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Origin of external sources for classical Yang-Mills fields
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An effort to derive the classical Yang-Mills equation with an external color four-current density
j'"(x) from a more fundamental theory is presented. It is shown that in the case of an arbitrary
static external color charge, i.e., when j'"=bop'(x), the classical Yang-Mills equation follows from
the closed set of classical Yang-Mills and Dirac equations in the limit m ~ ao, where rn is the mass
of the Dirac particle. In the case of the classical Yang-Mills equation with an external color current
j", i = 1,2,3, no such derivation is found.

The classical non-Abelian gauge theory with a fixed
external color four-current density j'"(x) can be regarded
as a model on which we can study the effects of the pres-
ence of color charged matter. The basic equation of the
theory is the nonhomogeneous Yang-Mills equation

D'(A)F "(3)= tj F"" f 3 F' "—= —j'"

damental set of Yang-Mills and Dirac equations to Eq.
(1). The idea is that in the large-m limit, where m is the
mass of the Dirac particle, the Dirac equation becomes
unimportant. This approach is partially successful. It
yields Eq. (1) with static external color charge density
only: i.e.,

where
j'"=6~op'(x) . (3)

It has been investigated since 1976. Rather exciting
discoveries have been made: e.g. , instabilities, ' total
screening solutions, and bifurcating solutions.
Numerous subsequent investigations have significantly
enlarged the body of knowledge about Eq. (1) and its solu-
tions. The emerging picture is abounding in fascinating

phenomena which reflect the nonlinear character of Eq.
(1).

Unfortunately, the value of these results is diminished
by the lack of their interpretation within the framework
of underlying physical theory: i.e., quantum chromo-
dynamics. Another serious objection is that the physical
origin of the external color four-current j'" is not clear
even on the level of unquantized theory. This is due to
the fact that j'" has been introduced as a rather formal
mathematical object with no apparent relation to quark
fields.

In this paper we would like to consider the latter objec-
tion. Our considerations are restricted to unquantized
Yang-Mills and quark fields which obey the fundamental
set of classical Yang-Mills and Dirac equations. If the
non-Abelian gauge theory is in a confining phase the
direct physical relevance of such considerations will be
rather limited. Nevertheless we believe that they can pro-
vide valuable information about mathematical properties
of non-Abelian gauge theories in the presence of color
charged matter. Moreover, there exists also a theoretical
possibility of a nonconfining phase which may even be
realized as a quark-gluon plasma. In this phase the classi-
cal Yang-Mills and quark fields have much more direct
physical applications.

On this unquantized level we make two attempts to ob-
tain Eq. (1). The first one is an effort to reduce the fun-
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Yang-Mills self-coupling constant g =1
c =A = 1. The space-time metric is
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T' are Hermitian generators of the gauge group SU(n)
with the corresponding structure constants f,b„
B„=B„'T', Gx& is the field-strength tensor (2) corre-
sponding to the potential B'", i.e., Gt,„=Ft,„(B' ). The
fact that we consider only one Dirac field is not essential.
The considerations presented below can easily be general-
ized to any number of Dirac fields. Then, the color four-

The second approach is more phenomenological and it is
not successful ~ Here we assume that the external four-
current j'" is produced by a macroscopic experimental
setup, just like the ordinary electric four-current j" con-
sidered in classical electrodynamics. We find out that Eq.
(1) does not follow from a Yang-Mills equation for the to-
tal non-Abelian gauge field present in such experimental
circumstances, essentially because of the nonlinearity of
the Yang-Mills equation. On the whole, our considera-
tions provide a physical motivation for introducing the
external color charge density (3), while the doubts about
the physical origin of the external color current j",
i =1,2, 3 persist.

Now, let us present the two approaches in more detail.
The starting point for the first approach is the fundamen-
tal set of coupled classical Yang-Mills and Dirac equa-
tions
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current density present on the right-hand side (RHS) of
Eq. (4) will have the form of the sum of color four-
currents of all Dirac fields.

