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We have simulated the onset of the inflationary era of the early Universe numerically, starting
with inhomogeneous initial data for the Higgs field. Our computer code is fully general relativistic,
including the gravitational effect of the Higgs field, and simulates a spacetime inhomogeneous in
one space direction. According to our results, large initial fluctuations of the Higgs field do not
prevent inflation, if the potential has the right shape. In a Coleman-Weinberg-type model with
0=0.1mp, inflation is realized for A <1072 and with 0=0.01mp, for A <107>.

I. INTRODUCTION

Advances in particle physics during the last decade
have made it possible to study physical processes in the
very early Universe; particle physics and cosmology have
become important for each other. In this new cosmology
one has to study the interplay between the new field
theories and gravitation. The best examples of this are the
old and new inflationary scenarios.! Because the main ef-
fect, exponential expansion of the Universe driven by the
energy of the false vacuum, is gravitational, a proper
treatment must be general relativistic.

In its original form the new inflationary scenario dealt
with a spatially homogeneous situation. Recent criticism?
has pointed out the importance of studying inhomogene-
ous situations. While homogeneous spacetimes can be
treated by mainly analytical methods, numerical simula-
tion is indispensable in studying inhomogeneous space-
times with arbitrary initial conditions.

Numerical general relativity is one of the more difficult
fields of computational physics. When the spacetime is
filled with matter we have to do fluid dynamics simul-
taneously with the dynamics of the spacetime. Thus we
have two interacting nonlinear theories. To this we now
add a scalar field with its field equation, made nonlinear
by a potential term.

We present fully general-relativistic numerical simula-
tions of plane-symmetric cosmology. Our model space-
time is homogeneous in the x and y directions and inho-
mogeneous and periodic in the z direction. It is filled
with a perfect fluid and a scalar field ¢. This model is
suitable for studying phase transitions of the early
Universe. In a phase transition the scalar (Higgs) field
makes a transition from a false vacuum to the true vac-
uum [global minimum of the potential V(¢)]. We
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represent all matter other than the Higgs field as a perfect
fluid with a radiation equation of state p = 1p.

The physical situation addressed in this paper is the en-
trance to the inflationary era. We look for an unambigu-
ous answer—for a range of parameters of the models—to
the question: do initial inhomogeneities of the scalar field
prevent inflation? As we shall see, for a range of parame-
ters, these inhomogeneities do not prevent inflation.

The set of differential equations numerically integrated
by our computer code is

gt =dV($)/dd (1.1)
T'fuiayy =0, (1.2)
G*'=Tf{fia) + T13) - (1.3)

The scalar field equation (1.1) implies T%3),, =0. Thus we
have separate conservation laws for the stress energy of
the Higgs field and the fluid [Eq. (1.2)]. This means we
are ignoring any coupling of the Higgs field to other
fields. Such coupling would eventually be responsible for
the reheating of the Universe at the end of the inflation-
ary era. In such reheating the vacuum energy, which is
then enormously larger than all other energies, is finally
released, first into oscillations at the Higgs field [see, e.g.,
Figs. 7(d)—7(f)]. During the onset of new inflation, how-
ever, the gradients of the Higgs field are not relatively
large, and the coupling is not essential for the description
of the physical situation. In our model the Higgs field
and the fluid do, of course, interact gravitationally.

V(¢) is the potential of the Higgs field. We study two
different forms of the potential: a Coleman-Weinberg-3
(CW) type potential, which is very flat close to the false
vacuum, and a rounder ¢*-type potential. We do not in-
clude coupling to other fields. Such coupling is usually
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cited as the source of temperature-dependent corrections
which make ¢ =0 a global minimum of the effective po-
tential at high temperatures, but, however, Matzner* has
shown that short-wavelength modes of ¢ itself actually
play such a role in our model.

We  use rationalized Planck  units, where
8mG =#=c =1. (Unfortunately, the conventional Planck
units are defined with G =1, resulting in differences of
V87~5.0.) Thus, we measure time in units of
1=5tp;=2.7x10"% s and the Higgs field in units of
1=0.2mp =2.4Xx 10" GeV.

Recently, Albrecht, Brandenberger, and Matzner’
(ABM) studied the problem of realizing inflation starting
from inhomogeneous initial conditions for ¢. This work
involved a numerical simulation of the behavior of the ¢
field in a homogeneously expanding background space-
time.

We have applied our code to the same problem. Instead
of a homogeneous background spacetime as used by
ABM, we accurately simulate a dynamical spacetime in-
teracting with its scalar field and fluid content. Thus we
will actually see an exponential expansion of space when
inflation is realized.

Section II describes how we added a scalar field to the
pre-existing plane-symmetric cosmological code of Cen-
trella and Wilson.® Section III is on code tests. In Sec.
IV we discuss the problem of inflationary and inhomo-
geneous initial conditions. Section V gives the results of
our simulations.

II. THE DIFFERENTIAL EQUATIONS

The computer code used for the simulations here is
based on the plane-symmetric Centrella-Wilson code
described in Ref. 6. This code solves the equations of gen-
eral relativity coupled to hydrodynamics. The matter
content of the spacetime is represented by a one-
component perfect fluid.

We have added to the code a scalar (“Higgs™) field ¢
with a field equation

¢t =dV($)/dd , (2.1)

and a stress-energy tensor
Tty =03"¢0"d—[ 50,43+ V(d)1g", (2.2)

where V(¢) is the potential for the field, including the
term describing the mass of the ¢ field. Because of the
covariant derivatives in (2.1) the behavior of this field is
affected by the spacetime curvature. The energy-
momentum tensor of the ¢ field contributes to the gravi-
tational equations thereby affecting the curvature. For
simplicity we do not include a direct coupling between the
scalar field and the fluid (this will be treated in a later pa-
per), so they interact only gravitationally.

