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We present results of the S matrix in the (P )~+ ~
model obtained by a nonperturbative calculation

using a momentum-space discretization technique. First, we calculate the two-body S matrix in the
strong-coupling regime (up to A,,zf

——3), with the restriction of taking into account only two-body vir-
tual particle states. We find agreement with standard perturbation theory obtained by summing up
the corresponding graphs to infinite order. We also estimate the effect of mass renormalization.
Second, we investigate the effect of including higher virtual particle numbers in two-particle scatter-

ing in the cases A,,ff—6 and X,ff——1. In both cases we find convergence of the S matrix with respect

to increasing the virtual-particle-number cutoff.

I. INTRODUCTION

One of the topics of current research in field theory are
nonperturbative solution methods. For a review see Ref.
1. Much progress has been made on sum rules and
coordinate-space lattice techniques. In this paper we want
to draw attention to momentum-space discretization
methods. This approach has been used by Brooks and
Frautschi to calculate ground and excited states in the
Yukawa model and by Pauli to compute ground and ex-
cited states of a many-nucleon system. The results of Ref.
2 for the Yukawa model have been improved by Pauli and
Brodsky by using Fourier-transformed light-cone vari-
ables.

The usefulness of momentum-space discretization for
the computation of the S matrix has been proposed by
Kroger. Based on that method the S matrix has been
calculated for the (P ) ~+ ~

model and the nonlinear
Schrodinger model. The nonlinear Schrodinger model is
a nonrelativistic field theory, which conserves the particle
number and has an analytically known S matrix. It has
served the purpose to test the latter nonperturbative corn-
putation method in the weak- as well as in the strong-
coupling regime. The method was found to give results
converging to the correct answer in all cases. The (P )~+~
model on the other hand is a relativistic field theory,
which does not conserve the particle number. In Ref. 6
the method has been applied in the weak-coupling regime
to calculate a two-body S matrix and agreement was
found with first-order perturbation theory. These calcula-
tions were parametrized by the following systematic ap-
proximation parameters: a momentum-space cutoff A, a
partition of the momentum-space interval [—A, A] in v
cells, a virtual-particle-number cutoff n, and a scattering
time parameter T.

In the present paper, we want to extend the analysis of
Ref. 6 for the S matrix of the (P )~+~ model. In principle,
one would like to extend the calculations with respect to
the approximation parameters A, v, and n. Computer
storage limitations, however, impose practical constraints.
Thus we have chosen to extend the calculations of Ref. 6

in two directions. Firstly, we increase the momentum-
space basis, but freeze the virtual-particle-number degree
of freedom. Secondly, we increase the virtual particle
number, but freeze the momentum-space degrees of free-
dom.

In the first part, we have performed calculations in the
strong-coupling regime. As in the calculations of Ref. 6,
we have considered two-particle scattering and kept the
number of virtual particles at two. However, we have in-
creased the discrete momentum-space basis. From general
physical grounds and also from experience gained on the
nonlinear Schrodinger model, one expects that, going
from a small- to large-coupling constant, one would have
to increase the momentum cutoff, the number of
momentum-space cells, and the particle number cutoff.
So with respect to the virtual-particle-number cutoff, the
results reported here are still preliminary. On the other
hand, the results can be compared with standard perturba-
tion theory. It corresponds to summing up to infinite or-
der all Feynman diagrams with virtual two-particle states,
which can be carried out analytically in 1 + 1 dimensions.
%e have carried out calculations varying the effective
coupling constant k,f~——X/rn in the range between 0 and
3, where A, and m denote the bare quartic coupling and
the bare mass, respectively. In the small-coupling region

ff ((1, one obtains very good numerical agreement. In
the strong-coupling region A,,f~

——1 we find numerical
agreement with an error on the order of 6%%uo. Stevenson
has shown for the (tb )&+& model, using the Gaussian-
effective-potential method, that for A,,ff—2.552 the Gauss-
ian effective potential evolves from a single well to a dou-
ble well. Chang found, using the Hartree approximation,
that the Hartree effective potential goes from a single to a
double well at A,,ff——2.552. He argues that it does not cor-
respond to a first-order, but a second-order phase transi-
tion. Because of the indication that strong coupling only
sets in at about X,ff——2.5, we have also performed calcula-
tions for A,,ff ——3. Again we find, for the S matrix, numer-
ical agreement with an error on the order of 6%%uo. The nu-
merical results are discussed in Sec. II.

Another point which we want to address here is the
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problem of renormalization. The (P )&+, model is super-
renormalizable, i.e., one expects only finite counterterms
in perturbative renormalization. The only irreducible
divergent graph is the tadpole graph, which can be elim-
inated by normal ordering, which has been done in this
work. In a nonperturbative renormalization procedure,
one would have to determine a cutoff-dependent mass,
coupling constant, etc., and fine-tune them accordingly
such that observable quantities such as, e.g., cross sec-
tions, tend to a given limiting value when the cutoff A
tends to infinity. We have calculated the renormalized
mass mR nonperturbatively by calculating the two-point
Green s function including virtual three-particle states. It
turns out that the renormalization gives negligible effects
for mz if the bare effective coupling constant k,~~ is small
but has a non-negligible effect for A,,ff—1.

