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Does the absence of a phase transition in SU(2) and SU(3)
lattice gauge theories with Wilson action really have

anything to do with continuum confinement?

R. L. Stuller
209 Wheeler Road, Monroe, Connecticut 06468

(Received 12 December 1986)

It is proven that all Abelian monopoles of SU(N) are unstable while SU(N)/Z(N) always has

2 —2 species of stable monopoles. It is argued that the presence [absence] of a phase transition in

SU(N)IZ(N) [SU(N)] lattice gauge theories for N=2 and 3 follows solely from the qualitative dis-

tinction between stable and unstable, and hence is a lattice artifact irrelevant to the continuum limit.
The SU( N )4) transitions are briefly discussed.

It was Creutz who first pointed out that for N =2 (Ref.
1) and N =3 (Ref. 2) SU(N) lattice gauge theories with
Wilson action exhibit a single phase for all accessible
values of 13 while their SU(N)IZ(N) counterparts' show
a single sharp first-order phase transition as the system is
cooled from high to low temperature. The SU(2) and
SU(3) models indicate a significant "activity" in the so-
called crossover region, but this activity is too weak to
produce a bona fide phase transition in the therrnodynam-
ic sense. This absence of a transition was interpreted as
evidence for the proposal that the center of the gauge
group is the ultimate cause of confinement [its presence
having "frustrated" the transition visible in SU(N) /Z (N),
N =2, 3] since confinement in the high-temperature phase
is easy to establish using strong-coupling expansions.
Enthusiasm for this interpretation was only slightly dam-
pened by the subsequent discovery that for N =4, 5, and 6
(Refs. 7—9, respectively) SU(N) /Z (N) has a first-order
transition just as SU(N)IZ(N) does. ' This transition for
SU(N &4) was thought to be an artifact of having used

only the fundamental-representation Wilson action and
not expected to be deconfining, however. Now while it is
true that a renormalization-group-"improved" action can
be constructed" for which these transitions are absent, a
competitive "improvement" scheme' does not appear to
have this property so the situation remained confused.

In a recent article' (hereafter referred to as I) and in
Ref. 14 the formal continuum limit of lattice gauge
theories with Wilson action has been reexamined. For
the non-Abelian case the usual Yang-Mills expression'
must be altered to include generalized vortex and mono-
pole degrees of freedom in addition to the familiar gluons
and instantons. These results are sketched in Ref. 14 and
full derivations are presented in I. For the purposes of
this paper it suffices to know that a bare monopole con-
figuration is parametrized by specifying (i) the boundary
of an open, oriented two-surface S and (ii) a nontrivial
root lattice vector of the group in question defined by

exp i+*ExTtr ——I [SU(N)IZ(N)],
K

exp ig*exttr ——I [SU(N)],
K

where t and T denote the fundamental (N dimensional)
and adjoint (N —1 dimensional) representations of the
Lie algebra common to SU(N) and SU(N)/Z(N), respec-
tively. The indices being summed over in (1) take values
K =j —1, j =2, 3, . . . , N labeling the elements of the
maximal Abelian subalgebra of SU(N). We denote by
{*e{and {*EI the periodic lattices of vectors satisfying
(1) and remark that {*EI D {*eI and exp(i *E t)
=exp[i(2~/N)k] for some k =0, 1,2, . . . , N —1

meaning that the vectors 'E organize themselves naturally
into N classes labeled by k. The sublattice corresponding
to k =0 is of course {*e]. These lattices are explicitly
displayed for N =2, 3,4 in I where it is furthermore
shown that the vectors *E and *e act as generalized mag-
netic charges' replacing the Dirac value' 2w times an in-
teger familiar from the U(1) case. It is the quantitative
distinction between {*E{and {*eItaken together with the
qualitative difference in the stability properties of the asso
ciated monopoles (to be discussed below) that provide a
simple explanation of the phase-transition pattern in
SU(N) and SU(N')IZ(N) Monte Carlo (MC) data.