For finite momenta of the Dirac particle the large-m
limit is equivalent to a nonrelativistic limit. Therefore we
may apply a well-known reasoning which leads to the
nonrelativistic approximation for Dirac equation (5)
known as the Pauli equation. We find that in the large-m
limit the Dirac equation (5) has the approximate solution

/=exp( imx—)

2m

(6)

where

—B'

and the 2-component spinor y obeys the Pauli equation

1 p 1
(iso —B )ops= rr y+ ek O' G~T y2m 4m

(7)

The corresponding approximate form of the Dirac four-
current density is

gy T'~ ytT'g+O——(m ),
gy'T'Q=O(m '), (9)

and that the spinor cp obeys the simple equation

(ir}o Bo)@=0—.

A general solution of Eq. (11) has the form

y(x, x ) = Vg(x, xo)X(x),

where

(12)

0
V~(x,xo) = T exp i —dt Bo(x,t)

0
(13)

Here Texp denotes the time-ordered exponential, tp is a
fixed instant of time, and the spinor X(x) is arbitrary.

Formula (12) can be regarded as a gauge transformation
to a temporal gauge. The corresponding formula for the
transformation of the gauge potentials is

B~ ——Vg A q Vg '+i ( d~ Va ) Vg (14)

where O(m "), n =1,2, denotes terms which vanish like
m " when m~oo. Thus, we find that in the limit
m ~ oo the Dirac four-current density is

(10)

dp'" f—,b, A p'" =0, (17)

is automatically satisfied in our case. Thus, we do not
find any restrictions on p'(x).

The fact that we have obtained Ap ——0 is not essential.
It is easy to check that the solubility condition (17) im-
plies that in Eq. (1) one can always pass to the gauge (15)
is j"=0for i =1,2, 3.

Thus, we have shown the relation between Eq. (1) and
the set of Eqs. (4) and (5) in the limit m~ oo. The rela-
tion holds only when j'" has the form (3), i.e., when the
external color current density vanishes.

Nonzero Dirac color current j"appears in the next ap-
proximation to the set of Eqs. (4) and (5), when also the
terms of the order m ' are taken into account in addition
to the already considered terms of the order m, see (8)
and (9). Then Eq. (11) has to be replaced by the Pauli
equation (7). In this case we are not able to derive an
external current approximation because it is not possible
to find a general solution of the Pauli equation (7) for gen-

—1eric B„. Therefore, in the order m, one has to consider
the rather nontrivial set of Yang-Mills and Pauli equa-
tions. Let us remark here that a similar set of equations,
consisting of the Yang-Mills equation and an equation ob-
tained from the Pauli equation (7) by dropping out the
spin term ek;, o.,Gk, T', has already been considered.

In the second approach we try to justify the presence of
the external color four-current j'" in Eq. (1) by referring
to a macroscopic experimental setup in a laboratory, in an
analogy to macroscopic external electric currents. For in-
stance, let us consider the case when an external electric
four-current j" is produced by a mechanical arm moving
an electrically charged particle along a fixed line with a
fixed velocity, in a vacuum. The particle is kept on its
route by forces which are essentially of electromagnetic
nature. Here we mean, for instance, the forces which
prevent the particle from escaping from the arm. These
forces are due to very intense, short-range microscopic
electromagnetic fields F";„.The microscopic field I'";„
has, of course, its sources j";„—nuclei and electrons of
materials used to build the arm. The microscopic elec-
tromagnetic field, together with a long-range field F",
which we usually ascribe to the prepared external current
j", form the total electromagnetic field F"„,which charac-
terizes the experimental setup. This total electromagnetic
field and the sources of both kinds of electromagnetic
fields form a solution of an extremely complicated, non-
linear set of equations consisting of a Maxwell equation
and equations of motion for the sources. The Maxwell
part of this set of equations reads

where A& is a new gauge potential. It is easy to see that B„F"„,= —j„, , (18)

Ap ——0. (15} where

Substituting (14) and (10) into Eq. (4) we obtain Eq. (1) in
the temporal gauge (15) with the static external color
charge density (3), where

(16)

Because of (3}, Eq. (15), a solubility condition for
Yang-Mills equation (1),

~ p oy op
Jtot =J +Jmicr (19)

is the total electric four-current.
As one can see from textbooks on electrodynamics,