We shall not here repeat the discussion of the differen-
tial equations of the Centrella-Wilson code (see Ref. 6),
but focus on what has been added. The field equation
(2.1) is spelled out as

T Y gE 0+ A e 0]

= ——L8,[V—gg"0;6— 63,V —gg'")]

vVi—g
+dV(¢)/d . (2.3)
Defining
T=—V—gg™d,6—03,(V —gg'%), (2.4)

we get a pair of differential equations

-1 ) .
a,d’:’\/:gf.o[WJr V' —gg%3;¢+0,(V —gg'’®)],
(2.5)
3 m=9;[V'—gg¥3;0—¢3,(V —gg")] -V —g V'(¢) ,
that are first order in time.
Specializing now to the plane-symmetric case,

¢ =¢(z,t), and to the Centrella-Wilson form of the metric,

—a2+A2[3”‘2+A2/322 Alﬁx 0 AZBZ
ApF A2 0 0
g,uvz 0 0 A2h2 0 ’ (26)
A 0 0 A4’

we get the equations of the scalar field used for our code:

a Z
0;¢= e T+2[5°9,¢
1 1
_ L \/—__ Z Z
+[\/7—/Bzaz v—Foa+d.f |4,
(2.7)
1 g~
atﬂ':az T2 T a\/yaz(ﬁ
a
: . _aF
— ﬁa,\/y—f—\/y ! —\/yﬁza,a ¢]
a a a
—aVydVi(g)/de .

For the time derivative of the determinant y of the three-
metric in the latter equation we use

JVy=p3,Vy—aVy(iuK —3IK:++K;), (2.8

where the K;; are components of the second fundamental
form and K| =K;—K] (see Ref. 6).

We must add the scalar field contribution to the gravi-
tational source terms. These appear in the code in the
forms
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pr=n"n’T,,
Se=—7an"T, (2.9)
Sap=vu¥BTss »
S=Se=var®Tes ,
where n is the normal to our spacelike three-slice,
n,=(-a,0,0,0),
and the three-metric is defined by
Yuv=8uvthun, ,
v =diagd*(1,h%1) .

For the scalar field we have
|

9,(A%3,h)=h

n p(bf,'luid)
where p(,fy]“id) is the part of the Hamiltonian density due to

the ordinary matter (see Ref. 6).
The new lapse equation is

az(Ahaza)—a\/:;—/ K}K;+o'(w2_%)+p

+L(0,6—F0,67—V($)
a

+V7y3,(trK)=0, (2.12)
and the new z-momentum constraint is
3,[A°h3 A KE—+11K)]

3,32 1 z 1 9:h
=A"h"*|S, ——(3;¢—pB9,4)3,6————K, |,
a 2 h
(2.13)

where S, refers to the momentum of the fluid only.

In each cycle the code calculates a new spacelike three-
slice one time step further in time. The order of calcula-
tion within each cycle is (1) extrinsic curvature K, trk,
Kz, K%, (2) shift vector %, 7 (3) scalar field canonical
conjugate 7, (4) three-metric 4, h (update D, E, S,, S,
for volume), (5) scalar field ¢, (6) hydrodynamical quanti-
ties D, E, S, S,, (7) lapse function a, (8) recompute A
from Hamiltonian constraint.

See Ref. 6 for quantities not defined here. As explained
in Ref. 6 the inclusion of both the evolution equation of 4
and the Hamiltonian constraint gives one equation more
than there are variables. Thus, the Hamiltonian con-
straint should be automatically satisfied after steps 1—7.
In a numerical calculation there will always be a small er-
ror. In particular the accumulation of numerical errors
makes the coefficients in the equation for 4 incompatible
with periodicity. Therefore in the eighth step the vari-
ables are fine-tuned to satisfy the constraint. This im-

1 1
+ 58,0 — 8,6 +—— (3,8 +V
57 B —F08)+ (3,07 +V(4)

1
24

o= (0,6 —F0,87+ 58,07 +V(@) ,
2a

5¥=0,
* (2.10)

1
S‘yﬁ): - -(;(8,¢—/3’az¢)az¢ s

3 1
S =—_(3,6—B,0,6)— 3,62 —3V () .

The source terms (2.9) appear in the Hamiltonian and
momentum constraints, in the lapse equation and in the
K, evolution equation. Of those, the x-momentum con-
straint and the K; equation are not affected when the sca-
lar field is independent of x and y coordinates. The new
Hamiltonian constraint equation is

—2493,0,4 +(3,4?— A* | -+ (trK)? — +(trK)K7 + (K7 +(KZ)* + +K ;2

, (2.11)

I

proves the accuracy and stability of the code. To monitor
the accuracy of the simulation, the code keeps count of
the cumulative amount of fine-tuning done. Obviously
any accuracy and stability problems will show up here.
Since such problems appeared in some cases we discuss
the treatment of the Hamiltonian constraint.

The Hamiltonian constraint can be viewed as a second-
order differential equation for A, with periodicity of 4 and
d.h as boundary conditions. We take the boundary values
of h and 9,4 from step (4), and integrate across the slice.
This is then repeated with adjusted boundary values until
periodicity is achieved.

