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An earlier work on finite-temperature renormalization and radiative corrections in QED is gen-

eralized to incorporate finite-density effects.

Some methods of quantum field theory have their ori-
gin in many-body systems. Such theories account for
finite-temperature and -density (FTD) effects in the quan-
tum description and are known to possess nontrivial signi-
ficance in heavy-ion physics and cosmology. A renewed
interest in relativistic calculations in FTD recently arose
from the fact that the spontaneously broken gauge sym-
metries can be restored at sufficiently high temperatures. '

Other effects such as deconfinement and supersymmetry
breaking, although not so well understood, have more re-
cently been found in finite-temperature field theories.
Further, FTD analysis have some interesting physical ef-
fects occurring in the particle accelerators where relativis-
tic plasma is produced. However, for a systematic under-
standing of FTD dynamics one must be able to solve the
basic question of renormalization of FTD. In this con-
nection, we have attempted to study analytically the elec-
tron mass-shift and wave-function renormalization and,
as an illustration of these effects, have calculated the de-
cay of the scalar Higgs boson H~e+e at finite tem-
perature. The above study is meant to be a generalization
of the previous works" on the same issues to all tempera-
tures. In particular, as expected, it correctly reproduces
all results hitherto obtained for "low-"temperature and
"high-"temperature limits of this aspect of the problem
belonging to finite-temperature QED. The basis of the
calculations in Ref. 3 is to take into account the full and
unapproximated form of the fermion density function in
the presence of the heat bath. The results derived therein
are however valid for zero chemical potential ()tt =0). But
for situations where FTD effects with finite value of
chemical potential are required, for instance, in neutron
stars, the above-mentioned work needs to be further gen-
eralized. In order to do that, the chemical potential will
be included in the fermion propagator. The Feynman dia-
grams, however, are calculated by inserting the modified
FTD propagators in the usual p = T =0 Feynman rules.

Following Levinson and Boal, we proceed by introduc-
ing the FTD fermion propagator as

where
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is the p-dependent Fermi-Dirac distribution function. A
plus sign is taken for the positron and a minus sign for
the electron, respectively. The photon propagator in the
heat bath is taken in the Landau gauge, for convenience.
Thus,
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which is the Bose-Einstein distribution.
Now we follow the calculational scheme laid down in

Ref. 3 and essentially reproduce all the steps carried out
there substituting the fermion propagator from Eq. (1) in
place of its corresponding expression with @=0 as taken
in Ref. 3. No additional ultraviolet divergence would
arise in this process because of the natural "cutoff" pro-
vided by the FTD distribution functions. However, in the
calculations of the vertex part, the "extra" order of in-
frared divergence arising from ns(q) in the limit q„~O
must be nullified by the "bremsstrahlung" effect and by
the spontaneous emission and absorption of photons from
the heat bath. As expected, in this case, the presence of
chemical potential in no way affects the result on the can-
cellation of "infrared" divergence ' as derived for the
case of p=0 and T&0. Thus a straightforward generali-
zation of Ref. 3 along the above lines leads to the first or-
der in a electron FTD mass mphy defined as

m h„,
——m+5m(T, )u),

where m is the electron mass at p = T=0 and
(5m /m)(T, p) can be calculated as
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functions over the fermionic charge defined as

a(m p,p) = , [—a(mp,p)+a(m p, —p)],
b(m/3, p) = ,

'
[b—(mP,p)+b(mP, —p)],

c(m p,p) = ,' [c(m—p,p, )+c(m p, —p)],
with
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leading terms in the relevant Green's-function expansion
in powers of mlEI, where El is the loop energy in a
single-loop Feynman amplitude. Also, the symmetrized
functions make the physical mass and the self-energy in-
dependent of charge.