F";„and j";„usually are not included into considera-
tions, in spite of the fact that they are crucial for the ex-
istence of the external current j". The fact that this is not
an error is due to the linearity of Maxwell equations.
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Namely, F";„and j";,„are assumed to be related also by
a Maxwell-type equation

~pv ~ v
~„Fm.cr = —Jm;, r . (20)

This is an assumption because, in fact, only F"„, and j", t

exist; indeed, a probing charge feels F"„",. F";„and j";,„
are extracted from F"„,and j"„,with the help of additional
definitions. It follows from (18) and (19) as a mathemati-
cal identity that

B„F"= —j
where

F" =F" —F"tot micr

(21)

(22)

Dtt (Bmicr )F (Bmicr ) J micr (24)

where B';„and j';„are extracted from B,'„and j,'„, with
the help of additional definitions which we do not specify
here. Analogously to the electromagnetic case, B';„and
j';„are due to particles which form an arm transporting
a non-Abelian charge along a fixed route with a given
velocity and direction in color space. The fact that such
an arm is possible in the world of color charges follows
from Wong's equations of motion for color charged par-
ticles. It follows from (23) and (24) that

D„'(B„)tF~'( B„ )tD„'(B;,„)F"—(B;,„)= —j'",
where

(25)

av av .avJ:J tot J micr (26)

Now, the question is whether Eq. (25) can be given the
mathematical form of a Yang-Mills equation, i.e., whether
the LHS of Eq. (25) can be written, for all points in Min-
kowski space-time, as

Dq(A)F" (A),

Equation (21) has the mathematical form of the Maxwell
equation (18) in the whole space-time. However, it is
physically relevant only in the regions of the space-time
where F";„=0because there F" =F", , It is precisely
Eq. (21) which is considered in the electromagnetics of
external currents in a vacuum.

In the case of the world of color charged particles and
non-Abelian fields, the analogs of Eqs. (18) and (20) are,
respectively,

(23)

and

where 2 " is a new non-Abelian gauge potential. If the
answer was in the affirmative we would obtain the desired
physical justification for Yang-Mills equation (1). Unfor-
tunately, it seems that in general the answer is in the nega-
tive because no superposition principle for solutions of
Yang-Mills equations has been found until now. Only in
rather particular cases such potential 3'" exists, e.g. ,
when the gauge potentials B'„"„B'";„haveconstant and
identical directions in the color space (then the situation is
essentially the same as in the electromagnetic case and
A '"=B,',", B—'";,„).

Thus, when we prepare the experimental setup which
produces the fixed external color current j'", the corre-
sponding equation for Yang-Mills fields will be (25) which
does not have the form of Yang-Mills equation (1). Be-
cause of the nonlinearity of the equation it is not possible
to subtract the microscopic field.

For the sake of completeness of our analysis of possible
origins of Eq. (1) we would like to remark that an external
four-current appears also in quantized non-Abelian gauge
theory in generating functionals for Green's functions.
However, in this case the external current is a purely
mathematical, auxiliary device and it is not expected to
have any physical meaning. For instance, in order to ob-
tain physically relevant Green's functions, that current
has to be set at zero. Therefore, in this framework we do
not find any motivation for considering Eq. (1).

Finally, let us remark that the external sources con-
sidered in our paper should not be confused with noncom-
muting external sources discussed within the framework
of algebraic chromodynamics proposed in Ref. 8. In
those papers the components j'" of the color charge den-
sity as well as the components 3'" of the gauge potential
are assumed to be finite-dimensional matrices. In the
classical theory which we consider in the present paper
A '"(x ) and j '"(x ) are real numbers; in a quantized theory
they are, roughly speaking, infinite-dimensional matrices;
the theory considered in Ref. 8 is situated somewhere
inbetween. The noncommuting external sources have
been proposed in Ref. 8 without actually deriving them
from the quantum chromodynamics. Therefore in the
case of the noncommuting external sources we encounter
a problem analogous to the one discussed in the present
paper.
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