# Effects of the virtual particle number on the S matrix of the $(\phi^4)_{1+1}$ model

H. Kröger, R. Girard, and G. Dufour

Département de Physique, Université Laval, Québec, P.Q., Canada G1K 7P4 (Received 19 September 1986; revised manuscript received 19 January 1987)

We present results of the S matrix in the  $(\phi^4)_{1+1}$  model obtained by a nonperturbative calculation using a momentum-space discretization technique. First, we calculate the two-body S matrix in the strong-coupling regime (up to  $\lambda_{eff}=3$ ), with the restriction of taking into account only two-body virtual particle states. We find agreement with standard perturbation theory obtained by summing up the corresponding graphs to infinite order. We also estimate the effect of mass renormalization. Second, we investigate the effect of including higher virtual particle numbers in two-particle scattering in the cases  $\lambda_{eff} = \frac{1}{6}$  and  $\lambda_{eff} = 1$ . In both cases we find convergence of the S matrix with respect to increasing the virtual-particle-number cutoff.

# I. INTRODUCTION

One of the topics of current research in field theory are nonperturbative solution methods. For a review see Ref. 1. Much progress has been made on sum rules and coordinate-space lattice techniques. In this paper we want to draw attention to momentum-space discretization methods. This approach has been used by Brooks and Frautschi<sup>2</sup> to calculate ground and excited states in the Yukawa model and by Pauli<sup>3</sup> to compute ground and excited states of a many-nucleon system. The results of Ref. 2 for the Yukawa model have been improved by Pauli and Brodsky<sup>4</sup> by using Fourier-transformed light-cone variables.

The usefulness of momentum-space discretization for the computation of the S matrix has been proposed by Kröger.<sup>5</sup> Based on that method the S matrix has been calculated for the  $(\phi^4)_{1+1}$  model<sup>6</sup> and the nonlinear Schrödinger model.<sup>7</sup> The nonlinear Schrödinger model is a nonrelativistic field theory, which conserves the particle number and has an analytically known S matrix. It has served the purpose to test the latter nonperturbative computation method in the weak- as well as in the strongcoupling regime. The method was found to give results converging to the correct answer in all cases. The  $(\phi^4)_{1+1}$ model on the other hand is a relativistic field theory, which does not conserve the particle number. In Ref. 6 the method has been applied in the weak-coupling regime to calculate a two-body S matrix and agreement was found with first-order perturbation theory. These calculations were parametrized by the following systematic approximation parameters: a momentum-space cutoff  $\Lambda$ , a partition of the momentum-space interval  $[-\Lambda,\Lambda]$  in v cells, a virtual-particle-number cutoff n, and a scattering time parameter T.

In the present paper, we want to extend the analysis of Ref. 6 for the S matrix of the  $(\phi^4)_{1+1}$  model. In principle, one would like to extend the calculations with respect to the approximation parameters  $\Lambda$ ,  $\nu$ , and n. Computer storage limitations, however, impose practical constraints. Thus we have chosen to extend the calculations of Ref. 6

in two directions. Firstly, we increase the momentumspace basis, but freeze the virtual-particle-number degree of freedom. Secondly, we increase the virtual particle number, but freeze the momentum-space degrees of freedom.

In the first part, we have performed calculations in the strong-coupling regime. As in the calculations of Ref. 6, we have considered two-particle scattering and kept the number of virtual particles at two. However, we have increased the discrete momentum-space basis. From general physical grounds and also from experience gained on the nonlinear Schrödinger model,<sup>7</sup> one expects that, going from a small- to large-coupling constant, one would have to increase the momentum cutoff, the number of momentum-space cells, and the particle number cutoff. So with respect to the virtual-particle-number cutoff, the results reported here are still preliminary. On the other hand, the results can be compared with standard perturbation theory. It corresponds to summing up to infinite order all Feynman diagrams with virtual two-particle states, which can be carried out analytically in 1 + 1 dimensions. We have carried out calculations varying the effective coupling constant  $\lambda_{eff} = \lambda / m^2$  in the range between 0 and 3, where  $\lambda$  and *m* denote the bare quartic coupling and the bare mass, respectively. In the small-coupling region  $\lambda_{eff} \ll 1$ , one obtains very good numerical agreement. In the strong-coupling region  $\lambda_{eff} = 1$  we find numerical agreement with an error on the order of 6%. Stevenson<sup>8</sup> has shown for the  $(\phi^4)_{1+1}$  model, using the Gaussianeffective-potential method, that for  $\lambda_{eff} = 2.552$  the Gaussian effective potential evolves from a single well to a double well. Chang<sup>9</sup> found, using the Hartree approximation, that the Hartree effective potential goes from a single to a double well at  $\lambda_{eff} = 2.552$ . He argues that it does not correspond to a first-order, but a second-order phase transition. Because of the indication that strong coupling only sets in at about  $\lambda_{eff}=2.5$ , we have also performed calculations for  $\lambda_{eff} = 3$ . Again we find, for the S matrix, numerical agreement with an error on the order of 6%. The numerical results are discussed in Sec. II.

Another point which we want to address here is the

35 3944

problem of renormalization. The  $(\phi^4)_{1+1}$  model is superrenormalizable, i.e., one expects only finite counterterms in perturbative renormalization. The only irreducible divergent graph is the tadpole graph, which can be eliminated by normal ordering, which has been done in this work. In a nonperturbative renormalization procedure, one would have to determine a cutoff-dependent mass, coupling constant, etc., and fine-tune them accordingly such that observable quantities such as, e.g., cross sections, tend to a given limiting value when the cutoff  $\Lambda$ tends to infinity. We have calculated the renormalized mass  $m_R$  nonperturbatively by calculating the two-point Green's function including virtual three-particle states. It turns out that the renormalization gives negligible effects for  $m_R$  if the bare effective coupling constant  $\lambda_{eff}$  is small but has a non-negligible effect for  $\lambda_{eff} = 1$ .

