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Inflation from inhomogeneous initial data in a one-dimensional back-reacting cosmology
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We have simulated the onset of the inflationary era of the early Universe numerically, starting
with inhomogeneous initial data for the Higgs field. Our computer code is fully general relativistic,
including the gravitational effect of the Higgs field, and simulates a spacetime inhomogeneous in
one space direction. According to our results, large initial fluctuations of the Higgs field do not
prevent inflation, if the potential has the right shape. In a Coleman-Weinberg-type model with
o.=0. 1mp] inflation is realized for A, ( 10 and with cr =0.01mp] for A, (10

I. INTRODUCTION

Advances in particle physics during the last decade
have made it possible to study physical processes in the
very early Universe; particle physics and cosmology have
become important for each other. In this new cosmology
one has to study the interplay between the new field
theories and gravitation. The best examples of this are the
old and new inflationary scenarios. ' Because the main ef-
fect, exponential expansion of the Universe driven by the
energy of the false vacuum, is gravitational, a proper
treatment must be general relativistic.

In its original form the new inflationary scenario dealt
with a spatially homogeneous situation. Recent criticism
has pointed out the importance of studying inhomogene-
ous situations. While homogeneous spacetimes can be
treated by mainly analytical methods, numerical simula-
tion is indispensable in studying inhomogeneous space-
times with arbitrary initial conditions.

Numerical general relativity is one of the more difficult
fields of computational physics. When the spacetime is
filled with matter we have to do fluid dynamics simul-
taneously with the dynamics of the spacetime. Thus we
have two interacting nonlinear theories. To this we now
add a scalar field with its field equation, made nonlinear
by a potential term.

We present fully general-relativistic numerical simula-
tions of plane-symmetric cosmology. Our model space-
time is homogeneous in the x and y directions and inho-
mogeneous and periodic in the z direction. It is filled
with a perfect fluid and a scalar field P. This model is
suitable for studying phase transitions of the early
Universe. In a phase transition the scalar (Higgs) field
makes a transition from a false vacuum to the true vac-
uum [global minimum of the potential V(P)]. We

represent all matter other than the Higgs field as a perfect
fluid with a radiation equation of state p = Tp.

The physical situation addressed in this paper is the en-
trance to the inflationary era. We look for an unambigu-
ous answer —for a range of parameters of the models —to
the question: do initial inhomogeneities of the scalar field
prevent inflation? As we shall see, for a range of parame-
ters, these inhomogeneities do not prevent inflation.

The set of differential equations numerically integrated
by our computer code is

tb'".„=dV(P)/dP,

T(fluid); v
pv

G = T{fluid) + T(y) (1.3)

The scalar field equation (1.1) implies T~~~~ ——O. Thus we.
have separate conservation laws for the stress energy of
the Higgs field and the fluid [Eq. (1.2)]. This means we
are ignoring any coupling of the Higgs field to other
fields. Such coupling would eventually be responsible for
the reheating of the Universe at the end of the inflation-
ary era. In such reheating the vacuum energy, which is
then enormously larger than all other energies, is finally
released, first into oscillations at the Higgs field [see, e.g.,
Figs. 7(d)—7(f)]. During the onset of new inflation, how-
ever, the gradients of the Higgs field are not relatively
large, and the coupling is not essential for the description
of the physical situation. In our model the Higgs field
and the fluid do, of course, interact gravitationally.

V(P) is the potential of the Higgs field. We study two
different forms of the potential: a Coleman-Weinberg-
(CW) type potential, which is very flat close to the false
vacuum, and a rounder P -type potential. We do not in-
clude coupling to other fields. Such coupling is usually
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cited as the source of temperature-dependent corrections
which make /=0 a global minimum of the effective po-
tential at high temperatures, but, however, Matzner has
shown that short-wavelength modes of P itself actually
play such a role in our model.

We use rationalized Planck units, where
8~G =fi=c =1. (Unfortunately, the conventional Planck
units are defined with G =1, resulting in differences of
v'8n —5.0. ) Thus, we measure time in units of
1=5tp] ——2.7)&10 s and the Higgs field in units of
1 =0.2m p] ——2.4&( 10' GeV.

