holes.!’

Now consider the above solution but instead of a finite
number of black holes consider the potential for an infin-
ite set of rods with identical masses M, =M centered at
z,=na. This solution suffers from a number of defects
but these problems arise only because of the low dimen-
sion of the space being considered. Begin by considering
the asymptotic behavior of the potential U. For large r,
one sees that the sum in (4.3) diverges, but in replacing the
sum by an integral, one is able to extract the asymptotic
potential of an infinite line source with linear density
M/a:

+ o0 GM
Ulrww=— E (r24na?)\”?

__2GM dl

+ oo
-~ a fo (r2+12)1/2

~Zin|r|-D, 4.7)

where D is a divergent constant. Even ignoring D, the
space-time will not be asymptotically flat. This fact is
well known for the exterior solutions of an infinite dust
cylinder in 3 + 1 dimensions.!® As mentioned above, the
constants of integration in (4.3) were chosen to produce an

(Z,- —Zj +GM,—GMJ)(Z, —ZJ—GM,+GMJ)

if z; <z; and z; + GM; <z <z; —GM; .

asymptotically flat space but since the space in question is
not asymptotically flat in any event there is no reason not
to make a new choice. Redefine

GM
+ o + o 1—
na
U= 3 U,— 3 h———, 4.8)
n=-—o n=1 1+—GM
na

where U, is defined as in (4.4). The new potential is (4.8)
is finite asymptotically and allows the space-time to be
continued through the horizon. Note that in higher di-
mensions similar problems would not occur. The poten-
tial for an extended source in higher dimensions vanishes
asymptotically, and so the metric is asymptotically flat as
is demonstrated explicitly by (2.27).

In the present solution there is no problem of k on the
axis changing as a rod is crossed. This is because the total
Newtonian force on each rod is exactly zero since with an
infinite number of rods there is reflection symmetry about
the center of each of the rods. In evaluating k |,_, as
given by (4.3) and (4.4), one determines the total force of
half the rods on the other half of the rods, and this quan-
tity diverges. This problem is not fatal though since the
divergent quantity is only a constant and may be eliminat-
ed again by a new choice of the constant of integration.
Redefine

+ +
k= 2 2 Knm
n=-—o Mm=—o
+o +o 2a02
——E > In 1——4ij—22 , (4.9)
n=0 m=0 (n+m+1)a

where (4.4) still defines k,,,. With this definition k van-
ishes on the axis between rods and so ¢ may simply be
identified with period 27. Therefore the problem of coni-
cal singularities has been solved. With (4.9), k is also non-
singular asymptotically and on the horizons. Note that
the sum of forces considered above would not diverge in a
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higher number of dimensions.

Now identifying points with z and z +a, the solution
becomes the metric for a four-dimensional black hole in a
compactified space-time. The exterior manifold may be
extended across past and future horizons, and the interior
regions each have a spacelike singularity. Hence in the vi-
cinity of the horizon the geometry is similar to that of a
Schwarzschild black hole. Asymptotically the geometry
is more complicated because z is periodic and the metric
does not approach flat space. This latter property is sim-
ply due to the low dimension of the space-time. The ex-
istence of this solution in 3 + 1 dimensions which is free
of naked singularities suggests that similar compactified
vacuum solutions in higher dimensions should exist. The
key point is essentially that in an infinite array of masses
the gravitational forces will balance. Of course in the
Newtonian problem this is not a stable equilibrium and a
slight perturbation upsetting the symmetry of the array
would result in the collapse of the system. In the compac-
tified case the symmetry of the image sources is imposed
by the periodic boundary conditions. Unfortunately the
four-dimensional solution has no obvious extension to
higher dimensions. The essential problem is that in the
above case surfaces of constant r are cylindrical with no
intrinsic curvature, but in higher dimensions the corre-
sponding Einstein equations are complicated by intrinsic
curvature of such surfaces.

This section will be concluded with some conjectures
about the properties of higher-dimensional vacuum
black-hole solutions in compactified space-times. The
basic conjecture is that asymptotically the metric for a
black hole compactified in a torus will appear like the
dustlike M-dimensional source in N +1=M +4 dimen-
sions given in (2.27) with y? now being periodic coordi-
nates on an M-dimensional torus. (In such a solution 8,
may be replaced by some other constant g,, to describe a
more general torus.) This form occurs because asymptoti-
cally the higher modes about the compact dimensions will
be exponentially suppressed as seen in (3.6). Note the
four-dimensional solution discussed above is singular if
GM > a /2 so that the rods touch and one has an infinite
line source. Therefore it is likely that in the nonsingular
solutions of interest G4M will be smaller than the dimen-
sions of the compact manifold. (This situation differs
from the compact MP solutions where the mass parame-
ter was totally arbitrary.) The leading asymptotic pertur-
bations of the compactified black-hole metric will be in
the diagonal components

N-2M
ho=4Gsy 17
4Gy M
hy=———25,; )
P= N1 , O (4.10)
4G, M
hab:N_lTaabi

where G4=G/V and V is the asymptotic volume of the
compact manifold. The properties of such a solution can
be compared with the exact black-hole solution construct-
ed as the direct product of a four-dimensional
Schwarzschild black hole with a constant torus (or any

Ricci-flat manifold for that matter).