In the second part, we have performed calculations including higher virtual particle numbers. As mentioned above we have now restricted the momentum-space degrees of freedom. This has been done by choosing a basis of states corresponding to a given particle number and energy. The momentum-space degrees of freedom have been fixed by integrating over a given distribution. We have carried out calculations for  $\lambda_{eff} = \frac{1}{6}$  and  $\lambda_{eff} = 1$ . For  $\lambda_{\rm eff} = \frac{1}{6}$  we find, for the two-body elastic scattering S matrix, that virtual four-particle states give only a small contribution, and the contribution from virtual six-particle states is even more negligible. For  $\lambda_{eff} = 1$ , however, one needs virtual twelve-particle states to give a contribution in the order of 1%. For example, in both cases one observes that the S matrix converges with respect to increasing the virtual-particle-number cutoff. The numerical results are discussed in Sec. III. Finally, Sec. IV gives some concluding remarks.

## II. ELASTIC TWO-BODY S MATRIX IN THE STRONG-COUPLING REGIME

The aim of this section is to present an application of a nonperturbative time-dependent calculation scheme to the two-body scattering process in the  $(\phi^4)_{1+1}$  model in the strong-coupling regime. The method has been discussed in Refs. 6 and 7, so we will recall only the basic aspects of the formalism. We consider the S matrix, given in the form

$$S = \operatorname{w-lim}_{t \to \infty} \exp(iH^0 t) \exp(-2iHt) \exp(iH^0 t) , \qquad (2.1)$$

where H and  $H^0$  denote the full and asymptotic Hamiltonian, respectively. In the following we will consider an *S*-matrix element  $\langle \Omega_{out} | S | \Omega_{in} \rangle$ , where  $\Omega_{in}$ ,  $\Omega_{out}$  are asymptotically incoming and outgoing wave-packet states. We approximate the *S* matrix by

$$S_N(T) = \exp(iH_N^0 T) \exp(-2iH_N T) \exp(iH_N^0 T) , \quad (2.2)$$

where  $H_N$  and  $H_N^0$  are finite-dimensional Hermitian approximations of H and  $H^0$ , respectively, and T is the time parameter. Note that  $S_N(T)$  is unitary. The numerical calculation of  $S_N(T)$  is performed using the eigenrepresentation of the finite-dimensional matrices  $H_N$  and  $H_N^0$ .  $H_N$  and  $H_N^0$  are constructed via

$$H_N = P_N H P_N , \quad H_N^0 = P_N H^0 P_N , \quad (2.3)$$

where  $P_N$  is an orthogonal projector on a finitedimensional subspace of the Fock space. In this section we use the following finite-dimensional Fock space. We consider two-particle scattering and we also restrict the virtual particle number *n* to n=2. Let  $[-\Lambda,\Lambda]$  denote a cutoff momentum-space interval and let  $-\Lambda = k_0$ ,  $k_1, \ldots, k_{\nu-1}, k_{\nu} = \Lambda, k_{\mu} < k_{\mu+1}$  denote a partition of the interval. Then we define creation operators, averaged over the cell  $\mu$ , by

$$A_{\mu}^{\dagger} = \int dk \, \chi_{\mu}(k) A^{\dagger}(k) \Big/ \int dk \, \chi_{\mu}(k) \, , \ \mu = 1, 2, \dots, \nu \, ,$$
(2.4)

where  $\chi_{\mu}$  is the characteristic function of cell  $\mu$ . The finite-dimensional Fock space  $\mathscr{F}_N$  is generated by

$$\mathscr{F}_{N=(\Lambda,\nu,n=2)} = \text{span of } \{A_{\rho}^{\dagger}A_{\sigma}^{\dagger} \mid 0\rangle, \ \rho, \sigma = 1, 2, \dots, \nu\} .$$
(2.5)

Because of symmetrization of the bosons, the basis can be restricted to states with  $\rho \ge \sigma$ . We denote the orthogonal basis states by

$$\rho,\sigma\rangle = \kappa_{\rho\sigma} \left| A_{\rho}^{\dagger} A_{\sigma}^{\dagger} \right\rangle , \qquad (2.6)$$

where  $\kappa_{\rho\sigma}$  normalizes  $|\rho,\sigma\rangle$  to unity.

The procedure to obtain the S matrix is to calculate  $S_N(T)$  for a set of approximation parameters and then let the approximation parameters  $\Lambda$ ,  $\nu$ , n, T tend to infinity. The crucial question is the following: Does  $S_N(T)$  converge and if so, to which limit? This has been studied numerically and will be discussed below. Because there are four approximation parameters and one does not expect uniform convergence, it is very useful for practical purposes to have some control of the error. One function, which serves that purpose, proposed in Ref. 10, is

$$\Delta_{<>} = \left| \frac{\langle \psi_{\text{out}}(N,T) | H | \psi_{\text{in}}(N,T) \rangle - \langle \Omega_{\text{out}} | H^0 | \Omega_{\text{in}} \rangle}{\langle \Omega_{\text{out}} | H^0 | \Omega_{\text{in}} \rangle} \right|,$$
(2.7)

where

$$|\psi_{\text{out}}(N,T)\rangle = \exp(-iH_N T)\exp(iH_N^0 T) |\Omega_{\text{out}}\rangle . \quad (2.8)$$

For nonrelativistic *p-p* scattering, the function  $\Delta_{< >}$  turned out to be useful.<sup>10</sup> It reflects the intertwining property of the wave operators with the full and asymptotic Hamiltonian. When *N* and *T* tend to infinity,  $\Delta_{< >}$  should go to zero. Another function to control the error, proposed in Ref. 7, is

$$\Delta_{0} = \left| \frac{\langle \Omega_{\text{out}} | S_{N}(T) - (H^{0})^{-1} S_{N}(T) H^{0} | \Omega_{\text{in}} \rangle}{\langle \Omega_{\text{out}} | S_{N}(T) | \Omega_{\text{in}} \rangle} \right|, \qquad (2.9)$$

which should be applied to only those asymptotic wavepacket states on which  $H^0$  is invertible. This function reflects the commutation property of the S matrix with the asymptotic Hamiltonian. It should go to zero, too, when N and T tend to infinity. Experience gained from models, where the exact S matrix is known, has shown

<u>35</u>

(2.23)

that a minimum in the error of the S matrix,

$$\Delta = \left| \frac{\langle \Omega_{\text{out}} | S - S_N(T) | \Omega_{\text{in}} \rangle}{\langle \Omega_{\text{out}} | S | \Omega_{\text{in}} \rangle} \right|, \qquad (2.10)$$

coincides with a minimum in the function  $\Delta_{<}$  and  $\Delta_{0}$ , respectively. Thus, for models where the exact S matrix is unknown, we will search for minima of  $\Delta_{<}$ ,  $\Delta_{0}$  in order to constraint the domain of approximation parameters.