gA ~&
—*Ecru~(x;S) [SU(N)IZ(N)]

g A ~x
——*ex.~"(x;S) [SU(N)]

and the matrix

(2)

v= Q*ErTz =— *E T, (3)
27T K 277

where the potential function ~"(x;S) is defined in the Ap-
pendix. The stability' (or fluctuation) operators in the
background fields (2) (in a background-field gauge' '

)

are given by

H,"z(v) = —(D-),bg" 4tri , e" t'(V'A—*~) —~ (4)

wtth (D- )",b =7"6,b igT, b A x. as usua—l. In I it is shown

that for arbitrary N, *E='E(k;n3,ns, . . . , n, ) with k

an integer obeying 0(k (N —1 and the N —1 nK's are
unrestricted integers. More important for our present, re-
stricted purposes is the spectrum of v (denoted by {v) )

written in terms of k and the nK's. For general N it is

MONOPOLE STABILITY PROPERTIES

To proceed quantitatively we introduce the background
fields
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[vj = [+(k+2n3+ . +n&2 &), +(k +n3+2n8+ . +n, , ), . . . , +(k+n3+ . +2n, , ),
+(n3 n—&), +(n 3

—ni5), . . . , +(n8 —n, ~), . . . , +(n, „, ,
—n, , ),0,0, . . . , Oj (5)

with a total of N —1 zero eigenvalues and
—,(N —1)(N —2) of the form +(n i,—n, , ),2(J ~K(N. The + means that the particular eigen-
value appears with both signs and the total number of
eigenvalues (for fixed k and nx. ) is easily verified
to be N —1 as it should be. For N =2,
[vj = [+(k+2n3), 0j, k =0, l.

Definition Aco.nfiguration A will be called stable if its
corresponding stability operator has a non-negative spec-
trum. Otherwise it is unstable.

In a thorough analysis Brandt and Neri have shown
that the necessary and sufficient condition for stability in
the above sense ' is that each eigenvalue of v("E) satisfies
the inequality

~

v
~

(1. The simplicity of this criterion
leads to the following theorem.

Theorem All no.ntrivial root lattice vectors of SU(N)
[the *e's in (1)j are unstable. The trivial vector corre
sponding to nx. 0for all K——is of course stable

To demonstrate this recall that the vectors *e(nx) are
obtained from the *E(k;nx ) by setting k =0 so we begin
by setting k =0 in (5). The theorem is now obvious for
N =2 and follows for N ) 3 in such a straightforward
manner that we defer writing down the analytic proof to a
separate publication. By contrast SU(N)!Z (N)
possesses nontrivial stable vectors *E for al/ N. There are

I

two of them for N =2 [k =1, n3=0, and k =1, n3 ———1

in (5)] and it can be shown that there exist 2 —2 such
stable vectors for a general N although we will not need
their explicit form here. This existence of stable versus
unstable bare monopoles already points to a qualitative
dynamical distinction between SU(N) and SU(N)IZ(N)
based theories and constitutes the crucial technical obser-
vation of this paper. For later comparison purposes a fi-
nal quantity of interest turns out to be the number of root
lattice vectors for which exactly two eigenvalues of v have
absolute value 2, the rest obeying

~

v
~

(1. Such vectors
represent in some sense a "minimal departure from stabil-
ity" and their number as a function of N is recorded in
Table I.

MONOPOLE (IN) STABILITY AND PHASE
TRANSITIONS

The concept "stability" introduced in the previous sec-
tion is a mathematical property of the configurations (2),
or more precisely of their fluctuation operators H(v). To
make contact with physics we consider the bare monopole
contribution to the continuum SU(N)IZ(N) partition
function (gauge terms are suppressed) given schematically
by

Z= g exp[ —W"(BS,*E)]f&5A exp[ —[ ,'5AH(v)5A+gC—&5A'+gC35A'(gA)+g C45A ]j,
Ias, *EI

(6)

dx 'E TA*~ 1""

4g 2

QE f [dx][d„']*X"(x)D(x—x') *X&(x'), (7)
2g

TABLE I. The number of root lattice vectors *e of SU(N)
having ~v

~

=2 for precisely two eigenvalues with the remaining
eigenvalues obeying

~

v
~
( l. q(N)=(the number of unstable

eigenvalues of v)/(the total number of eigenvalues of v).