Recently, Albrecht, Brandenberger, and Matzner
(ABM) studied the problem of realizing inflation starting
from inhomogeneous initial conditions for P. This work
involved a numerical simulation of the behavior of the P
field in a homogeneously expanding background space-
time.

We have applied our code to the same problem. Instead
of a homogeneous background spacetime as used by
ABM, we accurately simulate a dynamical spacetirne in-
teracting with its scalar field and fluid content. Thus we
will actually see an exponential expansion of space when
inflation is realized.

Section II describes how we added a scalar field to the
pre-existing plane-symmetric cosmological code of Cen-
trella and Wilson. Section III is on code tests. In Sec.
IV we discuss the problem of inflationary and inhomo-
geneous initial conditions. Section V gives the results of
our simulations.

+ d V(P)/dP . (2.3)

Defining

~—= —&—gg'aA —a, (v' —gg'y), (2.4)

we get a pair of differential equations

a,y= [~+a—gg"a, y+a, (e—gg"y)],

a, =a, [&—gg'a, y —ya, (&— ")]—&— v'(y),
(2.5)

that are first order in time.
Specializing now to the plane-symmetric case,

P =P(z, t), and to the Centrella-Wilson form of the metric,

gpv=

2 +g 2Px +g 2Pz g 2px

g 2/3X

0 0
A P' 0

0

A h

3 'P'

0
0 , (2.6)

V —g
a,[v' g—g "a/ +a, (v' g—g"y)]

1
a, [e—gg'&a, y —ya, (v' —gg")]V —g

II. THE DIFFERENTIAL EQUATIONS we get the equations of the scalar field used for our code:

The computer code used for the simulations here is
based on the plane-symmetric Centrella-Wilson code
described in Ref. 6. This code solves the equations of gen-
eral relativity coupled to hydrodynamics. The matter
content of the spacetime is represented by a one-
component perfect fluid.

We have added to the code a scalar ("Higgs" ) field P
with a field equation

a,y = ~+2p'a, yv'y

p'a, &y ——pa, a+a, 13 y,
y

' a

(2.7)

P'".„=dV((h)/dP,

and a stress-energy tensor

T~, =a~pa y [ ,
' a.pa y+ v(—y)]—g~",

(2. 1)

(2.2)

1 av'ya, Qg 2 2

a«y+ v'y-p' — —a~ p —p'
a a

where V(P) is the potential for the field, including the
term describing the mass of the P field. Because of the
covariant derivatives in (2.1) the behavior of this field is
affected by the spacetime curvature. The energy-
momentum tensor of the P field contributes to the gravi-
tational equations thereby affecting the curvature. For
simplicity we do not include a direct coupling between the
scalar field and the fluid (this will be treated in a later pa-
per), so they interact only gravitationally.

We shall not here repeat the discussion of the differen-
tial equations of the Centrella-Wilson code (see Ref. 6),
but focus on what has been added. The field equation
(2.1) is spelled out as

—av ydV(p)/dp .

For the time derivative of the determinant y of the three-
metric in the latter equation we use

a, v y =f3'a, v'y —a&y( —,trK ——,K,'+ —,E, ), (2.8)

where the I|;~ are components of the second fundamental
form and K~ =K„—K~~ (see Ref. 6).

We must add the scalar field contribution to the gravi-
tational source terms. These appear in the code in the
forms
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v 5
pH =71 71 T 5

vSa= —'Va& Tv5 ~

v 5Sap= VaVpTv5 &

a=Pa'V T 5

(2.9)

pg'=, (a,p —p'a, p)'+, (a,p)'+ v(p),

s,'~I = —(a—,y p'a—,y)a, y,
(2.10)

where n is the normal to our spacelike three-slice,

n„=(—a, 0,0,0),
and the three-metric is defined by

Xpv=g pv+&p&v ~

y;1 =diag' (l,h, 1) .

For the scalar field we have

s'~'=, (a,y —p, a,y)' —,(a,y)' —3v(y) .

The source terms (2.9) appear in the Hamiltonian and
momentum constraints, in the lapse equation and in the
K& evolution equation. Of those, the x-momentum con-
straint and the K& equation are not affected when the sca-
lar field is independent of x and y coordinates. The new
Hamiltonian constraint equation is

a, (A a, h) =h —22 a,a, A +(a,A) —A ——,(trE) ——,(trK)K,'+ , (K,') +(E—„')+ , E, —

+pH"' +, (a p p'a, p)'—+,(a,p)'+ v(p)
2a 2A

(2.11)

where pH"' ' is the part of the Hamiltonian density due to
the ordinary matter (see Ref. 6).