In the second part, we have performed calculations in-
cluding higher virtual particle numbers. As mentioned
above we have now restricted the momentum-space de-
grees of freedom. This has been done by choosing a basis
of states corresponding to a given particle number and en-
ergy. The momentum-space degrees of freedom have been
fixed by integrating over a given distribution. We have
carried out calculations for A,,ff= 6 and A,,ff—1. For

ff = —,
'

we find, for the two-body elastic scattering S ma-
trix, that virtual four-particle states give only a small con-
tribution, and the contribution from virtual six-particle
states is even more negligible. For A,,ff ——1, however, one
needs virtual twelve-particle states to give a contribution
in the order of l%%uo. For example, in both cases one ob-
serves that the S matrix converges with respect to increas-
ing the virtual-particle-number cutoff. The numerical re-
sults are discussed in Sec. III. Finally, Sec. IV gives some
concluding remarks.

II. ELASTIC TWO-BODY S MATRIX
IN THE STRONG-COUPLING REGIME

HN PNHPN ~ HN PIVH PN (2.3)

where 7& is the characteristic function of cell p. The
finite-dimensional Fock space W& is generated by

~~=~,~, „,.=2~
——span of I&,&~ ~0), p, o.=1,2, . . . , vI .

(2.5)

Because of symmetrization of the bosons, the basis can be
restricted to states with p) o.. We denote the orthogonal
basis states by

(2.6)

where ~~ normalizes
~
p, cr) to unity.

The procedure to obtain the S matrix is to calculate
S&(T) for a set of approximation parameters and then let
the approximation parameters A, v, n, T tend to infinity.
The crucial question is the following: Does Sz(T) con-
verge and if so, to which limit? This has been studied nu-
merically and will be discussed below. Because there are
four approximation parameters and one does not expect
uniform convergence, it is very useful for practical pur-
poses to have some control of the error. One function,
which serves that purpose, proposed in Ref. 10, is

where P& is an orthogonal projector on a finite-
dimensional subspace of the Fock space. In this section
we use the following finite-dimensional Fock space. We
consider two-particle scattering and we also restrict the
virtual particle number n to n =2. Let [ —A, A] denote a
cutoff momentum-space interval and let —A =ko,
k &, . . . , k„&, k =A, k„~k„+ &

denote a partition of the
interval. Then we define creation operators, averaged
over the cell p, by

dkXp k 3 k dk7p k, p=1,2, . . . , v,
(2.4)

The aim of this section is to present an application of a
nonperturbative time-dependent calculation scheme to the
two-body scattering process in the (P )&+& model in the
strong-coupling regime. The method has been discussed
in Refs. 6 and 7, so we will recall only the basic aspects of
the formalism. We consider the S matrix, given in the
form

S=w-lim exp(iH t)exp( 2iHt)exp(iH t)—, (2.1)

where H and H denote the full and asymptotic Hamil-
tonian, respectively. In the following we will consider an
S-matrix element ( Q,„, ~

S
~
0;„), where 0;„, Q,„, are

asymptotically incoming and outgoing wave-packet states.
We approximate the S matrix by

S~( T)=exp(iH~ T)exp( 2iH~ T)exp—(iH& T), (2.2)

where H& and H~ are finite-dimensional Hermitian ap-
proximations of H and H, respectively, and T is the time
parameter. Note that SJv(T) is unitary. The numerical
calculation of S~(T) is performed using the eigenrepre-
sentation of the finite-dimensional matrices H~ and H~.
H~ and H~ are constructed via

(2.7)

For nonrelativistic p-p scattering, the function
turned out to be useful. ' It reflects the intertwining
property of the wave operators with the full and asymp-
totic Hamiltonian. When N and T tend to infinity, 6 &
should go to zero. Another function to control the error,
proposed in Ref. 7, is

(0,„, ~

S (T)—(H ) 'S (T)H
~
0,„)

(0,„, iS (T)
i
0;„) (2.9)

which should be applied to only those asymptotic wave-
packet states on which H is invertible. This function re-
flects the commutation property of the S matrix with the
asymptotic Hamiltonian. It should go to zero, too, when

and T tend to infinity. Experience gained from
models, where the exact S matrix is known, has shown

where

~ P«, (N, T)) =exp( iH&T)exp(iH&—T)
~
Il«, ) . (2.8)
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that a minimum in the error of the S matrix,

&n,„,is —s~(T) in;„)
&n,„, is in;„)

(2.10) b =2~E (2.17)

where hk is the distance between two nodes in an equidis-
tant partition of [—A, +A] and

coincides with a minimum in the function 6 & & and 50,
respectively. Thus, for models where the exact S matrix
is unknown, we will search for minima of 6& &, Ap in or-
der to constraint the domain of approximation parame-
ters.

Now let us consider, in particular, the (P ),+& model,
given by the Hamiltonian

H =H'+H'"'

One should notice that the matrix element in this basis
conserves the discretized total momentum. Moreover,
after splitting off the total momentum-conserving 5 func-
tion, the matrix element is separable. This property facili-
tates the numerical solution of the diagonalization of H
by reducing the algebraic dimension. We denote by a the
conserved discretized total momentum. For each such u
there is an invariant subspace. We solve the diagonaliza-
tion problem independently in each invariant subspace

H =: ,
' f—dxa„ya"y+m y",

H'"'=:Afdx, P: .