If we were to do this naively, we would immediately get
into trouble, since the Hamiltonian constraint is a linear
homogeneous differential equation for 4. The coefficients
in this equation define a function with a definite period,
completely analogously to the definite period defined by
the harmonic-oscillation equation. However, here we
have the requirement that this period coincide with the
length of our computational grid. In this form, if periodi-
city is not achieved with one boundary value for A, no
amount of adjusting it will help.

Note that p(ﬂ“fd) is a mass-energy density source.
Therefore Vypiiid=43hp\? s an infinitesimal ele-
ment of mass energy which should be conserved in general
and in particular during the solution of this equation.
This introduces an inhomogeneous term in the differential
equation for A, and allows adjustment to find periodicity.
Of course, once we have obtained the adjusted value of A
we must rescale this term to account for this change.
Hence, during the solution of the Hamiltonian constraint
for h, the term A*hp{™¥ will be held constant. Similarly
the term %A“hK 12 corresponds to gravity wave energy
and is also to be conserved. The scalar field adds addi-
tional source terms to the Hamiltonian constraint which
we also identify as conserved mass-energy terms.

With this prescription the Hamiltonian constraint ap-
pears in the form
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3,(A%9,h)=hX —L —-D,—¥—6, (2.14)
where
X =(3,4)*—249,%4
— AY(KEP + (KPP — 7 (rKKf — 4 (trK)*]
L=A4%(ow?—p),
D =5A%(K,), (2.15)
V=A*%V(¢),
1 1 :
0= A*h |—(3,6—3°3,0)* 3,67 | .
Y 1¢—pB3,¢ +2A2( ®)

This is now an inhomogeneous equation for A with
sources which are conserved, and an iteration scheme is
possible.

This appears to work best when the fluid is the dom-
inant source term. When other source terms dominate we
used a more complicated scheme. In the preceding we
have implicitly taken the view that if the constraint is not
satisfied, the reason is that 4 is off and has to be fine-
tuned. Of course we could as well adjust any of the quan-
tities calculated in steps (1)—(7) and that are involved in
the constraint. This opens up an infinity of different
fine-tuning schemes. Since any adjusting violates the oth-
er equations, which produced the unadjusted values, we
are justified only so far as the adjustments are small. The
ideal thing would be to find the smallest possible adjust-
ment which satisfies the constraint.

In the models we want to study, the potential V' (¢) has
a complicated nonlinear form and thus the ¢ contribution
to the constraint equation changes irregularly under ad-
justment of ¢. For any simple ¢ adjusting scheme, there
are configurations for which a large adjustment produces
only a small change in the total ¢ contribution. This may
be the reason for the difficulties our code had with
domain walls. We experimented with several nonlinear ¢
adjusting schemes, but settled on the following simple
linear scheme.

For Eq. (2.14) to yield a periodic 9,4 we should have

S| —8,—8;—S,—85=0, (2.16)
where

S,=¢ hxdz,

S,=¢PLadz,

Sy=¢ D, dz, (2.17)

S,=Pwaz,

Ss= ¢ 0dz .

We will adjust 4, K, and ¢ to satisfy (2.16). To mini-
mize unnecessary adjustments that lead to little improve-
ment we weight the adjustments with the relative contri-
bution to the source term. The new values will be

R =(14+YS,)h ,
K =(1—YS)K, ,
O™V =[1—Y(55;+55)1¢ ,

(2.18)

where S, is the derivative of S, with respect to adjusting
&:
dv
S;= P hA*=——¢dz .
d Eﬁ 4o ¢dz

The small parameter Y is determined from

S1(14YS;)—S; —S3(1— YS;)2— S, + Y(+5,+S5)S,

(2.19)

—S5[1—Y(+S;+S55)1*=0. (2.20)
To first order in Y we get
S$1—S,—8;—-S;,—S
Y= Lt Bt Mt B (2.21)

S8, 4282+ (S, 42857

We then set ¢=¢"", K;=K[*" and at the boundary
h=h" . We solve h from (2.14) iterating on the
boundary value of 9,4 until we get a solution periodic in
h.

In a typical run, the cumulative adjustment done in the
Hamiltonian constraint subroutine stays below 2% for
many thousands of cycles, unless domain walls form. In
the presence of domain walls the simulation soon becomes
unstable, in some cases [Figs. 7(a) and 10(a)] immediately
after the walls have formed, in other cases [Figs. 10(b) and
12] a few oscillation periods later. This is seen in the ra-
pid growth of the adjustment of the ¢ field (sometimes A
is affected too) and also in that the behavior of the simu-
lation becomes irregular. In the figures we have cut out
the final unreliable part, showing only the good part of
the simulation when the adjustment is still small. We dis-
cuss this point further in the conclusion.

III. CODE TESTS

The geometry code, that is the code without the scalar
field, has already been thoroughly tested by Centrella and
Wilson.® Thus, it is only necessary to test the new contri-
butions from the scalar field. (Several of those old tests
were, however, repeated to ensure that no accidental dam-
age had been done to the code during any step.)