The new lapse equation is

a (Aha a) —a~y EJ'KJ'+cr(w )+p—
+ ', (a,y —pa, y)' —v(y)

+v ya, ( trK) =0, (2.12)

and the new z-momentum constraint is

a, [A h ~ (K,'——,
' trK)]

s, (a,y p'a,—y—)a,y —„K, ——~ B,h

(2.13)

where S, refers to the momentum of the fluid only.
In each cycle the code calculates a new spacelike three-

slice one time step further in time. The order of calcula-
tion within each cycle is (1) extrinsic curvature E„ trK,
K„', K,', (2) shift vector p", p', (3) scalar field canonical
conjugate 7r, (4) three-metric 3, h (update D, E, S„, S,
for volume), (5) scalar field P, (6) hydrodynamical quanti-
ties D, E, S„, S„(7) lapse function a, (8) recompute h

from Hamiltonian constraint.
See Ref. 6 for quantities not defined here. As explained

in Ref. 6 the inclusion of both the evolution equation of h

and the Hamiltonian constraint gives one equation more
than there are variables. Thus, the Hamiltonian con-
straint should be automatically satisfied after steps 1—7.
In a numerical calculation there will always be a small er-
ror. In particular the accumulation of numerical errors
makes the coefficients in the equation for h incompatible
with periodicity. Therefore in the eighth step the vari-
ables are fine-tuned to satisfy the constraint. This im-

I

proves the accuracy and stability of the code. To monitor
the accuracy of the simulation, the code keeps count of
the cumulative amount of fine-tuning done. Obviously
any accuracy and stability problems will show up here.
Since such problems appeared in some cases we discuss
the treatment of the Hamiltonian constraint.

The Hamiltonian constraint can be viewed as a second-
order differential equation for h, with periodicity of h and

B,h as boundary conditions. We take the boundary values
of h and a, h from step (4), and integrate across the slice.
This is then repeated with adjusted boundary values until
periodicity is achieved.

If we were to do this naively, we would immediately get
into trouble, since the Hamiltonian constraint is a linear
homogeneous differential equation for h. The coefficients
in this equation define a function with a definite period,
completely analogously to the definite period defined by
the harmonic-oscillation equation. However, here we
have the requirement that this period coincide with the
length of our computational grid. In this form, if periodi-
city is not achieved with one boundary value for h, no
amount of adjusting it will help.

Note that p' "' is a mass-energy density source.
Therefore V ypH

"'" ——A h pH
"'"' is an infinitesimal ele-

ment of mass energy which should be conserved in general
and in particular during the solution of this equation.
This introduces an inhomogeneous term in the differential
equation for h, and allows adjustment to find periodicity.
Of course, once we have obtained the adjusted value of h

we must rescale this term to account for this change.
Hence, during the solution of the Hamiltonian constraint
for h, the term 2 hp~"' ' will be held constant. Similarly
the term 4 A "hK& corresponds to gravity wave energy
and is also to be conserved. The scalar field adds addi-
tional source terms to the Hamiltonian constraint which
we also identify as conserved mass-energy terms.

With this prescription the Hamiltonian constraint ap-
pears in the form
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a, (A a,h)=hX L—D—, —4 —0,
where

(2. 14) h "'"= ( 1+YS~ )h,
K",' =(1—YS3)K, ,

0"' =[1—Y( ~Sa+S~)lk

(2.18)

X=(a,A) —2Aa, A

—3'[(K„')'+—,(K,')' —,
' (trK—)K,' —,(—trK)'],

where S~ is the derivative of S4 with respect to adjusting

L =A h (o.w —p),
Di ——4A h(Ki)

4= A hV((5),

(2.15)

S~ ——f hA Pdz .
d

(2.19)

The small parameter Y is determined from

S, (1+.YSp ) —Sp —S3( 1 —
YS3 ) —S4+ Y( —,Sg+Sg )Sg

t9=A h ', (a,y p'a, y—)'+ ', (a,y)'
2a 2A

—Sg[1 —Y( —,Sg+Sg)] =0 .