(2. 1 1) Htv, a I Wu, p & =E,p I 4a, p & (2. 18)

According to Eq. (2.16), the interaction can be written in
the subspace a

The field P obeys the canonical commutation relations

[P(x,t), P(y, t)] =i5(x —y)

and admits the Fourier representation

P(x, t=0)= f [A(k)e' +A (k)e ' ],1 dk
2E (k)

E (k)=(k +m )'

(2.12)

(2.13)

Now we can express the matrix elements of the Hamil-
tonian in terms of the finite-dimensional basis, defined by
Eq. (2.6) [note: the normalization of A(k) is fixed by
Eqs. (2.12) and (2.13)]. Denoting

where I:- ) is given by
1 j2

2~4!Ak
&~ pl =--&=~-,-+, b bp

(2.19)

(2.20)

I&~pi:- &I'

E p (E +E )
(2.21)

Equation (2.19) clearly exhibits the separability property.
This property allows one to transform the eigenvalue
equation (2.18) in two simpler equations: namely,

E'. = &~ IH'I ~),
one can express the matrix elements of H as

&cr,p I
H

I
r, cp) =(E~+Ep)6~ Pp ~

and matrix elements of H'"' as

2~4!A,hk6
o.,p IH'"'I r, tp

(2.14)

(2.15)

(2.16)

which determines the eigenvalue E p, and

&~,pi =-.&

&P I Na, P a,PE (EP EP)a, P
— a+ p

(2.22)

which determines the eigenvector P~ p, ~ p being a nor-
malization constant.

Finally we want to specify the asymptotic wave packets
Bin~ Bout Let

I
n; ) =~;f„dk I 1 —cos[2~(k —k; „„)/(k; „p—k; ),„)]I A (k)

I
0)

i low
(2.23)

in, „)=in.„,) = in„n, ), (2.24)

where 0&, A2 are distinguished by the parameters
k; ~, ,k; „~. Now let us discuss the numerical results. The
asymptotic wave packets are specified by k& &,

——0.25
Mev, k)„p ——05 Mev, k2i w

——075 Me, 2 p
——

MeV. In Table I we display the results for the model pa-
rameters m =1.0 MeV, A, =10 MeV, i.e., A,,f~

——10
and the approximation parameters A=4.0 MeV, n =2.

denote a one-particle asymptotic wave packet. It has the
properties of being a bell-shaped distribution between
k;],„and k; „~, vanishing outside, having a maximum
at (k; „~+k; &, )/2, and having a half-width of

We display the dependence of S&(T) on v and T. The nu-
merical result is stable within four digits at v= 500,
T=600 MeV '. In Fig. 1 we show for v=500 the depen-
dence of Im[S~(T)] on the time parameter, together with
the error criterion hp, given by Eq. (2.9). b,p exhibits a
sharp minimum at T=620 MeV '. One notices that in
the neighborhood of that time parameter the imaginary
part of S~(T) (and also the real part, not displayed here)
is very stable. In this case the coupling constant is small
compared to the mass, i.e., we are in the small-coupling
region. We have compared our nonperturbative result
Stt ( T) with first-order standard perturbation theory,
which gives S' ' = 1.0—0. 1391i which deviates from
S~(T) in the real part on the order of 1.0&& 10, and in
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TABLE I. Dependence of the S-matrix element (0,„, ~

S~(T)
~
0;„) for two-body scattering on the

number v of expansion functions and the scattering time T. The model parameters are mass m =1.0
MeV, coupling constant A. =0.01 MeV; the approximation parameters are momentum cutoff A=4.0
MeV, and virtual-particle-number cutoff n =2.

500

0
40
80

120
160
200
240
280
320
360
400
440
480
520
560
600

(1.0000, 0.0000)
(0.9957, —0.0607)
(0.9925, —0.1057)
(0.9909, —0.1284)
(0.9903, —0.1368)
(0.9901, —0.1391)
(0.9901, —0.1397)
(0.9901, —0.1398)
(0.9900, —0.1399)
(0.9900, —0.1399)

(1.0000, 0.0000)
(0.9957, —0.0607)
(0.9925, —0.1058)
(0.9909, —0.1284)
(0.9903, —0.1368)
(0.9901, —0.1391)
(0.9901, —0.1397)
(0.9901, —0.1398)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)

(1.0000, 0.0000)
(0.9957, —0.0607)
(0.9925, —0.1058)
(0.9909, —0.1284)
(0.9903, —0.1368)
(0.9901, —0.1391)
(0.9901, —0.1396)
(0.9901, —0.1398)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)
(0.9900, —0.1399)

the imaginary part on the order of 0.8 && 10
In Table II we display the results for a strong-coupling

case, where we took A, =1.0 MeV, i.e., A,,ff——1. Again we
find numerical stability of S~(T) at v=500, T=600
MeV '. For this region of the coupling constant, first-
order perturbation theory is certainly not valid. Because

we have restricted in the calculation of Sz(T) the virtual
particle number to two, S~( T) should correspond to stan-
dard perturbation theory summing up all graphs with two
virtual particles, as shown in Fig. 2. For the (P )t+~
model these graphs can be summed to infinite order to
give

(A (k))At(k2) ~S' '~A (k))A (k2))

=S(A (k])A (k2)
~

A (k])A (k2)),

IO

IO

-I m (s)
10

IO

5 =(1 ~ i Y)/—(1 AX+i—Y),

X=—ln
~

(1+4q Y)/(1 —4q Y)
~

Y= —,
' [k)E (kp) —k2E (k))]

q =(k&+k2) —[E (k~)+E (k2)]

(2.25)

10 -10

I I I 1 I I

100 200 500 400 500
T(Mev ')

FIG. 1. Imaginary part of the S-matrix element
( fI«,

~

S~(T)
~
0;„) as a function of the time T corresponding to

the model parameters: coupling constant A, =0.01 MeV, mass
m =1.0 MeV, and the approximation parameters: momentum
cutoff A=4.0 MeV, number of expansion functions v=500,
number of asymptotic and number of virtual particles n =2.
The function 60 displayed is a measure of the violation of ener-

gy conservation of the approximate S matrix S~( T). The
minimum of 60 coincides with a region of stability of S~( T).