The effective gravitational mass from Ay in (4.10) is
Mgy, =2M(N —2)/(N —1). As discussed in Sec. III this
result is greater than M as a result of the modification to
the effective Newtonian force law due the image sources.
The asymptotic metric is also sufficient to calculate the
inertial mass with an stress-energy pseudotensor,? and the
result is M., =M. For the Schwarzschild solution, one
has simply M,,,=Mj,..=M. As discussed in Sec. II
though, the effective source for the asymptotic fields in
this solution would be nonrelativistic with stresses along
the compact dimensions of the order of the mass density.
Therefore the effective Newtonian force law calculated
for the first case would be inapplicable here.

Assuming that the properties of the horizon are not af-
fected in the compactified solution, one may use the sur-
face gravity and ‘“‘area” determined for an (N +41)-
dirrlxensional Schwarzschild-type black hole with mass
M

N_2 167TG4 s —1/(N =2)
= Ny, ’
_ _ (4.11)
d A 167TG4 (N—1)/(N=2)
c—4N-—-1 (N—l)AN_l J

(Note that the “area” of the horizon actually has the di-
mensions of length™ ~!.) These quantities may be com-
pared to the Schwarzschild case where the usual four-
dimensional results apply:

Ky = 1 N
4G,M

o  =167G,2VM? . (4.12)
One may note the fractional power of M appearing in
(4.11) as well as the dependence on V. A black hole ap-
pears as a heat bath with a temperature proportional to
the surface gravity T =#ik/(2mk) (Ref. 19) (where # is
Planck’s constant and k is Boltzmann’s constant). The
luminosity for a radiating body with temperature T in
N +1 dimensions is

L=coyod TN+, (4.13)
where &7 is the body’s surface ‘““area,” oy is the Stefan-
Boltzmann constant appropriate for N 41 dimensions,
and c¢ is a constant to take account of the number of
species of particles that are being radiated. The luminosi-
ty gives the rate at which the mass of the black hole de-
creases. For a compactified black hole with an initial
mass M, one finds that the lifetime of the black hole is
proportional to (G M )N/ ¥ =2 In the Schwarzschild case
if G4M is initially much greater than the typical dimen-
sion of the compact space, modes with nontrivial momen-
ta about the compact dimensions will not be excited for
most of the black hole’s lifetime. In this case the standard
four-dimensional result applies and one finds that the life-
time is proportional to (G,M)>. If G4M is less than the
compact dimensions, the temperature is high enough to
excite modes about these directions and the black hole
evaporates much faster with a lifetime proportional to
(G4M)N. However if the compactification scale is of the
order of the Planck mass, the black hole will not contain
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enough energy to excite these modes and the evaporation
will continue as in four dimensions. The compactified
black hole is able to excite such modes because the proper
volume of the compact space increases in the vicinity of
the black hole. Energy conservation though will dictate
that the excited modes must be bound states. For a mass-
less field such modes have stress components along the
spatial momentum vector, and hence along the compact
dimensions, comparable to the energy density. Perhaps
then the fate of this black hole is that it transforms to the
Schwarzschild case after all.

Following the prescription for Euclidean quantum grav-
ity,?% one may Euclideanize these spaces and identify the
Euclidean time coordinate with a period B=2#/k in order
that the resulting spaces be nonsingular. One may then
compare the Euclidean action of the two cases above®®