To first order in Y we get

S )
—S2 —S3 —S4.—S5

S,S~+.2(S3 ) + —,(Sg+2Sg )

(2.20)

(2.21)

S) —S2 —S3 —S4 —Sq ——0,
where

(2.16)

S) —— hX dz,

Sq ——f Ldz,
S3 ——f D, dz,

S~ = (ti 4 dz,

Sg —— Odz .

(2.17)

We will adjust h, K~, and p to satisfy (2.16). To mini-
mize unnecessary adjustments that lead to little improve-
ment we weight the adjustments with the relative contri-
bution to the source term. The new values will be

This is now an inhomogeneous equation for h with
sources which are conserved, and an iteration scheme is
possible.

This appears to work best when the fluid is the dom-
inant source term. When other source terms dominate we
used a more complicated scheme. In the preceding we
have implicitly taken the view that if the constraint is not
satisfied, the reason is that h is off and has to be fine-
tuned. Of course we could as well adjust any of the quan-
tities calculated in steps (1)—(7) and that are involved in
the constraint. This opens up an infinity of different
fine-tuning schemes. Since any adjusting violates the oth-
er equations, which produced the unadjusted values, we
are justified only so far as the adjustments are small. The
ideal thing would be to find the smallest possible adjust-
ment which satisfies the constraint.

In the models we want to study, the potential V(P) has
a complicated nonlinear form and thus the P contribution
to the constraint equation changes irregularly under ad-
justment of P. For any simple P adjusting scheme, there
are configurations for which a large adjustment produces
only a small change in the total P contribution. This may
be the reason for the difficulties our code had with
domain walls. We experimented with several nonlinear P
adjusting schemes, but settled on the following simple
linear scheme.

For Eq. (2.14) to yield a periodic a, h we should have

We then set P=P"'", K~ ——K~'" and at the boundary
h = h "'". We solve h from (2.14) iterating on the
boundary value of B,h until we get a solution periodic in
h.

In a typical run, the cumulative adjustment done in the
Hamiltonian constraint subroutine stays below 2% for
many thousands of cycles, unless domain walls form. In
the presence of domain walls the simulation soon becomes
unstable, in some cases [Figs. 7(a) and 10(a)] immediately
after the walls have formed, in other cases [Figs. 10(b) and
12] a few oscillation periods later. This is seen in the ra-
pid growth of the adjustment of the p field (sometimes h

is affected too) and also in that the behavior of the simu-
lation becomes irregular. In the figures we have cut out
the final unreliable part, showing only the good part of
the simulation when the adjustment is still small. We dis-
cuss this point further in the conclusion.

III. CODE TESTS

The geometry code, that is the code without the scalar
field, has already been thoroughly tested by Centrella and
Wilson. Thus, it is only necessary to test the new contri-
butions from the scalar field. (Several of those old tests
were, however, repeated to ensure that no accidental dam-
age had been done to the code during any step. )

To test the effect of the vacuum energy of the scalar
field on the expansion we did a test run with Friedmann-
Robertson-Walker (FRW), i.e., homogeneous, isotropic in-
itial data. The model calculated had initial radiation ener-

gy density prflU, g):po=6.58X10 (0.2m'~) and the
scalar field constant, /=0, with vacuum energy density
V= V(/=0) =0.2X 10 X(0.2m'~) . (The specific
numbers were chosen because they are typical of the inho-
mogeneous simulations of this paper. ) The theoretical ex-
pansion of such a FRW spacetime containing radiation
and vacuum energy is given by simple integration:

1/2 - 1/2

R (t) =Ro — sinh2 2 PO . 4V
(3.1)

V 3

Figure 1 presents the results graphically and shows the in-
flating behavior of R. Notice that the scale in Fig. 1 and
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Bessel functions of order 4 .

g( r) = r [AJ]y4(ropr) +BJ ]/4(rept)] (3.5)

= t '~ (3 sin2qt'~ +B cos2qt'~ ), (3.6)

with amplitude ~ t ' and angular frequency —q /t '

At larger times the solution approaches (3.5) with ampli-
tude ~ t and angular frequency coo. As can be seen in

1o 4m ox

—15

-16

I

2 ~oT

3.0—
(b)

+0.4

+ Q

The comparison between the test results and this theoreti-
cal behavior was done by comparing separately the ampli-
tude and the period of the oscillations (see Fig. 2, noting
especially the greatly expanded vertical scale. The agree-
ment is very good indeed).