Note that S' ' is unitary. In Table III we have compared
the matrix element (0,„, ~

S
~
0;„) calculated nonpertur-

batively, in first-order perturbation theory and in infinite
order of perturbation theory. We have varied the cou-
pling constant between A, =0.01 MeV (small coupling)
and A. =3.0 MeV (strong coupling). In the nonperturba-
tive calculation, we used the approximation parameters
A=4.0 MeV, v=300, n =2. Note that due to the finite
cutoff A, one violates Lorentz invariance. The results for
S~(T), given in column two of Table III, each correspond
to a T value, which gives a minimum of Ap. In the
perturbation-theory calculations one has calculated the
loop graph without imposing any momentum cutoff. One
finds for k =0.01 MeV agreement between S' ", S'
and S&( T) within 1%; however, for A, =3.0 MeV, S'"
differs by more than a factor of 40 from S' '. S' ' and
S~(T) agree with an error in the order of 6&o. We ascribe
the latter deviation to the finiteness of the approximation
parameters, in particular to the finite momentum-space
cutoff A, used in Sz(T).
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TABLE II. Same as in Table I, but A, = 1.0 MeV .

300 500

300
320
340
360
380
400
420
440
460
480
500
520
540
560
580

(—0.9983, 0.04479)
( —0.9985, 0.04415)
( —0.9986, 0.04487)

( —0.9982,
( —0.9984,
( —0.9986,
( —0.9987,
( —0.9987,
( —0.9988,
( —0.9988,
( —0.9988,
( —0.9988,

0.04474)
0.04481)
0.04486)
0.04489)
0.04491)
0.04491)
0.04492)
0.04492)
0.04492)

( —0.9979,
( —0.9982,
( —0.9984,
( —0.9985,
( —0.9986,
( —0.9986,
( —0.9987,
( —0.9987,
( —0.9987,
( —0.9988,
( —0.9988,
( —0.9988,
( —0.9988,
( —0.9988,
( —0.9988,

0.04474)
0.04480)
0.04484)
0.04487)
0.04488)
0.04490)
0.04491)
0.04492)
0.04492)
0.04493)
0.04493)
0.04492)
0.04492)
0.04492)
0.04492)

So far we have discussed the results in terms of bare
model parameters. The physical parameters, however, are
not the bare ones, but the renormalized ones. We define
the renormalized parameters, such as the mass mz and
the coupling constant kz, in the standard way via the
two-point and four-point vertex Green's function, respec-
tively.

The n-point Green's function, which is closely related
to the time evolution and the S matrix, can be calculated
in our nonperturbative scheme, i.e., in the approximation
characterized by the parameters momentum cutoff A, the
partition parameter v, the virtual particle cutoff n, and
the scattering time T. In this paper we have calculated
the renormalized mass. The renormalized mass corre-
sponds to a pole in the two-point Green's function at
momentum k =0, or a zero in the inverse Green's func-
tion. Hence we have calculated the lowest eigenvalue of
the Hamiltonian, corresponding to k =0, in the approxi-
mation of cutting off the virtual particular number by
three. This is equivalent to sum up to infinite order all
the bubbles of self-energy two-loop diagrams, i.e., the bub-
bles with three virtual particle states. The numerical re-
sults are given in Table IV. We have taken mb, „,——1 MeV
and varied k,ffb —Ab /mb„, between 0.01 and 2.0.
We find for small coupling A,,ffb ((1 negligible effects
on the renormalized mass mz. However for strong cou-
pling, A,,ff b ——1, one observes a profound effect on mz.
There is a critical value A,,'ffb 1 5, for which mz van-
ishes. For larger k, ff b m g becomes negative. This is
not a contradiction to the observation from the
Gaussian/Hartree effective-potential method, ' where for
large k,ff b, a transition is found in the effective potential
from a single well to a double well.

III. EFFECTS OF HICsHER VIRTUAL
PARTICLE NUMBERS

As mentioned in the Introduction we wanted to include
states with higher numbers of virtual particles, which can
be done at the cost of restricting the momentum-space de-
grees of freedom. In a first attempt we used a basis of
states, where the states correspond to a good particle num-
ber, but momentum and energy degrees of freedom were
averaged. We tried, in particular,

~ g ) =I~J f dk( dk, X(k), . . . , k, )

yA (ki). 3 (kj) ~0),
I if—A~k), . . . , kj-(A,
0 otherwise,

g(k„. . . , kj)=
(3.1)

exp(iH t) ~ 0 . (3.2)

A similar property has to hold for the time evolution
of the finite-dimensional asymptotic Hamiltonian
exp(iH~T). For each 1',(()H~, e &0 exist X and TE R
such that

I
& 0 I

exp(i' T)
I 0 & & e (3.3)

where vz is a normalization constant. This attempt was
unsuccessful, the S matrix did not converge. The reason
can be understood from time-dependent nonrelativistic
scattering theory. In the proof of existence of the wave
operators, one has as an ingredient the property

FICx. 2. Feynman graphs corresponding to asymptotic and

virtual two-particle states.

i.e., for arbitrary Hilbert states g, P the expression
(1(

~
exp(iH&T)

~
p) can be made arbitrarily small. How-

ever, for the basis given in Eq. (3.1) this does not hold,
which can be verified immediately: one observes that Hz
is diagonal in this basis. Then we take, e.g. , P=P=

~

1).
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TABLE III. Comparison of the S-matrix element (0,„,
~

S
~
0;„) for two-body scattering calculated

nonperturbatively [S~(T)] and in standard perturbation theory (S'"',S"') for different coupling con-
stants. The model parameter is m = 1.0 MeV. The approximation parameters used in the nonperturba-
tive calculation are A=4.0 MeV, v=300, n =2. S'"' corresponds to summing to infinite order all
graphs with virtual two-particle states; S"' corresponds to first-order perturbation theory.