To test the effect of the vacuum energy of the scalar
field on the expansion we did a test run with Friedmann-
Robertson-Walker (FRW), i.e., homogeneous, isotropic in-
itial data. The model calculated had initial radiation ener-
gy density pfuiq)=po=106.58 X 1073 (0.2mp;)~? and the
scalar field constant, ¢ =0, with vacuum energy density
V=V(=0)=0.2x10"°x(0.2mp;)" 2  (The specific
numbers were chosen because they are typical of the inho-
mogeneous simulations of this paper.) The theoretical ex-
pansion of such a FRW spacetime containing radiation
and vacuum energy is given by simple integration:

172 172

R2(t)=R,’ sinh t. (3.1)

Figure 1 presents the results graphically and shows the in-
flating behavior of R. Notice that the scale in Fig. 1 and
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LAMBDA = 0.02

SIGMA - 0.1
N = 2
—410000
INFLATING
[EQ(3.n] 1000
—4100
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Rat'/2
I | y
o 2500 10000

TIME

FIG. 1. Homogeneous cosmologies. We plot the expansion
factor vs time for two cases: the inflating solution of Eq. (3.1),
and a noninflationary model which is simply driven by radia-
tion, with scale factor R «t!'/?. Notice that the horizontal
(time) scale is linear in ¢#!/%; the vertical, R, scale is linear in the
logarithm. This choice of scalings used here and in our subse-
quent plots of inhomogeneous models allows a wide range of
behavior to be displayed.

the other figures in R is linear in the logarithm. The in-
flating behavior does not give a straight line, however, be-
cause the horizontal scale is linear in ¢!/, Similarly, the
noninflating radiation driven solution does not show a
straight line (R vs t!/?); rather is the graph of the loga-
rithm, since the vertical scale is logarithmic. This choice
of scaling was found best able to handle the range of
behavior of the inhomogeneous solutions. We compare in
Table I the values of various quantities from an early and
late stage of the test run to theoretical values. The agree-
ment is very good over a factor ~10'° in volume. In the
table the volume is normalized so that the initial volume
=1. K, (the metric anisotropy momentum) and D (the
matter rest mass density) were essentially zero in this run.
For those who wish further graphical results, we note that
in Sec. V there are several models [Figs. 7(b), 7(c), 7(g)]
that enter inflation and behave in an exponential way
similar to Eq. (3.1).

TABLE I. A test run with vacuum energy.

Volume: 7.789 2.56x 10"
Quantity Relative error
A <0.01 <0.01
h 0.01 0.01
K,
K? <0.01 <0.01
trK <0.01 <0.01
D
E . <0.01 0.01
A°h <0.01 0.01

Further tests can be carried out by considering situa-
tions where the scalar field produces simply a perturba-
tion on a radiation-driven expanding cosmology. In par-
ticular, we did test runs with small oscillations of the sca-
lar field around a minimum of the potential. If the loca-
tion of the minimum of the potential is ¢ =0, then the po-
tential can be approximated by

Vig)~5wo(¢p—0a)*. (3.2)

In our test cases we had wy=0.04. [We actually used the
CW potential of Eq. (4.1) below with A=0.02 and
o=0.1.]

In these runs the energy density is dominated by a
homogeneous radiation fluid, so that the spacetime ex-
pands as R «t!72. The wavelength of a plane wave grows
with the expansion, so that the wave number stays con-
stant in comoving coordinates. Thus, a standing plane
wave in the scalar field is given by ¢(¢,z) —o=1(t)singz,
where 1(¢) satisfies the equation

2
L v

w3
v+ 2t¢+ =0, (3.3)

where the overdot means d,. All the geometrical variables
are made initially homogeneous and all remained so con-
sistently during the evolutions.

We first test the case of a homogeneous scalar field, i.e.,
g =0, for which Eq. (3.3) becomes

U+ %¢'+w02¢:o. (3.4)

We set initially ¥»=107° The solutions of Eq. (3.4) are

L T T T e
2 {‘)o-' K Wmﬂl
3 wol (code)
—0.15
v %mo* (theoretical)
314 B
Relotie error in 17 Yoy
. - M . ° o ®
—0.10
3135 .,
~ 1%y, ., (code and theoreticai)
—0.05
313 L .

50 100 50 ot

FIG. 2. Comparison of the test results with theoretical values
for small oscillations of a homogeneous scalar field. The com-
parison is done separately for the amplitude ¥,,, (maximum ab-
solute value reached in a period) and the period T. The theoret-
ical behavior is ¥ <t ~1/4J | 4 (wot), so we compare '/, to the
maxima of J;(wet). (The values of i,,,, have been rescaled to
make the two values equal at approximately wot =30.) In the
scale of the figure the difference cannot be seen, so we have
plotted the relative error on a separate scale. The error stays
below 0.1%, which is very satisfactory. We also show the half
periods T /2 (distance between successive zeros) of ¥(z) from the
test run and from J;4(wot). The theoretical values rapidly ap-
proach 7 /w,. Since all values lie so close, we again had to use a
very fine scale to expose the small difference. See Egs.
(3.2)—(3.5).
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Bessel functions of order 7:
Y1) =t~V AT 4(wot)+BJ _1 s4(wet)] . (3.5)

The comparison between the test results and this theoreti-
cal behavior was done by comparing separately the ampli-
tude and the period of the oscillations (see Fig. 2, noting
especially the greatly expanded vertical scale. The agree-
ment is very good indeed).

Next we tested the case of a plane wave with a wave-
length equal to the size of our grid. Our choice of initial
values corresponds to ¢ =1.033. For this case we did not
have an analytic solution of (3.3). The behavior of the
amplitude and frequency of ¥(z) can be seen easily, how-
ever.

At early times the term g2/t dominates over wy2. If wg?
is ignored, the solutions are

Y(t)=A"jo(2qt'?)+B'ny(2qt'7?)
=1"12(4 sin2qt'>+ B cos2qt'/?) , (3.6)

—1/2 172

with amplitude ot and angular frequency ~gq/t

At larger times the solution approaches (3.5) with ampli-
—3/4

tude ot and angular frequency wy. As can be seen in

3wl T T T

3.0+ —

Relative error in IEAJ:T
.