Next we tested the case of a plane wave with a wave-
length equal to the size of our grid. Our choice of initial
values corresponds to q =1.033. For this case we did not
have an analytic solution of (3.3). The behavior of the
amplitude and frequency of g(t) can be seen easily, how-
ever.

At early times the term q /t dominates over Mp . If Mo

is ignored, the solutions are

tt(t)=Aj'p(2qt'~ )+B'np(2qt' )

Fig. 3(a) the code does indeed produce this behavior of the
amplitude. The change from t ' to t behavior
occurs smoothly when the terms coo and q /t are com-
parable.

The angular frequency is given very accurately by
(rpp +q /t) ' ~ except at the very earliest times. The com-
parison of the test results to this is presented in Fig. 3(b).

These code tests focus on the aspects of the code most
important for the simulations used for the results in this
paper. The good accuracy demonstrated leaves us confi-
dent that the code behaves reliably in these simulations.

As another check we ran the code with the gravitational
effect of the scalar field turned off, and were then able to
duplicate the results of ABM. This is discussed in Sec. IV
(Fig. 12).

IV. INHOMOGENEOUS INITIAL CONDITIONS

The standard inflationary model has been criticized by
Mazenko, Unruh, and Wald. They argue that at high
temperatures in the early Universe the Higgs field
would have large fluctuations as a function of space, and
thus effective-potential methods which are based on a
homogeneous expectation value of P are not justified. Be-
cause of those fluctuations P would initially have values
close to the true vacuum at some regions of space. These
regions would be trapped in the true vacuum already at
the critical temperature. Thus, instead of a slow rolling of
the expectation value (P) down from the false vacuum,
we would get immediate domain formation and no infla-
tion.

Motivated by this, ABM (Ref. 5) studied the problem of
realizing inflation from "quasithermal" initial conditions.
The potential V(P) of the Higgs field is not known, and
the various models for it have free parameters. The
values of these parameters may determine whether the
phase transition leads to immediate domain formation or
to inflation. To chart the inflation-producing region of
this parameter space, ABM numerically simulated the
behavior of the P field in an expanding homogeneous
radiation-dominated FRW (flat, i.e., k =0) background
spacetime.

We applied our code to the same problem. We stick to
the model potentials used by ABM, and to their "quasi-

20—

50 100 150

FICjr. 3. Comparison of the test results with theoretical values
for small oscillations of an inhomogeneous scalar field. (a) A
log-log plot of the amplitude g,„vs time shows that the ampli-
tude has the correct behavior: ~t ' at srna11 times and
~t at large times. (b) The curve shows the half period

2 cooT as a function of time as obtained from the test simulation.

In this scale it is indistinguishable from the theoretical value

m/(1+q /coo t)', so we plot the relative error on a separate
scale. The error stays below 0.4% which is quite satisfactory.
See Eq. (3.6).

FIG. 4. The Coleman-Weinberg-type potential. The false
vacuum corresponds to / =0 and the true vacua to P = +a and
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Flax. 5. The P -type potential.

thermal" initial conditions, where the Higgs field is ini-
tially in the form of a standing plane wave. The poten-
tials are a CW-type potential (Fig. 4)

10 20 30

ZONE

50

2

V(P) = A,P ln ——+ —,A, cr
t72 2

(4.1)

which, because of its central flatness, is ideal in producing
the "slow rolling" of new inflation, and a simple double-
well P potential (Fig. 5):

V(P) =A(P —tr) (4.2)

These models have two parameters: o., the distance be-
tween the false and the true vacua, and A, , which is pro-
portional to the energy density of the false vacuum ( ,

'
A,rr-

for the CW type, and Xo. for the P type). Our third pa-
rameter will be the number X —1 of other particle
species, whose contribution will be treated like a perfect
fluid, assumed initially at rest with constant density.

