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We study the thermodynamics of lattice quantum chromodynamics for two and four flavors of
staggered fermions at temperature T =1/4a, where a is the lattice spacing. For four flavors with

mass below 0.05/a we find evidence for a first-order chiral-symmetry-breaking phase transition.
For two flavors there is an increasingly rapid crossover as the mass is lowered, but we find no con-

clusive evidence of a first-order transition for quark masses down to 0.0125/a. A rough estimate is

made of the zero-mass transition temperature for two flavors of quarks.

I. INTRODUCTION

The phase structure of lattice gauge theory for finite
temperature is important for an understanding of quan-
tum chromodynamics and has potential. implications for
both astrophysics and nuclear physics. This problem has
been studied extensively for pure SU(3) lattice gauge
theory' and results have recently been reported by several
groups for SU(3) lattice gauge theory with four flavors of
dynamical, staggered fermions. In this paper we
present further data for four flavors of staggered fermions
as well as results for two light flavors.

The partition function for the theory we study can be
written in the form

Z= f [SU]e '~ "detM(U) I"

= f [5U]e det[P, M (U)M(U)P, ]

= f [6U]e

S~ is the Wilson action for pure gauge theory, and the
fermion matrix M ( U) is given by

nl PM ( U)i j =2 ma 5i j +g ( Ui pot j pUi —p p ~i —j +p )

p P

(2)

i and j refer to lattice points and p is a unit vector on the
lattice. U;& is the SU(3) matrix associated with the link
leaving the ith lattice point in the p direction. I is the
quark mass and g; & are the usual staggered-fermion
phases. The lattice spacings in the space and time direc-
tions are given by a a, and aux„respectively, with a„=e,
for p pointing in any of the spatial directions and a& ——o.',
for p pointing in the time direction. We shall be interest-
ed in the limit o.„a,~1. The number of quark flavors is
Nf. The matrix M has been raised to the Xf/4 power

since M itself describes four flavors of quarks. In the
second line of Eq. (1) we have used the well-known fact
that M M does not connect even and odd lattice sites, and
has the same determinant on both sublattices. P, is a
projection operator onto even sites. Its introduction
prevents another doubling of flavors.

In order to carry out our simulation we wish to gen-
erate a set of configurations of the U's with a probability
distribution proportional to exp( —S,tt). We do so by
making use of the hybrid-molecular-dynamics algorithms
described in detail in Ref. 7. In order to employ these al-
gorithms we must extend the effective action by introduc-
ing an auxiliary field that plays the role of the momentum
in a standard molecular-dynamics calculation. Integra-
tion of the molecular-dynamics equations moves the sys-
tem along surfaces of constant probability for the extend-
ed effective action. In integrating these equations numeri-
cally we introduce a finite step size At. We define one
physical time unit of the simulation to consist of 1/At
molecular-dynamics steps plus at least one heat-bath up-
dating of the auxiliary "momentum" field. The time his-
tories we present are all measured in these units.

In Sec. II we present results for four flavors of quarks
with masses in the range 0.5) am )0.025. Most of our
work was on 8 )&4 lattices with some checks of finite-size
effects on 10 )&4 lattices. Although for all masses we
find a range of gauge couplings in which the plaquette
and the Polyakov loop undergo rapid change, we find
strong evidence for a first-order phase transition only for
am =0.025. Our results are in good agreement with those
of other authors.

In Sec. III we set out the formalism needed to evaluate
the energy and pressure of the two-flavor theory. Then in
Sec. IV we present our two-flavor results. We again find
a region of rapid crossover, but do not find evidence of a
first-order phase transition for am )0.0125. It is, of
course, possible that a first-order transition does exist at a
finite mass lower than the ones we have studied, or that
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FIG. 1. Hysteresis loops for (a)
~

0
~

and (b) ff. Open circles are those obtained while increasing the coupling constant. Solid
squares are those obtained while decreasing the coupling. One hundred time steps were run at each value of the coupling except for
ma =0.025, for which 50 time steps were run.
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the transition is second order and does not occur until
there is a zero quark mass. We give a rough estimate of
the zero-mass transition temperature.