Iz_Lf(K_KO)x/ngx ,

837G (4.14)

where the integral is made over a surface of constant 7 in
the limit r— «. K is the trace of second fundamental
form on this boundary and K° is that of the same metric
embedded in flat space. The usual Einstein volume term
has been dropped from (4.14) since vacuum solutions are
being considered and hence the Ricci scalar vanishes
everywhere. The result for the compactified black hole is
I.=B.M /(N —1), while for the Schwarzschild case the
standard result holds: I;=pg; M/2. If one compares both
cases with a fixed period or temperature, then B, =p, re-
quires (G4M,)¥ ~2<~G,M_V. For a nonsingular solution
one requires G4M, < V"N =3 and therefore it follows
that M, <M in the cases of interest. This fact and the
factor of 1/(N —1) in I, reduces the action of these com-
pactified black holes over the Schwarzschild case. This
result may lead one to conclude that these “modes” are
much more easily excited in a thermal bath of gravitons at
high temperatures than the Schwarzschild black holes.
This conclusion overlooks the nonzero dilaton charge of
the compactified black holes. They could only be created
if there are other species of particles which can cancel this
scalar charge, so that the thermal bath remains neutral.
Of course in these estimates the contributions of quantum
loop effects have been ignored. Another black-hole solu-
tion which might consider in the above comparisons
would be the direct product of a compactified black hole
with another constant torus, which would have stresses
around the constant torus. Its properties are essentially
those of the compactified black-hole solution in the direct
product.

A weakness with the conjectured form of the compacti-
fied vacuum solution is relating the asymptotic and
short-range forms of the metric. Implicit in the above
discussion is that if the mass parameter of the short-range
form is M then the mass density in the long-range poten-
tial is M /V where V is the asymptotic volume of the
compact space. This relation was true in the four-
dimensional solution above and for the MP solutions of
Sec. III. The proper volume of the compact manifold is
by no means constant in the vicinity of the black hole and
so it is not clear that this is the correct choice. Another
problem may occur with the global topology. In the

four-dimensional case, there was a potential conical singu-
larity between the black holes. This would have results in
redefining the period of the angle about the axis, but the
defect angle was infinite and it was argued that this prob-
lem should be removed by redefining a constant of in-
tegration. In higher dimensions it was argued that the
corresponding quantities would be finite but no attempt
has been made to consider such problems with the conjec-
tured metric above. Indeed it is not clear what the corre-
sponding effect in a higher-dimensional space-time would
be.

V. DISCUSSION

In this paper some exact solutions of the Einstein-
Mazxwell equations in compactified space-times have been
constructed. The solutions given here display explicitly
the property that the geometry in the vicinity of the hor-
izon is like that of the corresponding solution in an
asymptotically flat Minkowski space-time. It is therefore
likely that similar results hold for vacuum solutions of
Einstein’s equations in compactified space-times. This is
especially of interest for the case of spinning black holes
in higher-dimensional spaces which can evade the usual
restriction J < G,M? obeyed by spinning black holes in
3 + 1 dimensions.

The examination of a four-dimensional vacuum solu-
tion for black holes on a common axis suggested that
similar nonsingular vacuum solutions of black holes in
compactified spaces exist in higher dimensions. The
essential point is that the gravitational forces in an infin-
ite array of image masses will cancel. However it appears
that in the vacuum case the mass must be less than the
size of compact dimensions for the solutions to be free of
naked singularities.

Compact spaces other than a torus are of interest. In
the conjectured vacuum solution one may simply replace
8,dy°dy® by the line element on any compact Ricci-flat
space, since the compact metric would only enter
Einstein’s equations only through its Ricci tensor or sca-
lar. The conjectured properties of such a compactified
black hole would then follow through unchanged. For the
MP solutions choosing a similar compact manifold may
be possible by choosing a more complicated system of im-
age charges. Compact Ricci-flat manifolds are of interest
in higher-dimensional supergravity?! but recently they
have been the focus of models compactifying superstring
theories.?? Vacuum compactified black-hole solutions
would provide suitable solutions of the first-order string
equations of motion?? with which one may investigate ef-
fects of higher-order string effects.’* The compactified
MP solutions are not suitable string backgrounds because
the dilaton field equation would not be satisfied by a con-
stant dilaton field.

Ultimately one must recognize the restrictions of this
work. The structure of solutions to Einstein’s equations is
being investigated on the compactification scale. In
phenomenological models the compactification scale is
usually taken to be on the order of the Planck scale al-
though some estimates may make it a few orders of mag-
nitude larger. This choice is made to relate Newton’s con-
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stant to coupling constants for the Kaluza-Klein gauge
fields.”>?® At this length scale one should expect that
corrections to low-energy Einstein or Einstein-Maxwell
actions due to quantum loop?’ or perhaps stringy?® effects
will begin to play an important role. If one is considering
higher-dimensional theories with elementary gauge fields,
one need not push the compactification scale all the way
down to the Planck scale. Fairly successful compactifica-
tion scenarios have been devised for string theories in
which the compactification scale is larger than the Planck
scale.?? In any event the solutions and results presented

here may be useful in investigating the general properties
of quantum gravity in higher-dimensional space-times.
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