Now let us consider, in particular, the  $(\phi^4)_{1+1}$  model, given by the Hamiltonian

$$H = H^{0} + H^{\text{int}} ,$$
  

$$H^{0} = :\frac{1}{2} \int dx \, \partial_{\mu} \phi \partial^{\mu} \phi + m^{2} \phi^{2} : , \qquad (2.11)$$
  

$$H^{\text{int}} = :\lambda \int dx \, \phi^{4} : .$$

The field  $\phi$  obeys the canonical commutation relations

$$[\phi(x,t),\phi(y,t)] = i\delta(x-y) \tag{2.12}$$

and admits the Fourier representation

$$\phi(x,t=0) = \frac{1}{2\pi} \int \frac{dk}{2E^0(k)} [A(k)e^{ikx} + A^{\dagger}(k)e^{-ikx}] ,$$
  

$$E^0(k) = (k^2 + m^2)^{1/2} .$$
(2.13)

Now we can express the matrix elements of the Hamiltonian in terms of the finite-dimensional basis, defined by Eq. (2.6) [note: the normalization of A(k) is fixed by Eqs. (2.12) and (2.13)]. Denoting

$$E_{\sigma}^{0} = \langle \sigma | H^{0} | \sigma \rangle , \qquad (2.14)$$

one can express the matrix elements of  $H^0$  as

$$\langle \sigma, \rho | H^0 | \tau, \omega \rangle = (E^0_{\sigma} + E^0_{\rho}) \delta_{\sigma, \tau} \delta_{\rho, \omega}$$
 (2.15)

and matrix elements of  $H^{\text{int}}$  as

$$\langle \sigma, \rho | H^{\text{int}} | \tau, \omega \rangle = \frac{2\pi 4! \lambda \Delta k \delta_{\sigma+\rho,\tau+\omega}}{(b_{\rho} b_{\sigma} b_{\tau} b_{\omega})^{1/2}} , \qquad (2.16)$$

where  $\Delta k$  is the distance between two nodes in an equidistant partition of  $[-\Lambda, +\Lambda]$  and

$$b_{\sigma} = 2\pi E_{\sigma}^0 . \tag{2.17}$$

One should notice that the matrix element in this basis conserves the discretized total momentum. Moreover, after splitting off the total momentum-conserving  $\delta$  function, the matrix element is separable. This property facilitates the numerical solution of the diagonalization of Hby reducing the algebraic dimension. We denote by  $\alpha$  the conserved discretized total momentum. For each such  $\alpha$ there is an invariant subspace. We solve the diagonalization problem independently in each invariant subspace

$$H_{N,\alpha} | \phi_{\alpha,\beta} \rangle = E_{\alpha,\beta} | \phi_{\alpha,\beta} \rangle . \qquad (2.18)$$

According to Eq. (2.16), the interaction can be written in the subspace  $\alpha$ 

$$P_{N,\alpha}H^{\rm int}P_{N,\alpha} = |\Xi_{\alpha}\rangle\lambda\langle\Xi_{\alpha}| \quad , \qquad (2.19)$$

where  $|\Xi_{\alpha}\rangle$  is given by

$$\langle \sigma, \rho \mid \Xi_{\alpha} \rangle = \delta_{\alpha, \sigma+\rho} \left[ \frac{2\pi 4! \Delta k}{b_{\sigma} b_{\rho}} \right]^{1/2}.$$
 (2.20)

Equation (2.19) clearly exhibits the separability property. This property allows one to transform the eigenvalue equation (2.18) in two simpler equations: namely,

$$\lambda^{-1} = \sum_{\sigma,\rho} \frac{|\langle \sigma,\rho | \Xi_{\alpha} \rangle|^2}{E_{\alpha,\beta} - (E_{\sigma}^0 + E_{\rho}^0)} , \qquad (2.21)$$

which determines the eigenvalue  $E_{\alpha,\beta}$ , and

$$\langle \sigma, \rho | \phi_{\alpha,\beta} \rangle = \kappa_{\alpha,\beta} \frac{\langle \sigma, \rho | \Xi_{\alpha} \rangle}{E_{\alpha,\beta} - (E_{\sigma}^{0} + E_{\rho}^{0})} ,$$
 (2.22)

which determines the eigenvector  $\phi_{\alpha,\beta}$ ,  $\kappa_{\alpha,\beta}$  being a normalization constant.

