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Asymptotic flavor symmetry and its implication on v =pv, and K v, branching ratio
and ground-state 1 meson multiplet
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A remark is made on the overall consistency between the ~~pv, and K v, decays and other
phenomenology of the ground-state 1 mesons obtained from the sole use of asymptotic flavor
symmetry in the theoretical framework of a QCD Lagrangian with quark-mass terms.

The ~ ~p v turned out to be the largest one-
charged-prong decay mode of the v. and its branching
fraction is (22.3+0.6+1.4)%, according to the latest re-
sult which is also compatible with previous measure-
ments. In Ref. 1 the branching fraction of r ~K* v,
is found to be (1.3+0.3+0.3)% and the ratio of branching
fractions R =B(r ~K v, )/B(7. ~p v,) is measured
to be 0.058+0.013+0.013. If the error involved is further
reduced, the value of R provides another relatively clean
test of the validity of asymptotic flavor symmetry in the
well-established ground-state 1 -meson multiplet.
These decays were, in fact, discussed quite some time ago
even before the discovery of r and v, and the results were
compared recently with the experiments now available.
Let us write down the relevant parts of weak interactions
as follows in obvious notations: i.e.,
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respectively, where e„(q) is the polarization four-vector
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the charged weak vector boson and 0 denotes the Cabibbo
angle. The p-8' and K'-8 coupling constants G& and
Gz, are defined by
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For simplicity, we have chosen a zero mass for v, and
used the narrow-width approximation for p and K*.
What is the relation between G& and GK+~

We briefly recapitulate the derivation of the following
prediction based on asymptotic flavor-SUf(3) symmetry,
which was derived quite some time ago without having
direct confrontation with experiment:

Gp

m& m
(3)

Consider an annihilation operator of a physical (i.e.,
"in" or "out") hadron aa(k, A.) with a physical SUf(N) in-
dex a, momentum k, and helicity A, . The transformation
of a (k, A, ) under SUf(N) can be expressed as

[V;,a (,kA, )]=i g u; p(k, A, )ap(k, A, )+5u; g(k) .
P

In exact symmetry, 5u vanishes for any k and the indices
a and 13 belong to the same SUf(N) multiplet. However,
in broken symmetry the 6u term is present and the
transformation becomes nonlinear. However, if dynamics
permits, we may still hope to possess linear transforma-
tion in the limit kaz oo, where multiplet masses do not
play a role. However, particle mixing which inevitably
takes place does not disappear even in this limit. There-
fore, on the right-hand side of Eq. (4), gp is extended
over all possible particles P which have the same J or
J as a but belong to a different SUf(N) representation.
With this modification, the asymptotic symmetry pro-
posed requires

5u; q(k)~, , e & 0 for k~ Oe .
1

(5)

The usual linear SUf(N) transformation is expressed in
terms of a (hypothetical) representation operator al(k, i, )

which satisfies, for example,

X(m —mp ) (m, +2m' ), [ V;,aJ(k, &)]=t'f Jt at(k, i, ) .
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Therefore, for only k~ ao, the physical operator a (k, k)
can be related linearly to aj.(k, A, ) by

a (k, i,)= g C J(A, )aj(k, A. ), kazoo . (6)
l

In Eq. (6), j thus includes, in principle, all possible
relevant representations. Therefore, the matrix C

~
in-

volves mixing parameters. Although mixing parameters
appearing in C J play exactly the same role as the conven-
tional mixing parameters in mass formulas, there is a sub-
tle but potentially important difference. That is, our
C J's are defined, for the creation and annihilation opera-
tors of the "in" or "out" fields, in the limit k~ ~ where
the SUf(N) transformation may restore its linearity in
broken symmetry. Usual mixing (defined for field vari-
ables) does not make such a discrimination and the pro-
cedure is more approximate. Moreover, in the asymptotic
symmetry formulated above, vacuum annihilation by
SUf(N) charges is used only among the states with infin-

ite momenta (a process called vacuum annihilation by
lightlike charges). Physical on-mass-shell states

~
a, k, k)

can then be expressed linearly in terms of the states
~ j,k, A, ) if k~ac. Therefore, the charge V can act in

our asymptotic limit as if it were a 'perfect generator" of
SUf(N). This yields an enormous simplification in bro-
ken symmetry. Asymptotic flavor-SUf (N) symmetry
provides a powerful tool when it is applied in conjunction
with the variety of equal-time commutators involving the
generators of (broken) flavor symmetry, which exist and
are ualid in the theoretical framework of a QCD Lagran-
gian with a quark-mass term. For a detailed recent re-
view, see Ref. 8. For the present problem we pick out the
charge-charge-density commutator ( V o is the generator

of SUf(3), V~p= V6 iV7) [Vo (0) V&0]= Vo (0).
Sandwich this commutator between the states & 0

~

and
~

K" (q)) with q~ca and use the asymptotic SUf(3)
symmetry described above. We obtain

0~ V +(0) ~p &&p
~

V ~K* (q)&+ X &0
~

V (0)
~

n&&n
~

V ~K" (q)&=&0
~

V +(0) ~K* (q)&, q
In=p,

(7)

(G~/m~) =(1/V 2)cos8 ~(G&/mz)

and

(G /m )=(—I/v 2)sin8„~(G&/m~) .