SU(lg

2
3
4
5
6

10
11

2
6

12
20
30

90
110

2/3
1/4

2/15
1/12
2/35

2/99
1/60

where the g is over closed loops BS and root lattice vec-

tors ['E j as specified in I, C3, C3, and C4 are the fami-
liar tensors characterizing cubic and quartic interaction

terms in a background field A (Ref. 19), H(v) is given by
(4) and

*X"(x) is the current of "true magnetic charge" having
space-time support equal to BS (see Appendix) and M"
represents the Coulomb self-action of this current. Al-
though (6) and (7) are derived (in I) for the continuum, we
imagine now "looking back" onto the lattice (reintroduc-
tion of a cutoff so that W" is rendered finite) and formu-
late our main observation as the following hypothesis.

Hypothesis The phase . transition in SU(N) IZ (N)
(N =2,3) gauge theories as the system is cooled from high
to low temperature T(=f3 '=g ) through the crossover
region is caused by the freezing out of stable monopoles.
Likewise, the strong "activity" seen in SU(2) (Ref. 1) and
SU(3) (Ref. 2) is also caused by the freezing out of (*e-
type) monopoles, but these monopoles, by the theorem
proven above, are all unstable. Of course, that the cross-
over region has something to do with monopoles is, by it-
self, not a new idea; ' what it new is the suggestion that
the distinction between stable and unstable is responsible
for the difference between phase transition and "activity. "
To see why this is so, let E be a stable vector so that its
corresponding H(v) is a strictly positive operator (by defi-
nition). To compute the contribution of such a stable
monopole to the partition function the gluon functional
integral can be evaluated perturbatively because the
Gaussian approximation [set g =0 in (6)] exists. This
means that the basic pointlike character of stable mono-
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poles is only perturbatively modified by their coupling to
the gluon field 5A "(x) and it is the freezing out of these
pointlike states that is responsible for the sharp transition
in SU(N)/Z(N) (N =2, 3) systems. For the case of an
unstable monopole, however, where H(v) has negative
eigenvalues, the situation is completely different. Were
we to set g =0 in (6), the Csaussian integral would not ex-
ist. Mathematically this means that the term g C4(6A)
must be invoked to secure convergence of the j&62 in

(6); physically this means that a configuration
parametrized by BS and an unstable *E (or *e) can no
longer be viewed as a pointlike object. In short, interac-
tion between unstable monopo1es and gluon degrees of
freedom is nonperturbative in character and leads to an
intrinsically extended object. It is then plausible, all other
things being equal, that the freezing out of such "fat-
tened" configurations will have a less dramatic effect on
thermodynamic quantities then the freezing out of their
pointlike relatives since their effective classical action, al-
though still infinite, is less divergent than in the pointlike
case. This is the proposed mechanism by which the
first-order SU(N)/Z(N) (N =2,3) transitions are softened
into mere "activities" for SU(2) and SU(3). Of course tak-
en by itself this argument, although relatively convincing,
would only be circumstantial evidence for the new inter-
pretation. There is, however, a more important reason. It
is shown in I that the ground states of SU(N) and
SU(N)/Z (N) based gauge theories, in the absence of
matter fields aod in the continuum limit, are in fact the
same. This fact alone already precludes any difference in
structure in the crossover region which depends on the
center of the gauge group from being relevant in the con-
tinuurn and confirms the new interpretation in a simple
and striking way. Since the difference between phase
transition and "activity" measured on the lattice finds a
simple explanation in the continuum concept of stability
versus instability of precisely those configurations which
are known to drive the crossover, and since these configu-
rations are not in fact present in the continuum limit (in
four dimensions) we conclude that the absence of a phase
transition in SU(2) and SU(3) lattice gauge theories has
nothing to do with continuum confinement. Rather than
the Abelian monopoles (2), whose lattice counterparts play
a significant role in the crossover region, it can be
shown' ' that it is the Abelian and non-Abelian singular
pure gauge configurations introduced in I that control
ground-state structure in the continuum limit.