Finally we want to specify the asymptotic wave packets  $\Omega_{in}$ ,  $\Omega_{out}$ . Let

$$|\Omega_{i}\rangle = \kappa_{i} \int_{k_{i} \text{ low}}^{\kappa_{i} \text{ up}} dk \{1 - \cos[2\pi(k - k_{i} \text{ low})/(k_{i} \text{ up} - k_{i} \text{ low})]\} A^{\dagger}(k) |0\rangle$$

denote a one-particle asymptotic wave packet. It has the properties of being a bell-shaped distribution between  $k_{i \text{ low}}$  and  $k_{i \text{ up}}$ , vanishing outside, having a maximum at  $(k_{i \text{ up}}+k_{i \text{ low}})/2$ , and having a half-width of  $(k_{i \text{ up}}-k_{i \text{ low}})/2$ . We take

$$|\Omega_{\rm in}\rangle = |\Omega_{\rm out}\rangle = |\Omega_1, \Omega_2\rangle$$
, (2.24)

where  $\Omega_1$ ,  $\Omega_2$  are distinguished by the parameters  $k_{i \text{ low}}, k_{i \text{ up}}$ . Now let us discuss the numerical results. The asymptotic wave packets are specified by  $k_{1 \text{ low}} = 0.25$  MeV,  $k_{1 \text{ up}} = 0.5$  MeV,  $k_{2 \text{ low}} = 0.75$  MeV,  $k_{2 \text{ up}} = 1.0$  MeV. In Table I we display the results for the model parameters m = 1.0 MeV,  $\lambda = 10^{-2}$  MeV<sup>2</sup>, i.e.,  $\lambda_{\text{eff}} = 10^{-2}$ , and the approximation parameters  $\Lambda = 4.0$  MeV, n = 2.

We display the dependence of  $S_N(T)$  on  $\nu$  and T. The numerical result is stable within four digits at  $\nu = 500$ ,  $T = 600 \text{ MeV}^{-1}$ . In Fig. 1 we show for  $\nu = 500$  the dependence of  $\text{Im}[S_N(T)]$  on the time parameter, together with the error criterion  $\Delta_0$ , given by Eq. (2.9).  $\Delta_0$  exhibits a sharp minimum at  $T = 620 \text{ MeV}^{-1}$ . One notices that in the neighborhood of that time parameter the imaginary part of  $S_N(T)$  (and also the real part, not displayed here) is very stable. In this case the coupling constant is small compared to the mass, i.e., we are in the small-coupling region. We have compared our nonperturbative result  $S_N(T)$  with first-order standard perturbation theory, which gives  $S^{(1)}=1.0-0.1391i$  which deviates from  $S_N(T)$  in the real part on the order of  $1.0 \times 10^{-2}$ , and in

TABLE I. Dependence of the S-matrix element  $\langle \Omega_{out} | S_N(T) | \Omega_{in} \rangle$  for two-body scattering on the number  $\nu$  of expansion functions and the scattering time T. The model parameters are mass m = 1.0 MeV, coupling constant  $\lambda = 0.01$  MeV<sup>2</sup>; the approximation parameters are momentum cutoff  $\Lambda = 4.0$  MeV, and virtual-particle-number cutoff n = 2.

| v             | 300               | 400               | 500               |  |
|---------------|-------------------|-------------------|-------------------|--|
| $T(MeV^{-1})$ | <u></u>           |                   |                   |  |
| 0             | (1.0000, 0.0000)  | (1.0000, 0.0000)  | (1.0000, 0.0000)  |  |
| 40            | (0.9957, -0.0607) | (0.9957, -0.0607) | (0.9957, -0.0607) |  |
| 80            | (0.9925, -0.1057) | (0.9925, -0.1058) | (0.9925, -0.1058) |  |
| 120           | (0.9909, -0.1284) | (0.9909, -0.1284) | (0.9909, -0.1284) |  |
| 160           | (0.9903, -0.1368) | (0.9903, -0.1368) | (0.9903, -0.1368) |  |
| 200           | (0.9901, -0.1391) | (0.9901, -0.1391) | (0.9901, -0.1391) |  |
| 240           | (0.9901, -0.1397) | (0.9901, -0.1397) | (0.9901, -0.1396) |  |
| 280           | (0.9901, -0.1398) | (0.9901, -0.1398) | (0.9901, -0.1398) |  |
| 320           | (0.9900, -0.1399) | (0.9900, -0.1399) | (0.9900, -0.1399) |  |
| 360           | (0.9900, -0.1399) | (0.9900, -0.1399) | (0.9900, -0.1399) |  |
| 400           |                   | (0.9900, -0.1399) | (0.9900, -0.1399) |  |
| 440           |                   | (0.9900, -0.1399) | (0.9900, -0.1399) |  |
| 480           |                   | (0.9900, -0.1399) | (0.9900, -0.1399) |  |
| 520           |                   |                   | (0.9900, -0.1399) |  |
| 560           |                   |                   | (0.9900, -0.1399) |  |
| 600           |                   |                   | (0.9900, -0.1399) |  |

the imaginary part on the order of  $0.8 \times 10^{-3}$ .

In Table II we display the results for a strong-coupling case, where we took  $\lambda = 1.0 \text{ MeV}^2$ , i.e.,  $\lambda_{\text{eff}} = 1$ . Again we find numerical stability of  $S_N(T)$  at  $\nu = 500$ ,  $T = 600 \text{ MeV}^{-1}$ . For this region of the coupling constant, first-order perturbation theory is certainly not valid. Because



FIG. 1. Imaginary part of the S-matrix element  $\langle \Omega_{out} | S_N(T) | \Omega_{in} \rangle$  as a function of the time T corresponding to the model parameters: coupling constant  $\lambda = 0.01 \text{ MeV}^2$ , mass m = 1.0 MeV, and the approximation parameters: momentum cutoff  $\Lambda = 4.0 \text{ MeV}$ , number of expansion functions v = 500, number of asymptotic and number of virtual particles n = 2. The function  $\Delta_0$  displayed is a measure of the violation of energy conservation of the approximate S matrix  $S_N(T)$ . The minimum of  $\Delta_0$  coincides with a region of stability of  $S_N(T)$ .