50 100 50 wf

FIG. 3. Comparison of the test results with theoretical values
for small oscillations of an inhomogeneous scalar field. (a) A
log-log plot of the amplitude ¥,,, vs time shows that the ampli-
tude has the correct behavior: o«¢~!/2 at small times and
«t~3* at large times. (b) The curve shows the half period

+woT as a function of time as obtained from the test simulation.
In this scale it is indistinguishable from the theoretical value
7/(14+q%/w*t)'?, so we plot the relative error on a separate
scale. The error stays below 0.4% which is quite satisfactory.
See Eq. (3.6).

Fig. 3(a) the code does indeed produce this behavior of the
amplitude. The change from ¢~!/? to t~*/* behavior
occurs smoothly when the terms w,*> and g%/t are com-
parable.

The angular frequency is given very accurately by
(@2 +q%/1)!/? except at the very earliest times. The com-
parison of the test results to this is presented in Fig. 3(b).

These code tests focus on the aspects of the code most
important for the simulations used for the results in this
paper. The good accuracy demonstrated leaves us confi-
dent that the code behaves reliably in these simulations.

As another check we ran the code with the gravitational
effect of the scalar field turned off, and were then able to
duplicate the results of ABM. This is discussed in Sec. IV
(Fig. 12).

IV. INHOMOGENEOUS INITIAL CONDITIONS

The standard inflationary model has been criticized by
Mazenko, Unruh, and Wald.? They argue that at high
temperatures in the early Universe the Higgs field ¢
would have large fluctuations as a function of space, and
thus effective-potential methods which are based on a
homogeneous expectation value of ¢ are not justified. Be-
cause of those fluctuations ¢ would initially have values
close to the true vacuum at some regions of space. These
regions would be trapped in the true vacuum already at
the critical temperature. Thus, instead of a slow rolling of
the expectation value (¢) down from the false vacuum,
we would get immediate domain formation and no infla-
tion.

Motivated by this, ABM (Ref. 5) studied the problem of
realizing inflation from “quasithermal” initial conditions.
The potential V' (¢) of the Higgs field is not known, and
the various models for it have free parameters. The
values of these parameters may determine whether the
phase transition leads to immediate domain formation or
to inflation. To chart the inflation-producing region of
this parameter space, ABM numerically simulated the
behavior of the ¢ field in an expanding homogeneous
radiation-dominated FRW (flat, i.e., kK =0) background
spacetime.

We applied our code to the same problem. We stick to
the model potentials used by ABM, and to their “quasi-

‘ ! V(¢) /

FIG. 4. The Coleman-Weinberg-type potential. The false
vacuum corresponds to ¢ =0 and the true vacua to ¢ =+o and

¢=—o.
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V(¢)

FIG. 5. The ¢*type potential.

thermal” initial conditions, where the Higgs field is ini-
tially in the form of a standing plane wave. The poten-
tials are a CW-type potential (Fig. 4)

2
ln-¢——i
o2

g a4
Vig)=Ad 5

+5A0* 4.1)

which, because of its central flatness, is ideal in producing
the “slow rolling” of new inflation, and a simple double-
well ¢* potential (Fig. 5):

Vig)=Ad—0o)*. 4.2)

These models have two parameters: o, the distance be-
tween the false and the true vacua, and A, which is pro-
portional to the energy density of the false vacuum (5 Ao0*
for the CW type, and Ao* for the ¢* type). Our third pa-
rameter will be the number N —1 of other particle
species, whose contribution will be treated like a perfect
fluid, assumed initially at rest with constant density.

We set our initial conditions at time tq to correspond to
a temperature T =0, so that the fluid has energy density

-
p(ﬂuid)=(N——l)£T4. (4.3)
The initial value for the scalar field is
¢ =B coskz, =0, 4.4)

where B =k =0, so that the initial fluctuations just reach
the true vacua. This gives the scalar field an initial kinet-
ic energy density 5 B%k?sin’kz, or +B2k*=+T* on aver-
age, close to (w2/30)T*, the contribution of one thermal
mode.

In our code we use a grid of 50 zones with periodic
boundary conditions to represent the z direction. We set
the grid length equal to one wavelength, initially
L,=2m/0. Assuming the expansion has been like z!/?
until our initial time ¢y, the horizon radius is then

172

LH =2t0:

1_ )3
H |p

(4.5)

Thus, the fraction of the initial horizon radius covered by
our grid is

T T T T T
V(p(2))
(fluid)
0
¢
1 1 | 1 1
10 20 30 40 50
ZONE

FIG. 6. Situation at the initial time. The scalar field ¢ has
the form of a standing wave with amplitude o. Its energy distri-
bution is strongly inhomogeneous. The small inhomogeneity in
the fluid density is produced by relaxing the initial data so that
they satisfy the constraint equations.

w

L
—~2V No . (4.6)
Ly

We did simulations with the parameters in the range
N=2,10,
0=0.05,...,0.5,
A=10"%...,107".

These values take us fairly close to the Planck time, which
in our units is zpy=1/v'87~0.20. Our simulations have
initial times from t;=1.9 to t,=427. We did not use
smaller values of o, because the computer time required
for the simulation grows inversely proportional to o.

We get the initial data for our simulation (see Fig. 6) by
setting ¢ =0 sinoz, ¢=0, D=0, E =(N —1)(7?/30)c*,
K,=0, f*=p*=0, A=h=1, corresponding to a flat
three-space, and then relaxing it to satisfy the constraint
equations. This typically produces a small 3° and a small
inhomogeneity of the three-metric.