A, (MeV2) S(oo) S(1)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.0
3.0

(0.9900,
(0.9599,
(0.9100,
(0.8422,
(0.7592,
(0.6645,
(0.5617,
(0.4546,
(0.3462,
(0.2393,

( —0.5227,
( —0.8158,
( —0.9251,
( —0.9695,
( —0.9885,
( —0.9964,
( —0.9993,
( —0.9996,
( —0.9986,
( —0.9712,

—0.1399)
—0.2788)
—0.4122)
—0.5360)
—0.6470)
—0.7429)
—0.8224)
—0.8855)
—0.9327)
—0.9652)
—0.8474)
—0.5745)
—0.3766)
—0.2422)
—0.1481)
—0.0796)
—0.0277)

0.0126)
0.0449)
0.2354)

(0.9901,
(0.9602,
(0.9112,
(0.8448,
(0.7641,
(0.6724,
(0.5732,
(0.4699,
(0.3655,
(0.2627,

( —0.4802,
( —0.7802,
( —0.8995,
( —0.9518,
( —0.9768,
( —0.9892,
( —0.9955,
( —0.9985,
( —0.9998,
( —0.9851,

—0.1397)
—0.2776)
—0.4096)
—0.5319)
—0.6413)
—0.7359)
—0.8147)
—0.8776)
—0.9254)
—0.9593)
—0.8721)
—0.6219)
—0.4344)
—0.3048)
—0.2129)
—0.1453)
—0.0940)
—0.0538)
—0.0215)

0.1711)

(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,
(1.000,

—0.1391)
—0.2782)
—0.4173)
—0.5564)
—0.6955)
—0.8346)
—0.9737)
—1.113)
—1.252)
—1.391)
—2.782)
—4.173)
—5.564)
—6.955)
—8.346)
—9.737)
—11.13)
—12.52)
—13.91)
—41.73)

Hence

1&0 I
exp(iH+T)

I
0&

I

=
I
&111&exp(ih»T)

I

= I (34)

Hence in a second attempt, we have modified the basis in

order to avoid this property. The minimal generalization
from Eq. (3.1), is to take into account the energy degree of
freedom, but still average over the momentum-space de-
grees of freedom. We took, in particular,

ip,j ) =Ir„j.fdk, dkj fdEX(k&, . .. . , kl)X„(E)5(E—[E (k&)+ . . +E (kj. )])A (k&). A (k~) ~0),
1 if E„(E(E„+i,
0 otherwise,

X„(E)= .

where the function X was taken as in Eq. (3.1) and ir„i normalizes the state to unity. This basis is orthogonal,

(3.5)

(3.6)&P&'
l P~J ) =&pp~i, g i

and H& is diagonal in the basis.
However, now the property (3.3) is valid because when N=(A, v, n) tends to infinity, the partition of the energy inter-

val becomes finer and hence

(g
~

exp(iH~T) i/) =g(P
~
p, ,j )exp(ihpiT)(pj

~
P) g fdej(g ~ ejj )exp(ieJT)(ejj i P),

P~J A, V~ oo
(3.7)

where h„i=(pj i' ipj ) and
~
ei,j ) is a state of

sharp asymptotic energy ej. and particle number j. For
each j the integral in the continuous variable ej tends to 0
when T tends to infinity, which is sufficient to guarantee
the estimate (3.3).

Let us now fix the basis, given by Eq. (3.5), by specify-
ing the finite-energy intervals and its partition. We have
chosen the energy intervals in correlation with the particle
number. To each particle number j we assign an interval

jeff, bare

0.01
0.1

1.0
2.0

m„,„(MeV)

0.999 954
0.995 486
0.593 981

( —)0.332 436

TABLE IV. The renormalized mass m~ as a function of the
bare parameter A,,ffb —kb /mb, „, , where mb„, ——1.0 MeV.
The sign in parentheses indicates that m~ becomes negative.
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TABLE V. Dependence of the 5-matrix element (Q,„,
~

SN(T)
~
0;„) for two-body scattering, using the basis with increased virtual

particle number given by Eq. (3.5), on the number v of expansion functions and the scattering time T. The model parameters areI=0.5 MeV, X= z4 MeV, i.e., jeff —6 ~ The approximation parameters are A=1.0 MeV, n;„=n „=n;„=n,„,=2.
10 20 30 40 50 70 90