we have restricted in the calculation of  $S_N(T)$  the virtual particle number to two,  $S_N(T)$  should correspond to standard perturbation theory summing up all graphs with two virtual particles, as shown in Fig. 2. For the  $(\phi^4)_{1+1}$ model these graphs can be summed to infinite order to give

$$\langle A^{\dagger}(k_{1}')A^{\dagger}(k_{2}') | S^{(\infty)} | A^{\dagger}(k_{1})A^{\dagger}(k_{2}) \rangle = s \langle A^{\dagger}(k_{1}')A^{\dagger}(k_{2}') | A^{\dagger}(k_{1})A^{\dagger}(k_{2}) \rangle , s = (1 - \lambda X - iY) / (1 - \lambda X + iY) , X = \frac{Y}{\pi} \ln | (1 + 4q^{2}Y) / (1 - 4q^{2}Y) | ,$$
(2.25)  
$$Y = \frac{1}{8} [k_{1}E^{0}(k_{2}) - k_{2}E^{0}(k_{1})]^{-1} , q^{2} = (k_{1} + k_{2})^{2} - [E^{0}(k_{1}) + E^{0}(k_{2})]^{2} .$$

Note that  $S^{(\infty)}$  is unitary. In Table III we have compared the matrix element  $\langle \Omega_{out} | S | \Omega_{in} \rangle$  calculated nonperturbatively, in first-order perturbation theory and in infinite order of perturbation theory. We have varied the coupling constant between  $\lambda = 0.01$  MeV<sup>2</sup> (small coupling) and  $\lambda = 3.0 \text{ MeV}^2$  (strong coupling). In the nonperturbative calculation, we used the approximation parameters  $\Lambda = 4.0$  MeV,  $\nu = 300$ , n = 2. Note that due to the finite cutoff  $\Lambda$ , one violates Lorentz invariance. The results for  $S_N(T)$ , given in column two of Table III, each correspond to a T value, which gives a minimum of  $\Delta_0$ . In the perturbation-theory calculations one has calculated the loop graph without imposing any momentum cutoff. One finds for  $\lambda = 0.01$  MeV<sup>2</sup> agreement between  $S^{(1)}$ ,  $S^{(\infty)}$ , and  $S_N(T)$  within 1%; however, for  $\lambda = 3.0 \text{ MeV}^2$ ,  $S^{(1)}$ differs by more than a factor of 40 from  $S^{(\infty)}$ .  $S^{(\infty)}$  and  $S_N(T)$  agree with an error in the order of 6%. We ascribe the latter deviation to the finiteness of the approximation parameters, in particular to the finite momentum-space cutoff  $\Lambda$ , used in  $S_N(T)$ .

# H. KRÖGER, R. GIRARD, AND G. DUFOUR

| v             | 300                | 400                | 500                |
|---------------|--------------------|--------------------|--------------------|
| $T(MeV^{-1})$ | <u></u>            |                    |                    |
| 300           | (-0.9983, 0.04479) | (-0.9982, 0.04474) | (-0.9979, 0.04474) |
| 320           | (-0.9985, 0.04415) | (-0.9984, 0.04481) | (-0.9982, 0.04480) |
| 340           | (-0.9986, 0.04487) | (-0.9986, 0.04486) | (-0.9984, 0.04484) |
| 360           |                    | (-0.9987, 0.04489) | (-0.9985, 0.04487) |
| 380           |                    | (-0.9987, 0.04491) | (-0.9986, 0.04488) |
| 400           |                    | (-0.9988, 0.04491) | (-0.9986, 0.04490) |
| 420           |                    | (-0.9988, 0.04492) | (-0.9987, 0.04491) |
| 440           |                    | (-0.9988, 0.04492) | (-0.9987, 0.04492) |
| 460           |                    | (-0.9988, 0.04492) | (-0.9987, 0.04492) |
| 480           |                    |                    | (-0.9988, 0.04493) |
| 500           |                    |                    | (-0.9988, 0.04493) |
| 520           |                    |                    | (-0.9988, 0.04492) |
| 540           |                    |                    | (-0.9988, 0.04492) |
| 560           |                    |                    | (-0.9988, 0.04492) |
| 580           |                    |                    | (-0.9988, 0.04492) |

TABLE II. Same as in Table I, but  $\lambda = 1.0 \text{ MeV}^2$ .

So far we have discussed the results in terms of bare model parameters. The physical parameters, however, are not the bare ones, but the renormalized ones. We define the renormalized parameters, such as the mass  $m_R$  and the coupling constant  $\lambda_R$ , in the standard way via the two-point and four-point vertex Green's function, respectively.

The n-point Green's function, which is closely related to the time evolution and the S matrix, can be calculated in our nonperturbative scheme, i.e., in the approximation characterized by the parameters momentum cutoff  $\Lambda$ , the partition parameter v, the virtual particle cutoff n, and the scattering time T. In this paper we have calculated the renormalized mass. The renormalized mass corresponds to a pole in the two-point Green's function at momentum k = 0, or a zero in the inverse Green's function. Hence we have calculated the lowest eigenvalue of the Hamiltonian, corresponding to k = 0, in the approximation of cutting off the virtual particular number by three. This is equivalent to sum up to infinite order all the bubbles of self-energy two-loop diagrams, i.e., the bubbles with three virtual particle states. The numerical results are given in Table IV. We have taken  $m_{\text{hare}} = 1 \text{ MeV}$ and varied  $\lambda_{\rm eff, bare} = \lambda_{\rm bare} / m_{\rm bare}^2$  between 0.01 and 2.0. We find for small coupling  $\lambda_{eff, bare} \ll 1$  negligible effects on the renormalized mass  $m_R$ . However for strong coupling,  $\lambda_{\text{eff, bare}} = 1$ , one observes a profound effect on  $m_R$ . There is a critical value  $\lambda_{\text{eff,bare}}^{\text{crit}} \approx 1.5$ , for which  $m_R^2$  vanishes. For larger  $\lambda_{\text{eff,bare}}$ ,  $m_R^2$  becomes negative. This is not a contradiction to the observation from the Gaussian/Hartree effective-potential method,<sup>8,9</sup> where for large  $\lambda_{eff, bare}$  a transition is found in the effective potential from a single well to a double well.



FIG. 2. Feynman graphs corresponding to asymptotic and virtual two-particle states.