It remains to comment on the phase transition observed
in SU(N )4) lattice gauge theories in four dimensions.
Since it is known that pure Z(N) gauge theories for
N )4 exhibit three phases, it is tempting to speculate that
the phase transition showing up in SU(N) 4) has some-
thing to do with "the second Z(N) transition. " From our
vantage point in the continuum we can say nothing direct-
ly about this. A glance at Table I, however, suggests a
more mundane possibility. If e is a root lattice vector
the spectrum of whose v(*e) contains only two eigen-
values Uiolating the stability criterion

~

v
~

& l (for defi-
niteness we assume in Table I that the magnitude of these
"unstable" eigenvalues also equals 2) then the ratio of the
number of unstable eigendirections to the total number of

eigendirections (defined to be) q(v)=2/(N —I). In the
continuum, of course, the distinction between stable and
unstable has an absolute meaning. On a finite lattice,
however, and in an MC experiment which must select its
equilibrium configurations in a finite number of sweeps it
is plausible that as N becomes large the distinction be-
tween stable and unstable effectively disappears [r)(v) ~0]
for these "minimally unstable" vectors *e (whose number
increases rapidly with N as given in Table I), the stable
eigendirections dominate and what would have been only
an "activity" effectively hardens into a transition. Reality
(on the lattice) is likely to be a combination of the "second
Z (N) transition" and "activity hardening" pictures and it
will be interesting to remeasure and reanalyze the
SU(N )4) transition regions with an eye to resolving this
issue. This remains to be done.

DISCUSSION AND SUMMARY

We have presented strong evidence that the answer to
the question posed in the title of this paper is no. It was
proven that for SU(N) all Abelian monopoles are unstable
while for SU(N)/Z(N) there always exist 2 —2 distinct
species of stable monopoles. It was then suggested that
the measured difference between phase transition and "ac-
tivity" in SU(N)/Z(N) vs SU(N) (N =2,3) lattice gauge
theories is caused by the difference between stable and un-
stable monopoles. The freezing out of stable monopoles
(which retain their pointlike character) as the system is
cooled through the crossover region leads to a bona fide
phase transition in the thermodynamic sense, while the
freezing out of unstable monopoles (which necessarily be-
come extended objects) leads only to a well-defined "ac-
tivity. " For large N ()4?) certain unstable monopoles
can act as effectively stable ones (on the lattice) and simu-
late a hardening of the "activity" into a transition.

This elementary, if unexpected, explanation of one of
the standard lattice gauge signals for confinement is not
as catastrophic as it might appear at first glance. It only
means that measurements of the average plaquette energy
at the present level of accuracy yield no information about
the continuum. But what about measurements of funda-
mental representation Wilson loops, string tensions, etc.?
The answer to this question is the following: since the
presence of Abelian monopoles, whose effects must fade
away as the true continuum is approached, always con-
taminates the MC data at finite P and lattice spacing, all
traces of this "Abelian background" must be carefully iso-
lated and deleted before one can claim that continuum
relevant quantities have been reliably determined. Other-
wise, the signal of ultimate interest is being systematically
masked by these lattice artifacts. Now it is the main re-
sult of I that the ground state of SU(N) continuum gauge
theory is anomalous (nonperturbative), and that the ex-
pected value of a fundamental representation Wilson loop
is anticipated to show nonperimeter behavior, for reasons,
however, which are completely different from those re-
sponsible for area-law behavior in the strong-coupling and
crossover regions. In the final analysis the anomalous
ground state is caused by a subtle quantum-mechanical ef-
fect (paramagnetic instability) involving the intrinsic mag-
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netic moments of the colored gluons. ' Can we be sure
that being in the so-called "scaling region" (usually ac-
cepted as being equivalent to the continuum limit in nu-

merical experiments ) is sufficient to enable us to begin
seeing such delicate effects? We venture to conjecture
that one must be deep in the "scaling region" before the
effects of the paramagnetic instability become numerically
significant and stress the need for vastly improved mea-
surements in this region before we can draw any con-
clusions about the continuum.
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APPENDIX

