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Magnetic moments of composite 8'bosons
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We have calculated the anomalous magnetic moment of the W boson (~~) in a class of nonrela-
tivistic composite models. We have found, for example, that in a model with only scalar preons,
~~) 3. For the case of two spin- 2 preons with I. =0 and equal masses we find the very surprising

result that v~ ——1, the standard gauge-theory value. There are four possible preon spin states. We
have found a general expression for ~~ for any linear combination of these states. A range of al-

lowed values for ~~ has been obtained. We also discuss the quadrupole moment for a composite 8'.
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where m ~ and m2 are the masses of the W constituents,
which have charges q and (1—q), respectively, and
gyromagnetic ratio g. p is the reduced mass of the sys-
tem: p =m i m q /(m i +m z ).

We first consider the simple use of two spinless preons
which require L =1 to form a spin-1 W+. In this case
S~,——S2,——0 and we obtain

tcw ——x '(1+x) —1, (2)

where x =m&/m2. It is easy to see from this expression
that v~ )3 and thus must be different from the gauge-
theory value vw ——1. The minimum value (tcw ——3) occurs
when x =1; i.e., the preons have the same mass. There
are, however, renormalizable models of the weak interac-
tions where the W is a bound state of spinless preons and
~g ——1.

We now turn to the more complex case of two spin- —,
'

The idea that quarks and leptons may be composite ob-
jects has received much attention recently. The possibili-
ty exists that gauge bosons, such as the W and Z, are also
composite objects. One signal for a composite W boson
would be the observation of an anomalous magnetic mo-
ment (tcw) which differs from the standard gauge-theory
value ~~ ——1. A method of determining the value of Kg
is to make use of the phenomenon of radiation amplitude
zeros. These could be observed in the process
pp~W+—y+X at the CERN Collider or the Fermilab
Tevatron. There is also a dramatic change in the cross
section for e+e ~W+ W at high energies when
tc w& l.

In this paper we calculate the anomalous magnetic mo-
ment of the W boson in a class of nonrelativistic compos-
ite models. The general expression for the Z component
of the W+ magnetic moment is given in a nonrelativistic
model by

preons with L =0. In this case we find that

tcw ———[x(1—q)+q/x+1] —1 .g
2

(3)

x =q(1 —q) (4)

tcw' =gq (1—q)' '+ ——1
2

Note that for q in the above range, the preons have the
same-sign charge. From (5) we see that «w'" lies in the
range (g&2), g/2 —1&tcw'"&g —1. For g =2, however,
~z'" must lie in the more limited region 0 (~~"(1. If q
lies outside of the above range (opposite-sign preon
charges) then all values of tcw are possible and are given
by (3). For the special case of g =2, if we demand tcw ——1

we find q =x(1+x) ' for x&1; for x =1 any value of q
will produce ~~ ——1.

In general for a system of two spin- —,
' particles a total

angular-momentum state J = 1 can be obtained from four
spin combinations:

I
S=O,L =1)= 'PI,

i

S= 1,L =1)= P„
I

S=1 L =0) = Si

iS=I,L =2)= Di .

We now consider the possibility that the W+ is a general
linear combination of these four states and calculate the
corresponding value of K~. To be explicit we calculate
the matrix element (J =1,J, =1

~ pw ~

J =1,J, =1)
using Eq. (1) and the decomposition

Note that if x =1, tcw is independent of q, Kw=g —1,
and for g =2, tcw= 1, the gauge-theory value. (If preons
are elementary we may expect that their gyromagnetic ra-
tio should be that for a point Dirac particle, i.e., g =2.)

Examining tcw as a function of x [Eq. (3)] we find that a
minimum value of ~~ exists provided q is in the range
0 & q & 1 for which we obtain (for g & 0)
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~
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—V3/10P

(
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~

L =2,L, =1)+Pl/10/3
~

s = i,s, = 1 )
~

L =2,L, =0)

+ (s =l,s, = 1)
[
L =1,L, =O) — — (s =l,s, =O) ]L =1,L, =1)

2
' ' ' ' v'2

+5is =0,s, =0) iL =1,L, =1) . (7)

We find that 5~=1 —y2. We find that

i~p ——g(1+x) —+ (1—q)
CX

2

PZ y2
4+4 irg =(y' —1)— (1 —y')' '(1+2q) . (10)

2(1+x)
X

—g(1+x)[q/x —(1—q)](y5/v 2) —1 . (8)

a~ ——2a +5P +y — (1+2q)—1 .
2

First, consider the mixing of only the two negative-parity
states S& and D& implying y=5=0 and a =1—/3 so
that a ~ ——1+3P . Thus jr' is confined to the range
1&Kg'&4; note as P~O we recover our previous result
K~ ——1. Next, consider mixing only the two positive-
parity states 'P& and P~ for which a=/3=0 and

I

We now consider the following special cases assuming

g =2 and x = 1 in which case (8) simplifies to

The next possibility to consider is the mixing of the three
states which are odd under charge conjugation ( C): 'P&,

S, , D, . In this case y=O and 5 =1—a —/3 so that
K~ —2(x + 5P —1; thus Kgr is in the range —1 & a ~ & 4.
There is only a single state which is C even —P&. If the
W+ corresponds to this state then a =P=5=0 and y = 1

so that K~ ——0 uniquely.
If CP is a good classification symmetry then we must

consider both the CP-even and CP-odd possibilities as
well. The CP-even states are the S~, P~, and D~ for
which 5=0 and x ~ ——a +4P . Thus in this case
0(K~ (4. In the CP-odd case the W+ must be the 'P&

state so that a=/i=y=0 and 5=1. Here we find that
K~ ———1 uniquely.

We now turn to a calculation of the quadrupole mo-
ment of a composite W. We make use of Eq. (7) again.
We obtain

(J =1 J,=l
( Q (

J= 1 J,=l) = f (JJ
)
r (3cos 8—1)

[
J J)d r

with C~~ ——C~=(L =/, L, =m I r (L =1, L, =m ) &0 .

We assume central forces so that the CI are mI indepen-
dent and

p = (I+Ir+ y)

C); ——C) )0, C2; ——C2)0.
Thus we obtain the result

Q = [C (y' 25')—C2P'] —. —

(12) and

(13)
Q= 2(k —~) .

Mg
(14)

For negative-parity P = —1 states y =5=0 and
Q= ——,'P C2 &0. For positive parity P =+1, a=/3=0
and Q = —,C~ ( y —25 ) and the sign is undetermined.

If we have positive charge conjugation C = + 1,
a=P=5=0 and y= 1 and, hence, Q = —,C~ &0. For neg-
ative charge conjugation C = —1, y =0 and
Q= ——,'(2C~5 +C2P ) &0. If we have CP=+1, 5=0
and Q= —,'(C~y —C2/3 ) and the sign is undetermined.
For CP= —1, a=P=y=O and 5=1, Q = ——, C~ &0.
The magnetic moment p, and the quadrupole moment Q
are given, in terms of the parameters K and y by

Thus Q &0~A, &v and Q &O~A, &ir.
In conclusion, we have shown, in a class of nonrelativis-

tic composite models, how the anomalous magnetic mo-
ment of the W boson (ir~) can serve as a probe of com-
positeness. In general, for a composite 8' one will obtain
a value which differs from the gauge-theory value, K~ ——1.
A surprising exception to this occurs for the case of two
spin- —, preons with L =0 and equal masses for which we
obtain K~ ——1. There are four possible preon spin states.
We have found a general expression for K~ for any linear
combination of these states. A range of allowed values
for K~ has been obtained. We have also determined the
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quadrupole moment for a composite 8'.
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