# III. EFFECTS OF HIGHER VIRTUAL PARTICLE NUMBERS

As mentioned in the Introduction we wanted to include states with higher numbers of virtual particles, which can be done at the cost of restricting the momentum-space degrees of freedom. In a first attempt we used a basis of states, where the states correspond to a good particle number, but momentum and energy degrees of freedom were averaged. We tried, in particular,

~

10

$$|j\rangle = \kappa_{j} \int dk_{1} \cdots dk_{j} \chi(k_{1}, \dots, k_{j})$$

$$\times A^{\dagger}(k_{1}) \cdots A^{\dagger}(k_{j}) |0\rangle ,$$

$$\chi(k_{1}, \dots, k_{j}) = \begin{cases} 1 & \text{if} - \Lambda < k_{1}, \dots, k_{j} < \Lambda , \\ 0 & \text{otherwise} , \end{cases}$$
(3.1)

where  $\kappa_j$  is a normalization constant. This attempt was unsuccessful, the S matrix did not converge. The reason can be understood from time-dependent nonrelativistic scattering theory. In the proof of existence of the wave operators, one has as an ingredient the property

$$\exp(iH^0t) \stackrel{\omega}{\underset{t \to \infty}{\longrightarrow}} 0.$$
(3.2)

A similar property has to hold for the time evolution of the finite-dimensional asymptotic Hamiltonian  $\exp(iH_N^0 T)$ . For each  $\psi, \phi \in \mathcal{H}, \epsilon > 0$  exist N and  $T \in \mathbf{R}$ such that

$$|\langle \psi | \exp(iH_N^0 T) | \phi \rangle < \epsilon , \qquad (3.3)$$

i.e., for arbitrary Hilbert states  $\psi, \phi$  the expression  $\langle \psi | \exp(iH_N^0 T) | \phi \rangle$  can be made arbitrarily small. However, for the basis given in Eq. (3.1) this does not hold, which can be verified immediately: one observes that  $H_N^0$ is diagonal in this basis. Then we take, e.g.,  $\psi = \phi = |1\rangle$ .

(3.6)

TABLE III. Comparison of the S-matrix element  $\langle \Omega_{out} | S | \Omega_{in} \rangle$  for two-body scattering calculated nonperturbatively  $[S_N(T)]$  and in standard perturbation theory  $(S^{(\infty)}, S^{(1)})$  for different coupling constants. The model parameter is m = 1.0 MeV. The approximation parameters used in the nonperturbative calculation are  $\Lambda = 4.0$  MeV,  $\nu = 300$ , n = 2.  $S^{(\infty)}$  corresponds to summing to infinite order all graphs with virtual two-particle states;  $S^{(1)}$  corresponds to first-order perturbation theory.

| $\lambda$ (MeV <sup>2</sup> ) | $S_N(T)$           | $S^{(\infty)}$     | $oldsymbol{S}^{(1)}$ |
|-------------------------------|--------------------|--------------------|----------------------|
| 0.01                          | (0.9900, -0.1399)  | (0.9901, -0.1397)  | (1.000, -0.1391)     |
| 0.02                          | (0.9599, -0.2788)  | (0.9602, -0.2776)  | (1.000, -0.2782)     |
| 0.03                          | (0.9100, -0.4122)  | (0.9112, -0.4096)  | (1.000, -0.4173)     |
| 0.04                          | (0.8422, -0.5360)  | (0.8448, -0.5319)  | (1.000, -0.5564)     |
| 0.05                          | (0.7592, -0.6470)  | (0.7641, -0.6413)  | (1.000, -0.6955)     |
| 0.06                          | (0.6645, -0.7429)  | (0.6724, -0.7359)  | (1.000, -0.8346)     |
| 0.07                          | (0.5617, -0.8224)  | (0.5732, -0.8147)  | (1.000, -0.9737)     |
| 0.08                          | (0.4546, -0.8855)  | (0.4699, -0.8776)  | (1.000, -1.113)      |
| 0.09                          | (0.3462, -0.9327)  | (0.3655, -0.9254)  | (1.000, -1.252)      |
| 0.10                          | (0.2393, -0.9652)  | (0.2627, -0.9593)  | (1.000, -1.391)      |
| 0.20                          | (-0.5227, -0.8474) | (-0.4802, -0.8721) | (1.000, -2.782)      |
| 0.30                          | (-0.8158, -0.5745) | (-0.7802, -0.6219) | (1.000, -4.173)      |
| 0.40                          | (-0.9251, -0.3766) | (-0.8995, -0.4344) | (1.000, -5.564)      |
| 0.50                          | (-0.9695, -0.2422) | (-0.9518, -0.3048) | (1.000, -6.955)      |
| 0.60                          | (-0.9885, -0.1481) | (-0.9768, -0.2129) | (1.000, -8.346)      |
| 0.70                          | (-0.9964, -0.0796) | (-0.9892, -0.1453) | (1.000, -9.737)      |
| 0.80                          | (-0.9993, -0.0277) | (-0.9955, -0.0940) | (1.000, -11.13)      |
| 0.90                          | (-0.9996, 0.0126)  | (-0.9985, -0.0538) | (1.000, -12.52)      |
| 1.0                           | (-0.9986, 0.0449)  | (-0.9998, -0.0215) | (1.000, -13.91)      |
| 3.0                           | (-0.9712, 0.2354)  | (-0.9851, 0.1711)  | (1.000, -41.73)      |

#### Hence

,

 $|\langle \psi | \exp(iH_N^0 T) | \phi \rangle| = |\langle 1 | 1 \rangle \exp(ih_{11}^0 T)| = 1. \quad (3.4)$ 

Hence in a second attempt, we have modified the basis in

order to avoid this property. The minimal generalization from Eq. (3.1), is to take into account the energy degree of freedom, but still average over the momentum-space degrees of freedom. We took, in particular,

$$|\mu,j\rangle = \kappa_{\mu,j} \int dk_1 \cdots dk_j \int dE \,\chi(k_1, \dots, k_j) \chi_{\mu}(E) \delta(E - [E^0(k_1) + \dots + E^0(k_j)]) A^{\dagger}(k_1) \cdots A^{\dagger}(k_j) |0\rangle , \qquad (3.5)$$

$$\chi_{\mu}(E) = \begin{cases} 1 & \text{if } E_{\mu} < E < E_{\mu+1} , \\ 0 & \text{otherwise} , \end{cases}$$

where the function  $\chi$  was taken as in Eq. (3.1) and  $\kappa_{\mu j}$  normalizes the state to unity. This basis is orthogonal,

$$\langle \mu, i | \rho, j \rangle = \delta_{\mu\rho} \delta_{i,j}$$
,

. . . .

and  $H_N^0$  is diagonal in the basis.