II. FOUR-FLA VOR RESULTS

In this section we discuss the thermodynamics of QCD
with four flavors of equal-mass staggered fermions. Ex-
cept for the results shown in Fig. 3, all data were taken on
an 8 &4 lattice. For this part of our study we used the 4
algorithm of Ref. 7 in which the fermion determinant is
eliminated by the introduction of an auxiliary scalar field.

It is known that in the limit of large quark mass the
theory has a first-order phase transition associated with
color deconfinement. ' However, it has been observed that
this transition weakens as the quark mass is lowered, and
finally disappears. ' For a sufficiently small quark mass,
evidence has been found for a first-order transition associ-
ated with chiral-symmetry breaking. ' The range of
masses over which the transition is absent is large —about
an order of magnitude.

We began our study of this problem by making runs for
a variety of masses in which the gauge coupling /3=6/g'
was varied over a region in which measured quantities
changed rapidly. We began with an equilibrated lattice on
one side of the crossover region and slowly changed /3, go-
ing through the crossover region and then returning. The
coupling was incremented or decremented in steps of
b/3=0. 1 for all mass values except ma =0.2, for which
steps were 6/3=0. 05. One hundred time units were run at
each value of the coupling except for ma =0.025, for

which 50 time units were run. The resulting hysteresis
loops for the magnitude of the Polyakov loop,

~

II ~, and
the chiral order parameter t/ttj are shown in Figs. 1(a) and
1(b), respectively. In these graphs the open circles are
those points obtained while increasing the coupling con-
stant, and the solid squares are those obtained while de-
creasing the coupling. It will be noted that there is a re-
gion of rapid variation in

~

II
j

for all masses, and that
the overall jump in this quantity does not vary appreci-
ably as a function of mass. Not surprisingly, there is sig-
nificant variation in t/t/ only for small values of ma.
These results are in agreement with those of Ref. 2.

The hysteresis loops seen in Fig. 1 can arise either be-
cause of an increase in the equilibration time in the vicini-
ty of the crossover region, or because of the presence of a
first-order phase transition. In order to investigate this
point we searched for the coexistence of two different
states. This was done by equilibrating the lattice at values
of /3 above and below the crossover region, and then fol-
lowing the time history of

~

II
~

after the coupling had
been set to the crossover value. In Fig. 2 we see that for
short runs approximately coexisting states were found for
all values of ma except ma =0.2. However, upon extend-
ing the runs, we found that the system evolved into one or
the other states for all values of ma except ma =0.025.
Results of the longer runs are illustrated in Fig. 3 where
we show data for ma =0.05 on both 8 &&4 and 10 )&4
lattices. It will be noted that the values of

~

0
~

in the
two states are virtually independent of volume. At a
slightly larger value of /3, both hot and cold lattices quick-
ly equilibrate to the larger values of

~
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FIG. 2. Approximately coexisting states. Each plot shows two time histories for
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Q coming from the same system, but with dif-
ferent initial conditions.
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FIG. 3. Longer time histories of states with different initial

conditions for ma =0.05. One plot is for an 8'&&4 lattice, the

other is for a 10 )C4 lattice.

FIG. 5. A plot of the values of (PP) immediately above and
below the crossover region as a function of mass.

p= 5.00 they quickly equilibrate to the lower value.
There is a sharp crossover region, with a rather long
equilibration time at the transition coupling, but there is
no conclusive evidence for a first-order transition at
ma =0.05.

In Fig. 4 we show the time history of the Polyakov loop
for ma =0.025 and P=4.96 from hot and cold starts. We
interpret the rapid change in the state with a large value
of ! II at t =380 as a genuine tunneling. We believe our
results are indicative of a first-order phase transition at
ma =0.025 in accordance with the conclusions of Refs. 4
and 5. However, we have not conclusively ruled out the
possibility that the crossover simply becomes sharper and
the equilibration time longer at smaller masses, and that
there is no phase transition for finite ma.

Our value for the critical coupling constant at
tna =0.025 is P, =4.96+0.03. We have measured the
discontinuity in the magnitude of the Polykov loop, the
chiral order parameter, and the plaquette P in the two
phases at ma =0.025 to be

~(!n! ) =o.45+o.02,

&(QQ) =0.33+0.01,
b. (P) =0.136+0.006 .