V. THE RESULTS OF SIMULATIONS

We do simulation runs with different values of the pa-
rameters A, o, N. We follow the simulation until one of
two things happens: either ¢ falls down to the true vac-
uum completing the phase transition without inflation, or
we enter an inflationary era where the Universe rapidly
expands many orders of magnitude. In the latter case ¢
oscillations are frozen and ¢ soon becomes localized very
close to the false vacuum.

The outcome is determined by the competition of two
effects: the expansion of the Universe damps the ¢ oscil-
lations and tends to localize ¢ close to its average value
¢ =0, the false vacuum. On the other hand, the potential



442 KURKI-SUONIO, CENTRELLA, MATZNER, AND WILSON 35

pulls ¢ down towards the true vacua at ¢=-+o0 and
¢=—0o. The damping also reduces the kinetic energy
density of ¢, weakening its ability to resist the pull of the
potential.

The crucial time is when the vacuum energy density be-
comes equal to the radiation energy density. This hap-
pens close to the time

t=V3N'2A— 1, (5.1)

which is proportional to A~!"2672. The simulation time

step is limited by the Courant condition to be smaller than
the light travel time across a zone width, which we have
set to <5 of the ¢ oscillation wavelength, proportional to
o~ !. The number of time steps required in a simulation
run is thus proportional to A~!"20~!, making the comput-
er time demand largest for small A and o.

In our runs the inhomogeneities in geometry or the
fluid distribution typically do not grow large. Before the
phase transition, the ¢ oscillations are being dampened
and soon the smoothing effect of the overall expansion

[ T T T — R
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\ /]
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O
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! 1 1 I L 14
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overrides any inhomogeneous effects of the scalar field.
In the inflating runs the Universe soon becomes extremely
homogeneous. In the noninflating runs we do see faster
expansion in the regions where the ¢ energy is largest.
This is reflected in the fluid density so that the fluid is
most dense, where the expansion has been slowest. The
fluid density contrasts reached in the noninflating run
vary from below 1% to about 25%, the highest values ob-
tained after domain formation. The produced fluid veloc-
ities remain nonrelativistic. The domain walls become too
sharp (an extreme inhomogeneity in ¢) for the code too
soon for the effect of the wall on geometry to reach an in-
teresting magnitude.

Thus, the interesting quantities are the ¢ field and the
overall expansion. We found the best way to represent the
¢ behavior is to plot its minimum and maximum values.
In the same plots we represent the expansion by

1/3
R = 7 ) (5.2)
0
T T T R
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FIG. 7. Coleman-Weinberg potential runs with N =2. In these figures we plot the time evolution of the minimum and maximum
values of the scalar field ¢ and the expansion factor R. The time axis is linear in t!/2. The left vertical axis gives the ¢ scale, + and
— marking the true vacua +o0 and —o. (a) shows an almost immediate domain formation. (b), (c), and (g) are examples of inflation.
(d), (e), and (f) show a phase transition without domain-wall formation.
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where V/V is the ratio of the volume of the space to its
initial volume at ¢,.

The time scale in the figures of the ¢ behavior refers to
our time coordinate ¢, which is equal to the proper time
measured by an observer located at the boundary of our
grid. Observers located at other points of the grid mea-
sure slightly different proper times given by the lapse
function a, which, however, is closely unity everywhere.

The first simulations are with the CW-type potential.
Figure 7 shows runs with N =2. For a large A, the vac-
uum energy becomes dominant soon, and we get almost
immediate domain formation [Fig. 7(a) with A=0.1 and
0=0.50]. In one-half of the grid ¢ falls to one of the true
vacua ¢ =+ 0, and in the other to the other one, ¢ = —o0.
Thus, we get no inflation. For 0=0.5, smaller A resulted
in inflation. The ¢ oscillations are first damped by the ex-
pansion driven by the radiation energy density. When the
vacuum energy density becomes dominant, ¢ is already lo-
calized to a region where the potential is too flat to be able
to pull ¢ down. Instead the exponential expansion due to
the vacuum energy damps ¢ further and soon it freezes it

T T T

(e)
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SIGMA = 0.05

10000

1000

100
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altogether. We see max|¢| becoming very small and
later beginning to grow extremely slowly.

At the end of the run A=10"2, ¢=0.5, N =2 [Fig.
7(b)] at t=1230, the expansion factor is R =0.8x 10°
growing exponentially with a doubling time Az~60, while
max | ¢ | is increasing at a rate d¢/dt~10""c without
any detectable acceleration. With this rate the true vac-
uum would be reached when R ~10°°°®, With smaller A
the final max | ¢ | and d max | ¢ | /dt are even smaller.

Our code could not follow the inflation further than ex-
pansion factors in R ~10%. The reason is that we are rap-
idly approaching a pure de Sitter space where
(trK)*=3p,,.. Because of the role played by trK(z),
“York time,”” in our code, the code cannot simulate a
spacetime with 9,(trK)=0. Both the lapse equation and
the Hamiltonian constraint have source terms that contain
the difference +(trK)>—p,,.. This difference should
gracefully approach zero. In our runs the two numbers
typically become equal only up to eight digits, and their
difference finally begins to dominate the source terms (all
others going toward 0). This ruins the simulation. By
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FIG. 7. (Continued).
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this time we have typically reached a 10°-fold expansion
of the scale factor. Figure 7(c) shows a solution with
o=0.5 but smaller A,A=10"3, which inflates after a
longer period of oscillation than Fig. 7(b).

