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We discuss solar-neutrino oscillations and the Landau-Zener probability using a heuristic picture
in analogy with an electron spin in a time-dependent magnetic field. The extreme nonadiabatic
resonant oscillation is also briefly investigated.
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The two-neutrino system obeys, as it propagates in matter, the Schrodinger equation'

a(t ) —cos20

4E sin20

with 0, 6m, and E the mixing angle, (mass) difference,
and energy of the neutrino, respectively. In Eq. (1)

are represented, as shown in Fig. 1, by two unit vectors

+ np = + (cos29e, +sin20e ), (6)
6m
2E

a(t)=v 2N, (r(t))GF, (2)

is the matter-induced v, -v& splitting with N, (r(t)) the
electron number density at distance r from the Sun's core.

A simplication of the geometric aspects of the problem
occurs if we consider neutrinos born at t =0 in the Sun' s
core so that r =t. Although this simplication is not essen-
tial we will use it for now.

Level "crossing" occurs at ro where

respectively. In Fig. 1 the e, ( —e, ) direction corresponds
to the v, (v&) state. We note that +np are tilted by twice
the angle, i.e., by 20. The time evolution of v, (i.e.,
v, —v„oscillation in vacuum) can be described by the pre-
cession of a unit vector p, o, which is taken to coincide ini-
tially with e„around the axis no with the frequency
cop ——6m /2E (Fig. 1).

Upon defining an angle Pp as cos2Pp=Pp e„ the proba-
bility that v, remains as v, is given by

a(rp) =cos20 . P(v, ~v, ;vac)=cos Pp ———,'(I+pp e, ) . (7)

The diagonal elements in the 2 X 2 Hamiltonian of Eq. (1)
are then equal [vanishing due to the overall phase subtrac-
tion implicit in Eq. (1)]. Diagonalizing the matrix H(t)
yields two "instantaneous" levels: e, =cos20e,' —sin20e „' (8a)

In a coordinate system in which no ——e,' and e~ =e~, we
have

8', (t) = —8', (t)
Pp

——cos20e,' —sin20(coscopte „'+sincopte~ ) . (8b)

2E
= —,

'
[ [a ( t ) —cos20] + ( sin20) I
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In vacuum, the two mass eigenstates

~
vi )„„=cos0

~

v, ) +sin0
~
v„),

~
v, )„.,= —sinO

~
v, )+cos0

~
v„)

(4) Substituting Eq. (8) into Eq. (7), we obtain the familiar re-
sult for vacuum oscillations

P( v ~v vac) = 1 —sirl (20)siil (topt/2) (9)

For v, produced in the Sun, the mass eigenstates in
matter
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~

v&(t)) „=cosa(t)
~
v, )+sinu(t)

~
v„),

~

vq(t)) „=—sina(t)
~
v, )+cosa(t)

~
v„),

are represented by the two instantaneous unit vectors

(10)
5m

co(0)= (sin28)
2E

(13)

The rate of migration of the axis n(t) can be read off
from Fig. 1:

co(r ) = 8',(t) —8', (t) . (12)

+ n(t) =+(cos2ae, +sin2ae„) .

The time evolution of v, is now described by the preces-
sion of P around the instantaneous n(t) axis [see Fig. 2(a)]
with the frequency

1 sin2L9
arctan

2 di

1

1+[a(t )/sin28)
(14)

(Its vacuum value is of course coo ——5m /2E. ) Note that
cu(t )n is a vector sum of chrono and —acooe, . Our picture is
equivalent to that of precession of an electron spin around
a fictitious time-dependent magnetic field B(t)=co(t)n(t)
(Ref. 10). A relationship between the vacuum mixing an-
gle 0 and the effective mixing angle in matter, a, can easi-
ly be found from Fig. 1 as tan2a =sin28/(cos28 —a ).