(3)

All of these results are in agreement with those reported
in Ref. 5.

In Fig. 5 we plot the values of the chiral order parame-
ter (PP) immediately above and below the crossover re-
gion as a function of mass. The order parameter in the
symmetric phase extrapolates toward zero at ma =0.0,
while in the broken-symmetry phase it approaches a finite
value. The error bars in Fig. 5 are statistical, there may
also be systematic errors arising from uncertainty in the
position of the crossover points. Finally in Fig. 6 we plot
the value of p at the crossover or transition point as a
function of quark mass. The curve extrapolates to a zero
mass value of P=4.90+0.03.
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FIG. 4. Time history of ! II! for ma =0.025 and P=4.96
from hot and cold starts.

FIG. 6. The value of P at the crossover or transition point as
a function of quark mass for four flavors of fermions.
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III. ENERGY AND PRESSURE OF LATTICE @CD

The energy density and pressure are computed from the
expressions

0 g 5.26 5.2B 5.30 5.32 534 536 534 532 530 152B 5.26

I

1 BlnZ6=-
v ap

(4)

0.6—

(D

0.4 '—

1 BlnZ
P=p av

where the partition function Z is defined in Eq. (1). If we
denote the gauge and fermion contributions to the energy
density by eg and ef, respectively, and introduce similar
notation for the pressure, then
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Here P„and P„are the space-space and space-time pla-
quettes and g, and g, are their respective couplings.
/=a, /a„and we have set a, =a, =1.0 after performing
the differentiation.

Using the fact that trA=(R*AR)~, where R is a
Gaussian random vector, we can write the fermion contri-
butions to the energy density and pressure in the form

0.0
0 500 1000

time
1500 2000

FIG. 7. Unfolded hysteresis loops for (a) Refl and {b) tT1(j for
two flavors of fermions with ma =0.025 on an 8')&4 lattice.
The run was started at P=5.26 and P was changed by 0.02
every 200 time units.

a ef — g ( (X*P,M, R +H. c. ) )

3Q pf =—4 g ((X*P,M, R+H. c. ) )
4N, N, „„,

Nf Bm Bm+ 3
0 +

2N, 3N, ag a lna,

X g ((X*P,R+H. c. ) )~,
sites

+ 3
a g((X PR+H c ))z,Nf Bm

2N, N,
(6)

where X=(1/M)R, and M, and M, are the spatial and
temporal hopping terms in the fermion matrix, Eq. (2).

A perturbative calculation of ag, /ag and ag, /ag
has been carried out for the pure gauge theory by Karsch
and extended to zero fermion mass by Trinchero. ' These
calculations have been done to one-loop order so we must
also use the one-loop P function in Eq. (6). At zero tem-
perature, or on an N lattice, the space-space and space-
time plaquettes are equal, and M, and M, give the same
contributions. Euclidean invariance requires that e= —p
at zero temperature. This in turn requires that, neglecting

TABLE I. Parameters used in the conjugate-gradient calculations for two flavors of quarks. ma is
the quark mass in units of the lattice spacing, At is the microcanonical step size, R the conjugate gra-
dient residual, V the volume of the lattice, and N, g the average number of conjugate-gradient iterations.
For masses 0.1, 0.05, and 0.025 we give N, s for p immediately above and below the crossover region.
For 0.0125 we given N, ~ exactly at the crossover.

ma

0.1

0.05
0.025
0.0125

0.04
0.04
0.02
0.01

(R 2yy)1/2

0.005
0.005
0.005
0.0025

Ncg

55 (P=5.3) 41 (P=5.5)
93 (P=5.26) 65 (P=5.38)

149 (P= 5.26) 86 (P=5.34)
240(P =5.275)
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5.200
5.260
5.300
5.350
5.365
5.375
5.400
5.450
5.500

1.3695+0.0020
1.4230+0.0032
1.4527+0.0045
1.5003+0.0021
1.5314+0.0040
1.5629+0.0052
1.5891+0.0053
1.6274+ 0.0018
1.6525+0.0029