We set our initial conditions at time tp to correspond to
a temperature T =o., so that the fluid has energy density

2

p(n„;d) ——(N —1) T77 4

30

The initial value for the scalar field is

(4.3)

P =B coskz, P =0, (4.4)

1I =2t =—=H p H

1/2
3 90 4

N

1/2
3

vNo2

(4.5)

Thus, the fraction of the initial horizon radius covered by
OUI gAd 1S

where B =k =o., so that the initial fluctuations just reach
the true vacua. This gives the scalar field an initial kinet-
ic energy density —,B k sin kz, or 4 B k =

4 T
age, close to (rr /30)T, the contribution of one thermal
mode.

In our code we use a grid of 50 zones with periodic
boundary conditions to represent the z direction. We set
the grid length equal to one wavelength, initially
I.~=2~/o. . Assuming the expansion has been like t'
until our initial time tp, the horizon radius is then

FIG. 6. Situation at the initial time. The scalar field P has
the form of a standing wave with amplitude ~. Its energy distri-
bution is strongly inhomogeneous. The small inhomogeneity in
the fluid density is produced by relaxing the initial data so that
they satisfy the constraint equations.

I.
=2~Nrr .

LH
(4.6)

V. THE RESULTS OF SIMULATIONS

We do simulation runs with different values of the pa-
rameters A, , o., X. We follow the simulation until one of
two things happens: either P falls down to the true vac-
uum completing the phase transition without inflation, or
we enter an inflationary era where the Universe rapidly
expands many orders of magnitude. In the latter case P
oscillations are frozen and P soon becomes localized very
close to the false vacuum.

The outcome is determined by the competition of two
effects: the expansion of the Universe damps the P oscil-
lations and tends to localize P close to its average value
/=0, the false vacuum. On the other hand, the potential

We did simulations with the parameters in the range

N =2, 10,
(7=0.05, . . . , 0.5,
a=10-4, . . . , 10-'

These values take us fairly close to the Planck time, which
in our units is tpt

——I/&8m=0. 20. Our simulations have
initial times from tp ——1.9 to tp=427. We did not use
smaller values of o., because the computer time required
for the simulation grows inversely proportional to o.

~

We get the initial data for our simulation (see Fig. 6) by
setting P=rr sintTz, /=0, D =0, E =(N —1)(n /30)o,
K~ ——0, P"=/3'=0, A =h = 1, corresponding to a flat
three-space, and then relaxing it to satisfy the constraint
equations. This typically produces a small P' and a small
inhomogeneity of the three-metric.
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where V/V0 is the ratio of the volume of the space to its
initial volume at t0.

The time scale in the figures of the P behavior refers to
our time coordinate t, which is equal to the proper time
measured by an observer located at the boundary of our
grid. Observers located at other points of the grid mea-
sure slightly different proper times given by the lapse
function a, which, however, is closely unity everywhere.

The first simulations are with the CW-type potential.
Figure 7 shows runs with N =2. For a large A, , the vac-
uum energy becomes dominant soon, and we get almost
immediate domain formation [Fig. 7(a) with A, =0. 1 and
cr=0 50.] In. one-half of the grid P falls to one of the true
vacua P = +o, and in the other to the other one, P = —o..
Thus, we get no inflation. For o.=0.5, smaller A, resulted
in inflation. The P oscillations are first damped by the ex-
pansion driven by the radiation energy density. When the
vacuum energy density becomes dominant, P is already lo-
calized to a region where the potential is too flat to be able
to pull P down. Instead the exponential expansion due to
the vacuum energy damps P further and soon it freezes it

altogether. We see max
~ P ~

becoming very small and
later beginning to grow extremely slowly.

At the end of the run A, =10, o'=0. 5, X =2 [Fig.
7(b)] at t =1230, the expansion factor is R =0.8)&10
growing exponentially with a doubling time At=60, while
max ~P ~

is increasing at a rate dP/dt=10 cr without
any detectable acceleration. With this rate the true vac-
uum would be reached when R —10 . With smaller A.

the final max
~ P ~

and d max
~ P ~

/dt are even smaller.
Our code could not follow the inflation further than ex-

pansion factors in R —10 . The reason is that we are rap-
idly approaching a pure de Sitter space where
(trK) =3p„„. Because of the role played by trE(t),
"York time, " in our code, the code cannot simulate a
spacetime with B,(trE)=0. Both the lapse equation and
the Hamiltonian constraint have source terms that contain
the difference —,

' (trK) —p„„. This difference should
gracefully approach zero. In our runs the two numbers
typically become equal only up to eight digits, and their
difference finally begins to dominate the source terms (all
others going toward 0). This ruins the simulation. By
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TIME
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FIG. 8. A marginal case: "mini-inflation. " The oscillation
of the P field is frozen and P is localized near the false vacuum,
but not well enough, so that after a short period of inflation it
begins to fall towards the true vacua.

this time we have typically reached a 10 -fold expansion
of the scale factor. Figure 7(c) shows a solution with
can=0. 5 but smaller A, , A. =10, which inflates after a
longer period of oscillation than Fig. 7(b).