As v, propagates in the Sun, the vector con migrates up-
ward toward the vacuum vector copnp with its x com-
ponent fixed as coosin28. At the crossover point (which
for convenience we shift to t=0) co(t) has its minimal
value

a(t ) =—a(t ) —cos28 =a'(0)t (15)

in which case a'(t)=a'(0)= const. At crossover (t=O)
a(t) vanishes and the expression (14) for co obtains its
maximal value

co (0)= —,
' ~a'(0)

~

/sin28. (16)

Intuitively we expect the ratio of precession frequency to
migration angular velocity to be a measure of the good-
ness of the adiabatic approximation. This ratio obtains its
minimal value at t=0,

For simplicity we will adopt the linear approximation in
which the vector r0(t) travels with constant speed along
the vertical line in Fig. 1, i.e.,

co(0) 2 sin28 5m

co (0)
~

a'(0)
~

2E
(17)

and hence we expect the probability of level jumping at
crossover to be a monotonically decreasing function of r.

The adiabatic approximation applies when co is much
smaller than the precession co(t), i.e., large r, so that the
system "can follow" the changing B(t). Thus, if initially
on the upper branch, 8'q(t ) say, the system will remain on
the same branch.
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FICx. 1. The precession analog of neutrino oscillations. The
e, ( —e, ) direction corresponds to v, (v„). The vacuum mass
eigenstates v& „„and v& „„are represented by +np. Neutrino os-
cillations in vacuum correspond to the precession of the state
vector pp around np with the vacuum precession frequency
Q)p=5m /2E. In matter the instantaneous state vector (which is
not displayed in Fig. 1) precesses around n with a frequency co.

is given by the vector sum of cop and —(6m'/2E)a(t)e,
which is the matter contribution.

(a) (b)

FICx. 2. Neutrino oscillations in matter. When v, is produced
in the Sun, the state vector p, precesses around n as shown in
(a). In the adiabatic case, p continues to precess around n(t)
until n(t} becomes np. (This is when the neutrino leaves the
Sun. ) When observed at the Earth, p is precessing around np, as
shown in (b).
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In our picture, the solar-neutrino oscillation may be
described as follows. When v, is produced in the Sun, the
vector p is precessing around the axis n as shown in Fig.
2(a). By the time when v, leaves the Sun, n has migrated
to n0 and when this process is adiabatic, p continues to
precess around n which eventually becomes n0 as shown
in Fig. 2(b). The adiabatic process means that the opening
angle of the cone formed by the precessing p remains the
same. The probability that v, survives as v, is given,
from Eq. (7), by

P(v, ~v, ) = —,(1+P.e, ), (18)

where e, and P are given by Eqs. (8a) and (8b) with 0 in
Eq. (8b) replaced by a. When averaged over time, Eq.
(18) leads to the well-known result

P(v, ~v, )= —,(I+cos29cos2a) . (19)

In general, if H~z(t ) is a perturbation effecting 8'z~ 8'&

transitions, we have, to lowest order in H12, a transition
amplitude

OO OO~„=f dtH, z(t)exp i f 8'z(t')dt' exp i f 8', (t')dt'

OOf dt H &z (t )exp i f coz, (t')dt'

(20a)

(20b)

where the exponentials in (20a) represent the phase factors picked by the system prior to and after the 2~1 jump at time
t and coz~ ——8'z —8'~. In Eq. (20b) we factorized a constant phase e' which does not affect the transition probability
given by, to lowest order,

(21)

The migration of the axis n(t) can be viewed as precession around the ez direction with frequency co . This is
equivalent to an off-diagonal matrix element of a Hamiltonian for the equation of motion of v] and v2..

H, z(t)=co (t)=—1 la'(0)
l

1
(22)

2 sin20 1+[a(t)/sin2(9]z

Substituting Eq. (22) into (20b), we finally obtain

(1) ie312 ——e
2 sin20

exp i f l[a'(0)t'] +sin 2I9I'~ dt'—
0 2E

1+[a'(0)t] /sin 26)
(23)

with the (1) suffix indicating first-order perturbation.
Defining

——e' exp co»(t')dt'
0

(28)

sinhz —=
sin20

we can rewrite Eq. (23) as

dz ef"

(24)

(25)

where

f(z) =—(z+ —,
' sinh2z) —ln coshz .