1.3725+0.0019
1.4221+0.0027
1.4561+0.0042
1.5017+0.0017
1.5352+0.0044
1.5687+0.0051
1.5972+0.0060
1.6383+0.0028
1.6616+0.0033

0.544 48+0.001 29
0.507 54+0.002 15
0.478 91+0.002 66
0.442 36+0.004 79
0.397 61+0.006 78
0.347 51+0.008 19
0.309 45+0.008 17
0.268 36+0.002 77
0.250 22+0.002 61
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FIG. 10. The energy and pressure (in units of 1/a ) on an
8'&4 lattice with ma =0.025. The zero-temperature contribu-
tion has been subtracted out as described in the text. The sub-

tractions at P=5.285, 5.2875, and 5.29 were obtained by inter-

polating between P=5.28 and 5.3 on the 8 lattice. This is justi-
fied since the 8 lattice is behaving smoothly in this region.

ably constant across the transition region which provides
an internal check.

EV. TWO-FLAVOR RESULTS

We simulated QCD with two flavors of quarks using
the "R algorithm" described in Ref. 7. Most of our simu-
lations were done on 8 &4 lattices, but we also ran on
some 8 lattices to get the zero-temperature energy and
pressure.

We began our study by checking the effects of the finite
step size in the molecular dynamics steps and the effect of
different stopping residuals in the conjugate gradient on
ttg and the average plaquette. These results will be re-
ported in more detail elsewhere. Based on these results we
adopted the parameters in Table I. Here At is the micro-
canonical time step, 8 is the conjugate-gradient residual,
and V is the volume of the lattice. Since the random
source vector has a magnitude proportional to the lattice
volume, we normalize the residual by dividing by V.

We have carried out thermal cycles for various masses
as in the case of four flavors. %'e typically ran a few hun-

FIG. 11. The value of P at the crossover point as a function
of quark mass for two flavors of fermions.

dred time steps at each value of 13. Figure 7 shows the
time history of the Polyakov loop and gg for such an
"unfolded" loop at ma =0.025. The abscissa on this plot
is actually the molecular dynamics time, and P was
changed every 200 trajectories as indicated on the plot.
Notice that the measured quantities change dramatically
over a small range of p just as in the case of four flavors.
We next made some long runs in the apparent transitional
range of 13 with hot and cold starting lattices. Figure 8 is
the time history of such a pair of runs for ma =0.025. In
all cases we found that the hot and cold starts evolved
slowly together, as in Fig. 8, over a period of as much as
200 time units. This is in contrast with the behavior ex-
pected at a first-order transition where if the time his-
tories converged at all they would be expected to do so in
a "tunneling" event. As we decreased the quark mass we
found that the correlation time of the system increased
and the dependence of /3 became sharper. For example,
Fig. 9 is a plot of (Pg) against P for several masses. It is
clear from these results that we are approaching a phase
transition. However, we cannot say whether this transi-
tion is a first-order transition appearing for quark masses
smaller than those we have simulated or a higher-order
transition, which would be smoothed out for any finite
quark mass.

We measured equilibrium thermodynamic quantities
from the final parts of the runs after the system had

TABLE III. Values of the fermion component of the energy and pressure, ef and pf, as a function of
P on an 8' X 4 lattice for ma =0. 1.

5.200
5.260
5.300
5.350
5.365
5.375
5.400
5.450
5.500

a 4

0.363 02+0.001 19
0.362 90+0.000 82
0.369 72+0.001 86
0.372 56+0.002 84
0.377 57+0.001 66
0.388 37+0.001 83
0.396 30+0.002 39
0.400 38+0.002 39
0.403 12+0.000 91

a pf
—0.359 12+0.000 59
—0.362 09+0.000 70
—0.360 75+0.000 87
—0.36107+0.00108
—0.360 59+0.000 35
—0.358 39+0.000 66
—0.357 64+0.001 09
—0.357 13+0.000 97
—0.357 48+0.000 47
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TABLE IV. Values of the total energy and pressure and the quantity e—3p as a function of p on an
8'0&4 lattice for ma =0.1.