They yield, upon eliminating 8 ~, a broken-SUf(3) sum
rule for the rates of p, co, and P~e+e decays,

I
—,mpI p

——m I +mpI p, (8)

which is well satisfied experimentally, i.e., 1.82
(MeV) = 1.85 (MeV) . Therefore, we expect that Eq. (3)
explains the ratio R to similar accuracy. Equation (3)
predicts, using Eqs. (1) and (2),

The second term of the left-hand side of Eq. (7) contrib-
utes only if ground-state 1 mesons mix appreciably
with the radially or orbitally excited 1 states or with
exotic 1 qqqq mesons, etc. , and can be neglected to the
precision which will be remarked upon later. Then
asymptotic SUf(3) implies &p (q')

~ V+0
~

K* (q)) =1
[apart from the trivial factor (2m) 5 (q —q')] but only
for q~ ao. In the frame q„=(0,0,

~ q ~,Er(q))
with q~ao and Er(q)=(mr +q )'~, Eq. (7) then pro-
duces Eq. (3) for the polarization vector
e„(q)=(1/mz)(O, O, Er(q),

~ q ~

) where V=p and K*.
For comparison, we remark here that the same procedure
applied for similar commutators involving an electromag-
netic current yields ' similar sum rules, which now in-
volves the co-P mixing angle 8 ~ defined by Eq. (6), for the
p-y, co-y, and P-y couplings, i.e.,

B(r ~K' v, )R-=
B(r ~p v )

tan 8=0.053 (9)
(m ~ —mp ) (m, +2m' )

for the value of sinL9=0. 231 given recently. If we instead
take the exact symmetry value Gp

——6, we obtain
R =0.039, while experiment gives R=0.058 with still
appreciable error. Equation (9), however, seems to indi-
cate at least that the effect of symmetry breaking given by
Eq. (3) is in the right direction. If the mass of v, is large
(=100 MeV), its effect has to be included in addition to
the correction due to the narrow-width approximation
used for the vector mesons.

We also emphasize here that the branching ratio R can
serve as a good source for determining the value of the
Cabibbo angle, since the 1 nonet is the most well-
understood meson multiplet from the point of view of
broken flavor symmetry as will be discussed below.

It is well known that Eq. (3) and a sum rule such as Eq.
(8) have also been derived' by Das, Mathur, and Okubo a
long time ago using a version of asymptotic symmetry for
the spectral functions of the currents. It is interesting to
notice that the concept of asymptotic flavor symmetry
formulated in two different ways produces very similar
consequences. Asymptotic symmetry described here is
concerned more directly with such a pertinent question:
How do the creation and annihilation operators of "in" or
"out" hadron fields behave under flavor transformation,
when quark masses are generated?
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[VOX ]=0, Vo ——

(10)

where A is the axial-vector charge A~ —id2. In Eq.
(10), the n =1 commutator is generally valid as long as
the SU(3)-breaking interaction belongs to an octet. How-
ever, the validities of the commutators with n =2,3, . . .
given in Eq. (10) and also of Eq. (11) require more specific
models of symmetry breaking.

If we sandwich Eqs. (10) with n =1,2, . . . between the

Finally, we remark here that asymptotic flavor symme-
try alone can predict the characteristic properties of the
1 ground-state mesons, when it is combined with the
equal-time commutators present in the usually considered
theoretical framework of a @CD Lagrangian with quark-
mass terms. For other mesons such as the 0 + mesons,
see Ref. 8. A QCD Lagrangian with quark-mass terms
implies the presence of equal-time charge commutators
such as

states (K'+(q)
~

and
~

K* (q) ) with q~ ao and if we as-
sume, as we did in Eq. (7), that ground-state 1 nonet
mesons mix only among themselves (i.e., we consider only
co-P mixing), asymptotic SUf(3) symmetry immediately
implies the ideal nonet structure for the 1 mesons, i.e.,
tan8 ~

——I/v 2 and ideal mass spectrum m&
——m and

m ~
—m+ ——m+ —m~ . Then Eq. (11) inserted be-

tween (K' (q, k, =l)
~

and
~

p+(q, k, = I)) with q~oo
yields, under the same approximation,
(p ~

2
~
P(q, k.=l)) =0 for q~ao, which implies via

PCAC (partial conservation of axial-vector current) that
/~pm. decay is forbidden. We thus see that the well-
known characteristic of the ground-state 1 meson mul-
tiplet and the presence of dynamical selection rule (i.e.,
quark-line rule) can be derived simultaneously
in this simple theoretical framework, if asymptotic flavor
symmetry" is valid. Small deviations from the ideal
structure of the 1 multiplet and also the predictions
made in Eqs. (3) and (8), etc. , will arise from the inclusion
of small further mixings which were mentioned but dis-
carded and also of the cv-P-p mixing due to the breaking
of SUI(2) symmetry.
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One can also argue that SU(2)L symmetry may also possess
the asymptotic symmetry described here. See Ref. 8.