In simulations with o=0.05, lowering A to 1072, 1073,
and 10~* (Figs. 7(d), 7(e), and 7(H)] was not enough to pro-
duce inflation. Instead ¢ makes the transition to the true
vacuum. The latent (vacuum) energy released in this tran-
sition is manifested in the large oscillations of ¢ around
the new vacuum, which gradually damp in the continuing
(noninflationary) expansion. Inflation was again realized
for 0=0.05, A=10"7 [Fig. 7(g)].

We repeated these runs for N =10 and got very similar
results. Because of the higher radiation energy density at
a given temperature, the time scale is shortened. Other-
wise there were few effects from changing N. For
0=0.5, A=0.001 we get inflation like with N =2, but
N =10, 0=0.5, A=0.01 appears to be a marginal case.
This run has a “mini-inflation,” which at the end of the
simulation is already showing signs of transition to the
true vacuum (Fig. 8).

Figure 9 summarizes our results. They are in a qualita-
tive agreement with ABM on the parameter region favor-
able for inflation. Quantitatively we find that the max-
imum A to give inflation with a given o is at least one or-
der of magnitude smaller than ABM predict.

We also did some runs with the ¢*-type potential [Figs.
(10a)—(10d)]. Because of the round shape of the potential,
¢ falls down easily, and this potential is not favorable for
inflation. Indeed, we did not get inflation with any of the
parameter values tried and the runs always ended with a
phase transition (Fig. 11).

In some cases we see ¢ falling totally to one side, in
others a domain wall forms separating two regions in the
two different true vacua. This situation is partly an ar-
tifact of our setup and the prediction of the domain size is
not to be taken seriously. We started with perfectly

¢ T T R

LAMBDA = 0.01
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+ - N = 10
10000

1000

100
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FIG. 8. A marginal case: ‘“mini-inflation.” The oscillation
of the ¢ field is frozen and ¢ is localized near the false vacuum,
but not well enough, so that after a short period of inflation it
begins to fall towards the true vacua.
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FIG. 9. Summary of the results with the CW-type potential.
Checks mark runs that entered an inflationary era. Crosses
mark runs that completed the phase transition without inflation.
m marks a run with mini-inflation, a marginal case. In compar-

ing with ABM, note that because of different units, our o is
V' 8m~5.0 times theirs.

symmetrical initial conditions. Conservation of this sym-
metry would prevent ¢ from falling totally to one side, so
we could only form half-wavelength domains. That this
is not always the case is due to a small asymmetry intro-
duced by numerical errors. However, the occurrence of
the phase transition is insensitive to these errors and is a
reliable prediction of our simulation.

In reality the ¢ fluctuations would not have this perfect
symmetry and we would get larger domains. To simulate
this would require a larger grid (200—500 zones) to ac-
commodate many wavelengths. Finer zoning (initially
containing only one wavelength) would ameliorate the
problem of continuing the evolution beyond domain for-
mations (see Sec. VI).

Our code ran into stability problems when simulating
domain walls. Sometimes this happened immediately
when the domains formed, ending the simulation there,
sometimes we were able to follow them for some time.
One of the better cases is shown in Figs. 12 and 13 for a
¢* potential. Because of the energy of the wall, space-
times with domain walls expand faster than those in a sin-
gle domain.

The main feature in our treatment is the gravitational
effect of the scalar field. For comparison we did a few
runs with ¢ terms eliminated from the gravitational
source terms. [We compensated this by using
N (7%/30)0* instead of (N —1)(m?/30)c* for the initial
fluid energy density.] These have a homogeneous R « t!/2
expansion due to the radiation fluid. Thus, the model be-
comes equivalent to that used by ABM. The results we
get are now exactly the same as theirs. This serves as an
additional test for our code. Figure 14 shows two exam-
ple runs. Both of these are considered inflation producing
by the criterion employed by ABM. That is, the equation
of state becomes inflationary before the transition to the
true vacuum takes place. The inflation is not actually
seen here, because the effect of the scalar field on the
geometry is now ignored.
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are formed. In (c) and (d), the ¢ field falls entirely to the ¢ = — o vacuum.
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FIG. 11. Summary of the results with the ¢*-type potential.
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None of our simulations led to inflation.
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The ¢* runs with N =2. None of these runs produced inflation. In (a) and (b), two domains, separated by a domain wall,
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FIG. 12. Domain formation. Because of the energy in the
domain walls a spacetime with domain walls expands faster
after the phase transition than one without. Inside the domains
the oscillations of the ¢ field are dampened by expansion. This
simulation is for a ¢*-type potential with A=10"2, 0=0.3, and

N =10.



446 KURKI-SUONIO, CENTRELLA, MATZNER, AND WILSON

10 20 30 40 50
ZONE

FIG. 13. Domain walls. The situation in the simulation of
Fig. 12 at t=520. The energy content is dominated by the
domain walls. The energy density of the fluid is too small to
show in this scale.

Comparing Figs. 14 to the runs done with the full
model, we see that with the full model the transition to
the true vacuum tends to happen earlier. This is because,
as the expansion is becoming faster under the influence of
the vacuum energy, ¢ is losing kinetic energy and cannot
resist the pull toward the potential minima as well. Thus,
our results show that inflation is somewhat harder to real-
ize in the full model than ABM predict. For the ¢4-type
potential this difference appears to be crucial, while for
the CW type we only observe a shift in the region of pa-
rameter space favorable for inflation.