However, now the property (3.3) is valid because when  $N \equiv (\Lambda, \nu, n)$  tends to infinity, the partition of the energy interval becomes finer and hence

$$\langle \psi | \exp(iH_N^0 T) | \phi \rangle = \sum_{\mu,j} \langle \psi | \mu,j \rangle \exp(ih_{\mu j}^0 T) \langle \mu j | \phi \rangle \underset{\Lambda,\nu \to \infty}{\longrightarrow} \sum_j \int d\epsilon_j \langle \psi | \epsilon_j,j \rangle \exp(i\epsilon_j T) \langle \epsilon_j,j | \phi \rangle , \qquad (3.7)$$

where  $h_{\mu,j}^0 = \langle \mu, j | H_N^0 | \mu, j \rangle$  and  $|\epsilon_j, j \rangle$  is a state of sharp asymptotic energy  $\epsilon_j$  and particle number *j*. For each *j* the integral in the continuous variable  $\epsilon_j$  tends to 0 when *T* tends to infinity, which is sufficient to guarantee the estimate (3.3).

Let us now fix the basis, given by Eq. (3.5), by specifying the finite-energy intervals and its partition. We have chosen the energy intervals in correlation with the particle number. To each particle number j we assign an interval

TABLE IV. The renormalized mass  $m_R$  as a function of the bare parameter  $\lambda_{\text{eff,bare}} = \lambda_{\text{bare}}/m_{\text{bare}}^2$ , where  $m_{\text{bare}} = 1.0$  MeV. The sign in parentheses indicates that  $m_R^2$  becomes negative.

| 0.999 954     |
|---------------|
| 0.995 486     |
| 0.593 981     |
| ( — )0.332436 |
|               |

TABLE V. Dependence of the S-matrix element  $\langle \Omega_{out} | S_N(T) | \Omega_{in} \rangle$  for two-body scattering, using the basis with increased virtual particle number given by Eq. (3.5), on the number  $\nu$  of expansion functions and the scattering time T. The model parameters are  $m = 0.5 \text{ MeV}, \lambda = \frac{1}{24} \text{ MeV}^2$ , i.e.,  $\lambda_{eff} = \frac{1}{6}$ . The approximation parameters are  $\Lambda = 1.0 \text{ MeV}, n_{\min} = n_{\max} = n_{in} = n_{out} = 2$ .

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                 | and the second | and the second se | and the second state of th | the second division of |                  |                  | the second se |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------------------------------------------------------------------------------------------------|------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                 | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40               | 50               | 70                                                                                                              | 90               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                | $T(MeV^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                 |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8988           | 0.8974           | 0.8957                                                                                                          | 0.8948           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.3537 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.3796 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.3906 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.3956 <i>i</i> | -0.3985i         | -0.4020i                                                                                                        | -0.4038i         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8201           | 0.8176           | 0.8149                                                                                                          | 0.8136           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.4773 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.5119 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.5262 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.5332i         | -0.5367 <i>i</i> | -0.5408 <i>i</i>                                                                                                | -0.5429i         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7582           | 0.7545           | 0.7507                                                                                                          | 0.7488           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.5563 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.5939 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.6112 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.6203i         | -0.6246i         | -0.6294 <i>i</i>                                                                                                | -0.6317i         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7073           | 0.7023           | 0.6967                                                                                                          | 0.6942           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.6498 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.6705 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.6816 <i>i</i> | -0.6868 <i>i</i> | -0.6926 <i>i</i>                                                                                                | -0.6952 <i>i</i> |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6653           | 0.6585           | 0.6507                                                                                                          | 0.6472           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.6939 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.7172i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.7263i         | -0.7325i         | -0.7396 <i>i</i>                                                                                                | -0.7428i         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6288           | 0.6203           | 0.6093                                                                                                          | 0.6049           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.7346 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.7482 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.7610 <i>i</i> | -0.7679 <i>i</i> | -0.7767 <i>i</i>                                                                                                | -0.7802 <i>i</i> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5966           | 0.5866           | 0.5724                                                                                                          | 0.5671           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.7752 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.7887i         | -0.7962 <i>i</i> | -0.8063i                                                                                                        | -0.8100 <i>i</i> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5687           | 0.5571           | 0.5397                                                                                                          | 0.5332           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.7996 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.8107 <i>i</i> | -0.8187 <i>i</i> | -0.8300 <i>i</i>                                                                                                | -0.8341i         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5438           | 0.5315           | 0.5109                                                                                                          | 0.5032           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.8288i         | -0.8367 <i>i</i> | -0.8490 <i>i</i>                                                                                                | -0.8533i         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5198           | 0.5082           | 0.4863                                                                                                          | 0.4761           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.8450i         | -0.8520i         | -0.8640 <i>i</i>                                                                                                | -0.8693 <i>i</i> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4953           | 0.4871           | 0.4641                                                                                                          | 0.4521           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.8600 <i>i</i> | -0.8648 <i>i</i> | -0.8766 <i>i</i>                                                                                                | -0.8822i         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 0.4680           | 0.4446                                                                                                          | 0.4313           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -0.8757 <i>i</i> | -0.8871 <i>i</i>                                                                                                | -0.8927 <i>i</i> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 0.4268                                                                                                          | 0.4118           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | -0.8960 <i>i</i>                                                                                                | -0.9018 <i>i</i> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 0.4103                                                                                                          | 0.3942           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | -0.9037 <i>i</i>                                                                                                | -0.9094 <i>i</i> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 0.3951                                                                                                          | 0.3780           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | -0.9105 <i>i</i>                                                                                                | -0.9161 <i>i</i> |
| $\begin{array}{cccc} -0.9163i & -0.9218i \\ 0.3677 & 0.3500 \\ -0.9215i & -0.9263i \\ 0.3542 & 0.3380 \\ -0.9261i & -0.9301i \\ 190 & & & \\ 200 & & & & \\ 200 & & & & \\ 200 & & & & \\ \end{array}$ | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 0.3812                                                                                                          | 0.3631           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | -0.9163 <i>i</i>                                                                                                | -0.9218 <i>i</i> |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 0.3677                                                                                                          | 0.3500           |
| 180 0.3542 0.3380<br>-0.9261 <i>i</i> -0.9301 <i>i</i><br>190 0.3265<br>-0.9336 <i>i</i><br>200 0.3147<br>-0.9370 <i>i</i>                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | -0.9215 <i>i</i>                                                                                                | -0.9263 <i>i</i> |
| -0.9261 <i>i</i> -0.9301 <i>i</i><br>190 0.3265<br>-0.9336 <i>i</i><br>200 0.3147<br>-0.9370 <i>i</i>                                                                                                  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 0.3542                                                                                                          | 0.3380           |
| 190 0.3265<br>                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | -0.9261 <i>i</i>                                                                                                | -0.9301 <i>i</i> |
| -0.9336 <i>i</i><br>200 0.3147<br>-0.9370 <i>i</i>                                                                                                                                                     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                 | 0.3265           |
| 200 0.3147<br>-0.9370 <i>i</i>                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                 | -0.9336 <i>i</i> |
| -0.9370 <i>i</i>                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                 | 0.3147           |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                 | -0.9370 <i>i</i> |