Let P(o„o.~) be a convenient parametrization of an
oriented two-surface S, and define

der" (g) =[(BP/Bo., )(BP/Bo )

—(aP/ao, )(aP/ao, )],
d eoPv(g) & ~vlPd kP 1234

(A 1)

(A2)

m" (x;S)= f d*o.""(g)5 [x —g'(o, ,o2)] . (A3)

The antisymmetric tensor m" can be decomposed' ac-
cording to

m" (x;S)=[VA~(x;S)]" + 2
e" p[VA*a(x;.BS)]~p,

(A4)

where (V A~ )" =V"~"—V ~". Calling X"=V m" and
*X"=V *m" we can write (suppressing gauge terms)

~"(x;S)= f [dg]D (x —g)X"(g ),
(A5)" ~(x;aS)= f [dg]D(x

where D(x —g) is the negative inverse La lacian. It fol-
lows from the definition of m that *Xp= de~54[x —g]as
so (A5) implies that *~"=0 (or more generally a pure
gauge) when the boundary of S vanishes.

M. Creutz, Phys. Rev. Lett. 43, 553 (1979); Phys. Rev. D 21,
1308 (1980).

M. Creutz, Phys. Rev. Lett. 45, 313 (1980).
3J. Greensite and B. Lautrup, Phys. Rev. Lett. 47, 9 (1981);I. G.

Halliday and A. Schwimmer, Phys. Lett. 101B,327 (1981)~

4G. Bhanot, Phys. Lett. 108B, 337 (1982); M. Creutz and K. J.
Moriarty, Nucl. Phys. B210, 50 (1982).

5G. 't Hooft, Nucl. Phys. B138, 1 (1978).
K. G. Wilson, Phys. Rev. D 10, 2445 (1974)~

7M. Creutz, Phys. Rev. Lett. 46, 1441 (1981);K. J. M. Moriarty,
Phys. Lett. 106B, 130 (1981).

H. Bohr and K. J. M. Moriarty, Phys. Lett. 104B, 217 (1981).
M. Creutz and K. J. M. Moriarty, Phys. Rev. D 25, 1724

(1982).
' M. Creutz and K. J. M. Moriarty, Nucl. Phys. B210, 50

(1982).
S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Rev. Lett. 55, 273
(1985)~

K. Symanzik, Nucl. Phys. B236, 397 (1984).
R. L. Stuller (unpublished).

~4R. L. Stuller (unpublished).

'~C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
F. Englert and P. Windey, Phys. Rev. D 14, 2729 (1976).
P. A. M. Dirac, Phys. Rev. 74, 817 (1948).

' B. Gidas, J. Math. Phys. 20, 2097 (1979).
' J. Honerkamp, Nucl. Phys. B48, 269 (1972).
2oR. A. Brandt and F. Neri, Nucl. Phys. B161,253 (1979).
'Reference 20 works with as appropriate to a "static mono-

pole, " i.e., aS equals a large square, three of whose sides are
at infinity. Since instability is caused by the short-distance
behavior of *(V'A ~) in 4 this criterion holds for any smooth
as.
R. L. Stuller and J. Doesselman (in preparation).
I. G. Halliday and A. Schwimmer, Phys. Lett. 101B, 327
(1981)~

~4R. C. Brower, D. A. Kessler, and H. Levine, Phys. Rev. Lett.
47, 621 (1981).

25In fact as shown in Ref. 20 the spectrum can extend to —oo.
A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Phys.
Lett. 59B, 58 (1975).
R. L. Stuller (in preparation).
M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rep. 95, 201 (1983).