VI. CONCLUSIONS

We have written a fully general-relativistic computer
code that simulates a plane-symmetric spacetime filled
with a perfect fluid and a scalar field. To our knowledge
this is the first time this kind of code has been written.
We have used the code to simulate at the level of classical
scalar field theory the phase transition of the new infla-
tionary scenario with inhomogeneous initial data for the
scalar field ¢. Figure 15 shows the scalar field behavior
in two typical runs: one (CW-type potential) that does
lead to inflation, and one (¢* type) that does not.

Our results supplement those of ABM, who have chart-
ed the region of the parameter space for which they
predict inflation. With a CW-type potential our simula-
tions follow fairly well their predictions: We see inflation
for small A and large 0. For a ¢*-type potential none of
our simulations entered an inflationary phase, although
some of the parameter combinations were fairly deep in-
side the region for which ABM predict inflation.

The discrepancy arises because of an imprecise use of
language by ABM. When they referred to inflation, they
meant only that p ~ —p for the ¢-field quantities, without
considering whether the ¢-field contributions dominate as
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FIG. 14. Runs where the gravitational effect of the ¢ field is
ignored. (a) A CW-type potential [compare to Fig. 7(b)]. No
phase transition takes place and the ¢ oscillations are dampened
and localized at the false vacuum. No inflation is seen because
the vacuum energy is ignored by the gravitational equations. (b)
A ¢*-type potential [compare to Fig. 10(b)]. Here we observe a
phase transition. It happens later than in a full simulation, be-
cause without the vacuum energy contribution, the expansion
and the resulting damping of oscillations are slower.

gravitational sources. Hence, a solution that approached
|¢ | ~0 for an interval longer than several ¢-oscillation
periods was called “inflating” by ABM. If o <mp,, so
that the ¢ field can truly be treated classically, such
|¢| ~0 states do not in fact last long enough when
V =A(¢>—0?)? to actually produce inflation in our back-
reacting model.

It is a difficult task to write a stable and accurate code
to handle the complicated combination of fluid, gravita-
tion and scalar field dynamics involved. We found that
the present code has certain limitations on what kind of
simulations it can handle. Specifically, the emergence of
domain walls or getting too close to a de Sitter spacetime
eventually ruins a simulation. We emphasize that neither
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FIG. 15. Three-dimensional plots showing the evolution of ¢
on the entire grid. “Scale” refers to the tick interval on the vert-
ical axis. (a) is from the same run as Fig. 7(b) and (b) is from
the run of Fig. 10(b). In both cases the initial standing wave is
first damped by the expansion. In (a) (CW-type potential) this
prevents the phase transition, ¢ stays at the false vacuum and
we get inflation. In (b) (¢*type potential) the phase transition
takes place, two domain walls form, and inflation is prevented.

of these shortcomings of the code interferes with our
determination of whether or not a particular set of initial
data will produce inflation.

Solution of both these problems will require extensive
modification of the code. Consider first the formation of
the domain walls. The wall separates regions of in-
equivalent true vacuum. The field ¢ in the region of the
wall possesses at the center of the wall potential energy
equal to V(0) (=Ac* in a ¢* model). This wall can be
completely static because there is no energy profit by
moving it to one side or the other (as there would be if the
“vacua” on the two sides in fact had different energies).
The thickness x of the wall is determined by minimizing
the total energy in each surface element A4 of the wall.
That arising from gradients of ¢ is

~(o/x)(xA),

because the total excursion of the ¢ field values is of order
o in a distance x; this is multiplied by a volume element
xA. The contribution from the potential is approximately

V(0)xA =Ao*(xA) .

Minimizing the potential contribution by making the
thickness smaller increases the contribution from the gra-
dients. The minimum energy per unit area in the wall is

found to occur when

x~a7x“1/2

For our simulations, it is relevant to compare this to the
size of our grid: initially the proper length of our grid is
(see Sec. IV)

then, initially

11
2T 7&1/2 .

x/L,=

One of our typical runs that forms domains [Fig. 7(a)] has
A12=0.32. So x /L, ~0.5 initially. However, quantities
involving the parameters of the potential are given by mi-
crophysics and are independent of the expansion of the
Universe, while the grid size is comoving. Hence, at a
later time

x/sz_iI;k_l/zR_l ,

assuming R normalized to unity initially. We can expect
difficulty when the wall thickness approaches one zone.
The final points plotted in Fig. 7(a) have R ~15; thus
x/L,~~. This is consistent with our 50-zone grid; the
code crashes when the wall thickness ~ one zone. We see
that direct computation through domain formation by ac-
tually resolving the wall requires an increasingly fine grid
to further extend the evolution. Although this can be ini-
tially successful, long evolution will demand an impracti-
cally finely divided grid. Other methods especially adapt-
ed to handling large discontinuities will have to be em-
ployed. Because of the static nature of the walls, usual
“artificial viscosity” procedures, which depend on time
dependence of the fields, are inapplicable here.

Attempting to make the code follow closely de Sitter
cosmologies will also demand extensive revision. A dif-
ferent time-slicing algorithm (in other words, a different
gauge choice for the time) must be introduced, since it is
the inability of the code to distinguish different three-
spaces with almost identical extrinsic curvature trK (in
the de Sitter case, trK is identically constant) that causes
the failure. Perhaps a change to three-volume as coordi-
nate time, or to proper time, will be needed. It remains to
be seen whether we can improve the code to handle these
cases. It would be exciting if we could follow a simula-
tion well past domain formation, or could evolve the in-
flation all the way through until reheating.

We have also begun simulations which use an old-
inflationary-type potential that leads to formation of bub-
bles. In this case the bubbles are dynamic and it is possi-
ble to introduce a coupling between ¢ and the fluid to
keep the bubble surface at finite thickness. This will be
the subject of a future paper.
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