5.200
5.260
5.300
5.350
5.365
5.375
5.400
5.450
5.500

0.8791+0.0026
0.8817+0.0020
0.9187+0.0054
0.9298+0.0117
0.9575+0.0056
0.9888+0.0051
1.0170+0.0088
1.0485+0.0115
1.0525+0.0080

a p

—0.8585+0.0012
—0.8858+0.0019
—0.8900+0.0034
—0.9104+0.0038
—0.9182+0.0011
—0.9251+0.0019
—0.9310+0.0016
—0.9407+0.0032
—0.9525+0.0027

a (e —3p)

3.4513+0.0041
3.5362+0.0049
3.5860+0.0090
3.6585+0.0014
3.7097+0.0070
3.7620+0.0078
3 ~ 8081+0.0073
3.8692+0.0036
3.9086+0.0047

equilibrated. We tabulated results for a number of quanti-
ties at all measured masses, and we present those for
ma =0. 1 in Tables II—IV. Because of the correlations
among different quantities the error bars on the total ener-

gy and the pressure and on e —3p are less than those
which would be obtained from simply combining the er-
rors of their individual components.

In studying the energy and pressure we wished to iso-
late the finite-temperature contributions, since they are
the ones accessible to experiment. We therefore measured
the energy and pressure on an 8 lattice with ma =0.025.
In order to cancel as much of the systematic error as pos-
sible, we used the same microcanonical time step, the
same accuracy per site in the conjugate gradient, and the
same spatial size in studying the "zero"-temperature and
high-temperature lattices. The energy and pressure with
the zero-temperature values subtracted are plotted in Fig.
10. Notice that the pressure is much smoother than the
energy density across the transition region. This is
reassuring since we expect the pressure to be continuous
across any transition.

Before beginning this study we did not know if the real
world would be better approximated by two or by three
flavors of low-mass quarks since the strange-quark mass
is roughly equal to the temperature range of interest.
Having done the calculation we see that the chiral transi-
tion occurs only for very small or vanishing quark masses.
Therefore we would not expect the inclusion of a 150-
MeV quark to qualitatively change the results. Of course
it would shift the crossover value of p.

In Fig. 11 we plot the dependence of p„ the value of the
coupling at which the behavior changes most rapidly, on
ma. With Nz- ——4 our temperature is a T=

4 . Clearly we
would like to know the critical temperature in MeV, and
to do so we need to measure a known mass to set the
scale. We have only recently started to measure hadron
masses, but Billoire and Marinari' have reported hadron
mass measurements with two flavors of Kogut-Susskind
fermions on a 6 X24 lattice at p=5.4, and their results
can be used to make a rough estimate of the transition

temperature. Using measurements at quark masses of 0.1

and 0.2 from two different operators coupling to the p
meson they extrapolate the p mass in units of the lattice
spacing to be 1.17 or 1.30. If we use the perturbative p
function to scale these masses to p=5.26, we obtain esti-
mates for T, of 134—121 MeV. However, in the pure
gauge theory the effective p function for Nr-4 was
about one-half of the perturbative p function, and there is
no reason to expect better behavior with fermions. How-
ever, we have not scaled over a very large range of p, and
if we arbitrarily use one-half of the perturbative p func-
tion these estimates change to 146—132 MeV. These
numbers are very uncertain. They contain the uncertainty
in our estimate of the critical p extrapolated to zero quark
mass as well as the uncertainties in the mass measure-
ments of Billoire and Marinari. We have repeated the cal-
culations of Billoire and Marinari for the vr and p masses,
and found agreement with their results. Calculations for
smaller quark masses and larger lattices will be reported
elsewhere. Both our high-temperature calculation and the
mass calculation suffer from the effects of a coarse lattice
spacing and a small spatial size of the lattice. Certainly
hadron mass calculations in the pure gauge theory show
large systematic errors when measured on lattices as small
as this.

Although the transition with dynamical quarks is signi-
ficantly softer than in the pure gauge theory, perhaps even
nonexistent for finite-mass quarks, the energy at least
rises very abruptly over a small range of temperature.
Certainly QCD with dynamical fermions undergoes a
dramatic qualitative change as the temperature is raised.
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