10

20

30

40

50

60

70

80

90

110

120

130

150

170

180

190

0.9180
—0.3537 i

0.8552
—0.4773i

0.8063
—0.5563 i

0.9063
—0.3796 i

0.8339
—0.5119i

0.7794
—0.5939i

0.7373
—0.6498 i

0.6996
—0.6939i

0.6597
—0.7346i

0.9013
—0.3906 i

0.8248
—0.5262 i

0.7657
—0.6112i

0.7178
—0.6705 i

0.6781
—0.7172 i

0.6439
—0.7482 i

0.6142
—0.7752 i

0.5848
—0.7996 i

0.8988
—0.3956i

0.8201
—0.5332 i

0.7582
—0.6203i

0.7073
—0.6816i

0.6653
—0.7263 i

0.6288
—0.7610i

0.5966
—0.7887 i

0.5687
—0.8107 i

0.5438
—0.8288 i

0.5198
—0.8450i

0.4953
—0.8600i

0.8974
—0.3985 i

0.8176
—0.5367 i

0.7545
—0.6246i

0.7023
—0.6868i

0.6585
—0.7325 i

0.6203
—0.7679 i

0.5866
—0.7962i

0.5571
—0.8187i

0.5315
—0.8367 i

0.5082
—0.8520i

0.4871
—0.8648 i

0.4680
—0.8757i

0.8957
—0.4020i

0.8149
—0.5408 i

0.7507
—0.6294i

0.6967
—0.6926i

0.6507
—0.7396i

0.6093
—0.7767i

0.5724
—0.8063 i

0.5397
—0.8300i

0.5109
—0.8490i

0.4863
—0.8640i

0.4641
—0.8766i

0.4446
—0.8871i

0.4268
—0.8960i

0.4103
—0.9037 i

0.3951
—0.9105i

0.3812
—0.9163i

0.3677
—0.9215 i

0.3542
—0.9261i

0.8948
—0.4038 i

0.8136
—0.5429 i

0.7488
—0.6317i

0.6942
—0.6952i

0.6472
—0.7428 i

0.6049
—0.7802 i

0.5671
—0.8100i

0.5332
—0.8341i

0.5032
—0.8533 i

0.4761
—0.8693 i

0.4521
—0.8822 i

0.4313
—0.8927i

0.4118
—0.9018i

0.3942
—0.9094i

0.3780
—0.9161i

0.3631
—0.9218 i

0.3500
—0.9263 i

0.3380
—0.9301i

0.3265
—0.9336i

0.3147
—0.9370i

[E~'",EJ"~], with

EJ""=jE ( k =0) =jm,
EJ".~=jE (k=A)=j (A +m )'

(3.8)

This choice corresponds for each momentum to the cutoff
interval [—A, A]. Let Ej Eo J, Et z, . . . ,E-—
E J ——Ez"" denote an equidistant partition of the energy
interval.

The numerical evaluation of the normalization ~zz of
the states

~ p,j), the matrix elements (p,j ~H
~ p,j) and

(p, i
~

H'"'
~
p,j) involve high-dimensional integrals and

has been carried out numerically using a Monte Carlo
technique. " Although for high-dimensional integrals, the
Monte Carlo technique is superior to fixed mesh-point in-
tegration methods, the evaluation of the matrix elements

consumes the largest part of the computer time in the nu-
merical calculation. Computer time can be saved by tak-
ing regard of symmetries or conservation rules. For ex-
ample, (p, i ~H'"'~p, j) is a Hermitian matrix, so only
half of the matrix elements have to be calculated. Be-
cause of the P interaction, the matrix element

(p, i
~

~H'"'
~ p,j ) gives nonzero contributions only for

i —j=0, +2, +4, i.e., the interaction completely reduces
the Fock space in an even-particle number sector and an
odd-particle number sector. For the sake of simplicity, we
have only considered the even-particle number sector.

We have taken the following asymptotic incoming and
outgoing wave-packet states. All asymptotic wave pack-
ets are states corresponding to a pure asymptotic particle
number. We took, corresponding to a given asymptotic
particle number j, the following distribution:
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IO 10 2

IO

10
10

10

V=30
V=40

10'

IO

10
0 20 40 60 80 100 120 140

T(MeV )

10 20 40 60 80
T (MeV ')

100 120 140

FIG. 3. Graph of the function 5& ) measuring the violation
of energy conservation of S~( T)).

FIG. 4. Graph of the function 60 measuring the violation of
energy conservation of Sz( T).

I
& j& =&1+I I «sP~(—EJ"' E&,&)i(—EJ"" Ei ")l1—

I p j & (3.9)

where Kj normalizes the state to unity. We have taken
this type of state as incoming as well as outgoing asymp-
totic state 0;„,0,„,.

The numerical results are displayed in Figs. 3 and 4 and
Tables V—X. The model parameters chosen are m =0.5

MeV, A. = —,4 MeV, i.e., A,,ff—6 and A, = 4 MeV, i.e.,
ff—1. Tables V—VII and Figs. 3 and 4 correspond to

ff—6 while Tables VIII—X correspond to A,,ff ——1 . In
all cases we have taken the momentum cutoff A= 1.0
MeV. Table V displays the dependence of the matrix ele-
ment (0,„,1S~(T)10;„&on the number v of expansion
functions and the time parameter T. In this case we took
0,„, and 0;„as two-particle states and considered only
virtual two-particle states. If we denote by n;„, n,„t the

TABLE VI. Same as in Table V, but for four-body scattering, n;„=n,„=n;„=n,„,=4.
20 30 50 70 90

10

30

40

50

70

80

90

120

—0.4777
—0.3259 i
—0.4502

0.1090i

—0.5183
—0.1987i
—0.3945

0.2096i
—0.2090

0.3600i

—0.5278
—0.1605 i
—0.3381

0.2552 i
—0.1367

0.3728 i
0.3465 x 10
0.4013i

—0.5312
—0.1352i
—0.3087

0.2785 i
—0.8356x 10

0.3745 i
0-8307 X 10
0.3798 i
0.2132
0.3465 i

—0.5343
—0.1237i
—0.2973

0.2884i
—0.5483 x 10-'