In simulations with o =0.05, lowering A, to 10, 10
and 10 (Figs. 7(d), 7(e), and 7(f)] was not enough to pro-
duce inflation. Instead P makes the transition to the true
vacuum. The latent (vacuum) energy released in this tran-
sition is manifested in the large oscillations of P around
the new vacuum, which gradually damp in the continuing
(noninflationary) expansion. Inflation was again realized
for o =0.05, A. =10 [Fig. 7(g)].

We repeated these runs for N = 10 and got very similar
results. Because of the higher radiation energy density at
a given temperature, the time scale is shortened. Other-
wise there were few effects from changing N. For
o.=0.5, X=0.001 we get inflation like with N =2, but
N =10, cr=0.5, A, =0.01 appears to be a marginal case.
This run has a "mini-inflation, " which at the end of the
simulation is already showing signs of transition to the
true vacuum (Fig. 8).

Figure 9 summarizes our results. They are in a qualita-
tive agreement with ABM on the parameter region favor-
able for inflation. Quantitatively we find that the max-
imum A, to give inflation with a given o. is at least one or-
der of magnitude smaller than ABM predict.

We also did some runs with the P -type potential [Figs.
(10a)—(10d)]. Because of the round shape of the potential,
P falls down easily, and this potential is not favorable for
inflation. Indeed, we did not get inflation with any of the
parameter values tried and the runs always ended with a
phase transition (Fig. 11).

In some cases we see P falling totally to one side, in
others a domain wall forms separating two regions in the
two different true vacua. This situation is partly an ar-
tifact of our setup and the prediction of the domain size is
not to be taken seriously. We started with perfectly

N=P N = IO

IO IO

(o 2
IO

IO

IO IO

I

0.05 0.5 0.05 O. 5

FIG. 9. Summary of the results with the CW-type potential.
Checks mark runs that entered an inflationary era. Crosses
mark runs that completed the phase transition without inflation.
m marks a run with mini-inflation, a marginal case. In compar-
in with ABM, note that because of different units, our o. is

8m.=5.0 times theirs.

symmetrical initial conditions. Conservation of this sym-
metry would prevent P from falling totally to one side, so
we could only form half-wavelength domains. That this
is not always the case is due to a small asymmetry intro-
duced by numerical errors. However, the occurrence of
the phase transition is insensitive to these errors and is a
reliable prediction of our simulation.

In reality the P fluctuations would not have this perfect
symmetry and we would get larger domains. To simulate
this would require a larger grid (200—500 zones) to ac-
commodate many wavelengths. Finer zoning (initially
containing only one wavelength) would ameliorate the
problem of continuing the evolution beyond domain for-
mations (see Sec. VI).

Our code ran into stability problems when simulating
domain walls. Sometimes this happened immediately
when the domains formed, ending the simulation there,
sometimes we were able to follow them for some time.
One of the better cases is shown in Figs. 12 and 13 for a

potential. Because of the energy of the wall, space-
times with domain walls expand faster than those in a sin-
gle domain.

The main feature in our treatment is the gravitational
effect of the scalar field. For comparison we did a few
runs with P terms eliminated froin the gravitational
source terms. [We compensated this by using
%(m. /30)o instead of (N —1)(n. /30)o. for the initial
fluid energy density. ] These have a homogeneous R ~ t '~

expansion due to the radiation fluid. Thus, the model be-
comes equivalent to that used by ABM. The results we
get are now exactly the same as theirs. This serves as an
additional test for our code. Figure 14 shows two exam-
ple runs. Both of these are considered inflation producing
by the criterion employed by ABM. That is, the equation
of state becomes inflationary before the transition to the
true vacuum takes place. The inflation is not actually
seen here, because the effect of the scalar field on the
geometry is now ignored.
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