4
(26)

Calculating Eq. (25) with use of the saddle-point method
(stationary-phase approximation), we find

1/2

~ (1) i+ ~ 1/3 —7Ir/8~12 —e e e
6

or

~(1) ~ 2/3 —mr/4 —m.r/4
6

(27)

which is the Landau-Zener (LZ) formula. "'

The LZ formula is a special case of the general WKB
formula

where to satisfies coz&(to) =0 and is the complex crossing
point nearest to the real axis. Equation (28) corresponds
to our Eq. (20b). In the stationary-phase approximation,
Eq. (28) allows us to generalize to the Zener formula
beyond the linear approximation (15) to treat three-level
crossings, etc.

Finally, we note that though the route yielding Eq. (27)
in the treatment of Zener' and Dar et al. [by reducing
Eq. (1) to an exactly solvable Weber equation and investi-
gating the asmptotic behavior of these solutions] appears
to be very different, it is actually very similar. The
asymptotic behavior of special functions are generally ob-
tained by using the WKB (stationary phase) approxima-
tion on integral representations anyway.

Let us next discuss P]2 in the extreme nonadiabatic
case with the r parameter very small; i.e., precession
which is slow compared with the migration of the axis.
Consider the evolution of the system between two times
symmetric relative to the crossover t =0 which, in order
to include the bulk of the crossover region, are taken to
correspond to m vectors at +45 relative to the x axis.
[See Fig. 3(a).] In the limit of small net precession, the in-
dividual rotations ca(t)dt can be vectorially added to yield
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The corrections due to noncommutativity of rotation
will be only 0(r ) and by symmetry we expect that the
net rotation will be along the x axis as in Eq. (29).

That is, in contrast with the adiabatic case where the
vector p, ; representing v, precesses continuously around
n(r ) =cos2ae, +sin2ae„, in the extreme nonadiabatic
case, since n migrates rapidly (compared with the preces-
sion) to no, P; is simply rotated to pf by an angle r [see
Fig. 3(b)] according to Eq. (29).

The probability P(v, ~v, ) in this case is given by

PN&(v, ~v, ) = —,(1+cosy cos28), (30)

(b)

FIG. 3. The transition through the crossover region from

m; =(5m /2E)sin20(e„—e, ) to cof ——(5m /2E ) sin20(e„+e, ) at
time t; f =+ sin28/

~

a'(0) ~, respectively. The intermediate co(t )

vector travels as indicated by the arrow at constant speed
dco, /dt=a'(0) along the line parallel to the z axis. (ru) is the

average value of u. The effect of the e„rotation by angle r
around the x axis on the initial state vector p, ; is shown in (b).

PNA(v, ~v, ) = —,[1+(1—2P &z )cos28 cos2a], (31)

where P&z is the transition probability from level 2 to lev-
el 1. Comparing Eq. (30) with Eq. (31), we obtain P&z
applicable to the extreme nonadiabatic case as'

r

1 cos20
P&z ——— 1 —cosr

2 cos2a
p 2

4
(32)

where the subscript NA denotes the nonadiabatic case,
and y is the angle between pf and no, i e.,
cosy =cosr cos28. For nonadiabatic processes, Eq. (19) is
modified to

a resultant rotation

m t dt= u tf tg

(sin28)2(sin28) 5m

~

a'(0)
~

2E

with r defined in Eq. (17).

for 0=0 and a=90'. This is in agreement with the result
obtained analytically in Ref. 13. We note that the result
in Eq. (32) is different from P~z-1 —mr/4 which would
have resulted from a naive (and unjustified) extrapolation
of the LZ formula in Eq. (27) to small r values.
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