It is trivial to check that in the limit p —+0 and T &0,
we can recover the previously obtained result on self-mass
as the functions a, b, and c in Eqs. (5) simply yield the
corresponding functions a, b, and c [Eq. (2.5) of Ref. 3].
Combining Eqs. (3) and (4)

m~h„, —m 1 — b(mPp) + mTa(mPp)
6u — 4a

+ , amT—1—. —c(mP, p)
as used in Ref. 3. A comparison of Eq. (4) with its analo-
gous Eq. (2.6b) of Ref. 3 suggests that a, b, c replace
a, b, c in the presence of finite chemical potential. Fur-
ther, as in Ref. 3, Eq. (4) here is obtained by retaining the

Similarly, following the procedure for calculating the
wave-function renormalization constant Z2 as given in
Refs. 6 and 7 and using Eqs. (1)—(7), we obtain

Z2 (mP, p)=Zz (T=p=0) — f nz(k) — b(mP p)+ — —ln c(mP p)—2' dk 5& — ~ T
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Next, we proceed to calculate the FTD corrections to the decay rate of the scalar Higgs boson H~e+e . Here again,
we use the symmetrized decay amplitude over the electronic charge because in the final state for this process, there is an
equal probability of e+e pairs produced. Thus the two-body FTD corrections to the decay rate can simply be calculat-
ed as
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(I o is the uncorrected decay rate). Whereas the correction to the phase-space contribution of the decay rate is
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Flax. 1. 5m /m as a function of m P is plotted for the electron
for typical values p =0 and 0.75m.

FICz. 2. 6m /m is plotted against p for typical values of tem-
perature T=m and T=m/2.
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TABLE I. For the decay process H~e+e, the ratio of the total radiative (temperature) correction
EI „,to the decay rate compared to the uncorrected rate I o is tabulated for certain allowed values of p.
The values of mP (or T) chosen here are those where some significant correction is expected.
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0.5
0.25

0.2629
0.2275
0.1834
0.1147
0.0843
0.0326
0.0147
0.0037

p =0.25m

0.3087
0.2158
0.1851
0.1175
0.0908
0.0333
0.0149
0.0039

ar.../r,
p =0.5m

0.3142
0.2150
0.1860
0.1184
0.0908
0.0334
0.0158
0.0041

p =0.75m

0.3128
0.2131
0.2082
0.1173
0.0901
0.0385
0.0171
0.0071

Adding phase-space contributions to the two-body and three-body decay rates, the total FTD corrections to the decay
rate (for p & m) becomes
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It is again trivial to check that Eq. (11) reduces to Eq.
(2.19) of Ref. 3 in the limit p~O.

In conclusion, we make the following observations.
FTD corrections to the electron self-energy are now given
by a generalized formula (4). This result shows that the
chemical potential enters through the functions a, b, and
c only. However, in the case 0 &p & m, we find that

6m +AT for T «m
3m

and

6m a~T2
for T))m .
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A comparison of the above result with Refs. 3, 4, and 6
suggests that the chemical-potential effects for the above
temperature ranges may be neglected. In the temperature
range T-m, however, the chemical-potential effects are
non-negligible, which is obvious from Fig. 1. After
mI3=3, the values of 5m/m for p=0. 75m and p=O
coincide and the curves flatten out. Thus, the p effects
are again negligible for this range. In Fig. 2 we plot
5m /m as a function of p for those values of mP where p
dependence is significant. We notice that the 6m/m vs p
plot is almost a straight line with vanishing slope includ-
ing temperatures T-m. In Fig. 3 the percentage devia-
tions in 6m/m for typical nonvanishing p values, say,
p=0.75m and p=0, i.e.,

5m
m
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(5m /m )(p =0)
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FIG. 3. Percentage deviation 65m/m in the values of 5m/m
as a function of p from the corresponding zero chemical poten-
tial value has been plotted. The plot covers values of (5m/m)
for p =0.75m as in Fig. 1.

is plotted against m P. It shows that for m P= 2,
b, (5m /m ) is maximum, nearly 8%. The same behavior
in 6 values is predicted for other permissible values of p.
Equation (11) gives an illustration of a renortnalized de-
cay rate calculation for a simple process. In Table I
(AI „,/I o) has been computed for various values of p and
mP. For values of T(m/2, (bl „,/I o) is nearly 0.4%
and hence these temperature points are not included in
Table I.

Finally, we note that for p=0 and T «m or T))m,
we obtain from Eq. (11), (bI „,/I o)=0, as the functions
a, b, and c in these limits may be neglected, thus repro-
ducing the results of Refs. 3 and 6.
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