0.3750&
0.1143
0.3673 i
0.2365
0.3203 i
0.3311
0.2559 i

0.5378
0.1098i
0.2803
0.3016i
0.2843 x 10
0.3720i
0.1507
0.3453 i
0.2717
0.2837 i
0.3623
0.2060i
0.4236
0.1205 i
0.4566
0.3348 x 10 'i

—0.5396
—0.1022 i
—0.2727

0.3070i
—0.1578X 10-'

0.3713i
0.1639
0.3361i
0.2859
0.2622 i
0.3737
0.1771i
0.4287
0.8441 x 10
0.4573

—0.8920x 10
0.4672

—0.1001i
0.4675

—0.1833i
0.4527

—0.2587 i
0.4357

—0.3334i
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TABLE VII. Dependence of the S-matrix element (0,„,
~

S~(T)
~
II;„) for two-particle scattering on

the number v of expansion functions and on the virtual-particle-number cutoff, i.e., n;„=n,„,=2. The
scattering time T has been chosen in all cases to correspond to a minimum of the function 5&

10 20 30 40 50 70 90

2 2

2 4

2 6

0.8263
—0.5261i

0.8727
—0.4615 i

0.8744
—0.4590i

0.8745
—0.4589 i

0.6801
—0.7145 i

0.7444
—0.6555 i

0.7467
—0.653 1i

0.7469
—0.6530i

0.5966
—0.7900

0.6686
—0.7353 i

0.6712
—0.7330i

0.6686
—0.7355 i

0.5150
—0.8481 i

0.5928
—0.7977i

0.5957
—0.7956 i

0.5959
—0.7955 i

0.4757
—0.8714i

0.5561
—0.8234 i

0.3568
—0.9253 i

0.3392
—0.9197i

TABLE VIII. Same as in Table V, but k= 4 MeV, i.e., A,,ff—1.

10 20 30 40 50 70 90

10

20

30

40

50

60

70

80

90

120

130

140

150

160

170

180

190

—0.5350
0.1648 i

—0.6070
0.4445i

—0.5498
0.2539 i
0.6565 x 10—'
0.5129i
0.2935
0.4066i
0.4155
0.2867 i
0.4777
0.1693i

—0.5471
0.2879 i
0.4109X 10
0.5333 i
0.3463
0.3976 i
0.4785
0.2325 i
0.5311
O. 866O X 1O

0.5469
—0.3963 x 10 'i

0.5347
—0.1488 i

—0.5453
0.3065 i
0.5980 X 10
0.5404i
0.3727
0.3879 i
0.5019
0.2066i
0.5437
0.5053 x 10 'i

0.5389
—0.8431 x 10 'i

0.5042
—0.1996i

0.4523
—0.2897 i

0.3954
—0.3576 i

0.3320
—0.4112i

—0.5461
0.3162i
0.6813x
0.5441i
0.3817
0.3840i
0.5091
0.1967i
0.5458
0.3284 x
0.5315
0.1014i
0.4842

—0.2192 i
0.4218

—0.3040i
0.3568

—0.3647 i
0.2916

—0.4090i
0.2275

—0.4417i

1O-'

10 'i

—0.5468
0.3274i
0.7588 x 10- '

0.5518 i
0.3926
0.3836 i
0.5179
0.1964i
0.5495
0.1388x 10 'i

0.5244
—0.1355 i

0.4630
—0.2533 i

0.3836
—0.3384i

0.3025
—0.3943i

0.2315
—0.4254i

0.1624
—0.4455 i

0.1022
—0.4533 i

0.4824 X 10
—0.4551i
—0.2102 X 10-~
—0.4487i
—0.4839 X 10-'
—0.4379 i
—0.8391 X 10
—0.4256i
—0.1201
—0.4061i

—0.5476
0.3333i
0.7961 x 10
0.5559 i
0.3981
0.3841i
0.5230
0.1837i
0.5524
0.6552 x 10 i
0.5247

—0.1440 i
0.4585

—0.3613i
0.3722

—0.3426 i
0.2840

—0.3936 i
0.2033

—0.4202 i
O. 1300

—0.4296 i
0.6644 x 10

—0.4236 i
0.1584x 10- '

—0.4107i
—0.3078 x 10- '

—0.3922 i
—0.6795 x 10- '

—0.3729 i
—0.9548 x 10- '

—0.3532 i
—0.1157
—0.3233 i
—0.1282
—0,2930i
—0.1351
—0.2660 i
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TABLE IX. Same as in Table VI, but A, = 4 MeV, i.e., A,eff—1.

10 20 30 40 50 70 90

20

30

40

50

60

70

80

90

0.8500X10—' 0.9580X10 '

0.4995 i —0.2004 i
—0.2609
—0.1687 i

0.1037
—0.248 1i

0.1504
—0.3645 i
—0.9626 ~ 10—'

0.4290i

—0.6398 Z 10—'

—0.2122 i
—0.1767
—0.3103i

0.3189
0.2497 i

—0.4435 )& 10
—0.4982 i

—0.8095 X
—0.2075 i
—0.2453
—0.2501i
—0.3916

0.8910X
—0.3089
—0.3511i
—0.2580

0.4358 i

10 ' —0.1075
—0.2029 i
—0.2890
—0.1733i

0.3543
10 'i —0.1077i

—0.4180
—0.6127)& 10—'i

0.1263
0.4623 i
0.5218

—0.1568 i
—0.5029 X 10
—0.593 1i

—0.1123
—0.2035 i
—0.3120
—0.1213i

0.2945
—0.1783i
—0.3742

0.7502 && 10 'i
0.2601
0.3270i
0.3412

—0.3167i
—0.3099
—0.4336 i
—0.5234

0.1794i
—0.7315~ 10-'

0.5505 i
0.3758
0.3649i

asyxnptotic incoming and outgoing particle numbers,
respectively, and by n, „, n,„a lower and an upper cut-
off in the virtual particle number, then we have in this
case n;„=n,„,=n;„=n „=2. In Table VI we have
presented the analogous results for n;„=n,„t n

=n „=4. One observes a noticeable but slow conver-
gence in v and T in all cases which is even slower as the
particle number becomes higher. In Fig. 3 we display the
function 6 & &, which is a measure of the violation of en-

ergy conservation of S&(T). One observes that with in-

creased number v of expansion functions the minimum of
& becomes deeper and broader. Also, one observes a

quasiperiodic structure of 6 & &, while the relevant
minimum is the first one. Experience with cases (see Ref.
10) where the exact S matrix is known shows that the
minimum region of 5& & corresponds to a minimum in

the error of S~(T) and a region of stability of S&(T).
Hence, guided by that experience, we take T=T;„corre-
sponding to a minimum in 6& & as the optimal value in
Sz(T). In analogy to Fig. 3, in Fig. 4 the graph of the
function 40 is displayed, which serves the same purpose.
While in the results of Sec. II, with many momentum-
space expansion functions, it turned out that bo is a suit-
able function, Fig. 4 shows in our present case a less ap-
pealing structure: namely, no clear unique minimum.
However, the region where several minima occur close to-
gether corresponds to the region in Fig. 3 where 6&
has a minimum. Finally in Table VII we display the
effect of including states of virtual particle number
off the asymptotic particle number. We display
(0,„, ~

S~(T)
~
0;„), with T = T;„corresponding to

&, as a function of the number v of expansion func-

TABLE X. Same as in Table VII, but A, = 4 MeV, i.e., A.,ff—1.

10 20 30 40 50 70 90

2 2

2 4

2 6

2 8

2 10

2 12

0.1016
0.4008i

—0.5054
—0.6862 i
—0.1539
—0.9384i

0.3753 X 10- '

—0.9672 i
0.1188

—0.9568 i
0.1275

—0.9562i

0.4933
0.1014i

—0.8075
0.3622 i

—0.8723
—0.1322i
—0.7771
—0.3320i
—0.6757
—0.4395 i
—0.6718
—0.4426i

0.5152
—0.2083 i
—0.4372

0.7575 i
—0.7147

0.3368 i
—0.7100

0.1198i
—0.6535
—0.1031 &( 10 i
—0.6514
—0.5187 &( 10 i

0.3181
—0.4199i
—0.1587 && 10

0.7695 i
—0.3846

0.4716i
—0.4361

0.2768 i
—0.4241

0.1351i
—0.4231

0.1308i

0.1907
—0.4540i

0.1492
0.7004i

—0.1455
—0.3821

—0.1351
—0.2660i
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tions and the lower and upper cutoff in the virtual particle
number. Table VII corresponds to n;„=n,„,=2 (which
has been reported in Table V for n;„=n,„=2). One
observes convergence of the S matrix with respect to in-
creasing the virtual-particle-number cutoff. Increasing
the particle-number cutoff from 4 to 6 gives a contribu-
tion of 1%. In Tables VIII—X we display the correspond-
ing results in the strong-coupling region A,,ff——1. In gen-
eral one observes a convergence as in Tables V—VII, how-
ever, at a much slower rate. The most important results,
in our opinion, are shown in Table X, demonstrating for

ff—1 convergence of the S matrix with respect to in-
creasing the virtual-particle-number cutoff. However, a
1% contribution is only achieved if one increases the
virtual-particle-number cutoff from 10 to 12.

IV. CONCLUSION

In this paper we have presented results of nonperturba-
tive calculations of the S matrix of the (P )&+& model.
The parameters which govern the systematic approxima-
tion scheme are a momentum-space cutoff A, a number v
of expansion functions, and a virtual-particle-number cut-
off n and a scattering time T. In this work we have ex-
tended the results obtained earlier in the small-coupling
regime to the strong-coupling regime. We find also in
the strong-coupling regime converged results. Because of
computer storage limitations we have imposed the con-

straint of maximally two virtual particles for a two-
particle scattering process, which is not physical in the
strong-coupling regime. However, in this case it allows
one to compare the nonperturbative result with standard
perturbation theory, summing up to infinite order all

graphs with two virtual particles, which can be done
analytically. Agreement is found within numerical errors
in the whole range of A,,ff up to k,ff——3. In the case of a
small coupling, agreement is also found with first-order
perturbation theory. In order to test the sensitivity of the
S matrix on higher virtual-particle-number states, we
have used in Sec. III a basis of expansion functions, which
takes into account the particle number and a discretiza-
tion of energy, but averages over the momentum degrees
of freedom. Using this basis we also find converged re-
sults with respect to the number of expansion functions
and the time parameter. The calculations show that the S
matrix SJv(T) converges also with respect to increasing
the upper cutoff in the virtual particle number. This is
found for A,,ff—6 but most importantly, also for A,,ff—1.
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