 $[E_i^{\text{low}}, E_i^{\text{up}}]$ , with

$$E_{j}^{\text{low}} = jE^{0}(k=0) = jm ,$$

$$E_{j}^{\text{up}} = jE^{0}(k=\Lambda) = j(\Lambda^{2} + m^{2})^{1/2} .$$
(3.8)

This choice corresponds for each momentum to the cutoff interval  $[-\Lambda,\Lambda]$ . Let  $E_j^{\text{low}} = E_{0,j}, E_{1,j}, \ldots, E_{\nu-1,j}, E_{\nu,j} = E_j^{\text{up}}$  denote an equidistant partition of the energy interval.

The numerical evaluation of the normalization  $\kappa_{\mu j}$  of the states  $|\mu,j\rangle$ , the matrix elements  $\langle \mu,j | H^0 | \mu,j \rangle$  and  $\langle \mu,i | H^{\text{int}} | \rho,j \rangle$  involve high-dimensional integrals and has been carried out numerically using a Monte Carlo technique.<sup>11</sup> Although for high-dimensional integrals, the Monte Carlo technique is superior to fixed mesh-point integration methods, the evaluation of the matrix elements consumes the largest part of the computer time in the numerical calculation. Computer time can be saved by taking regard of symmetries or conservation rules. For example,  $\langle \mu, i | H^{\text{int}} | \rho, j \rangle$  is a Hermitian matrix, so only half of the matrix elements have to be calculated. Because of the  $\phi^4$  interaction, the matrix element  $\langle \mu, i | H^{\text{int}} | \rho, j \rangle$  gives nonzero contributions only for  $i-j=0, \pm 2, \pm 4$ , i.e., the interaction completely reduces the Fock space in an even-particle number sector and an odd-particle number sector. For the sake of simplicity, we have only considered the even-particle number sector.

We have taken the following asymptotic incoming and outgoing wave-packet states. All asymptotic wave packets are states corresponding to a pure asymptotic particle number. We took, corresponding to a given asymptotic particle number j, the following distribution:



FIG. 3. Graph of the function  $\Delta_{<>}$  measuring the violation of energy conservation of  $S_N(T)$ .



FIG. 4. Graph of the function  $\Delta_0$  measuring the violation of energy conservation of  $S_N(T)$ .

$$|\Omega,j\rangle = \kappa_j \sum_{\mu} \{1 - \cos[2\pi (E_j^{\text{up}} - E_{\mu,j})/(E_j^{\text{up}} - E_j^{\text{low}})]\} |\mu,j\rangle , \qquad (3.9)$$

where  $\kappa_j$  normalizes the state to unity. We have taken this type of state as incoming as well as outgoing asymptotic state  $\Omega_{in}$ ,  $\Omega_{out}$ .

The numerical results are displayed in Figs. 3 and 4 and Tables V-X. The model parameters chosen are m = 0.5 MeV,  $\lambda = \frac{1}{24}$  MeV<sup>2</sup>, i.e.,  $\lambda_{eff} = \frac{1}{6}$  and  $\lambda = \frac{1}{4}$  MeV<sup>2</sup>, i.e.,  $\lambda_{eff} = 1$ . Tables V-VII and Figs. 3 and 4 correspond to

 $\lambda_{\rm eff} = \frac{1}{6}$ , while Tables VIII-X correspond to  $\lambda_{\rm eff} = 1$ . In all cases we have taken the momentum cutoff  $\Lambda = 1.0$  MeV. Table V displays the dependence of the matrix element  $\langle \Omega_{\rm out} | S_N(T) | \Omega_{\rm in} \rangle$  on the number  $\nu$  of expansion functions and the time parameter T. In this case we took  $\Omega_{\rm out}$  and  $\Omega_{\rm in}$  as two-particle states and considered only virtual two-particle states. If we denote by  $n_{\rm in}$ ,  $n_{\rm out}$  the

TABLE VI. Same as in Table V, but for four-body scattering,  $n_{\min} = n_{\max} = n_{in} = n_{out} = 4$ .

|               | 10               | 20               | 20                      | 40                        | <u> </u>                 | 70                       |                           |
|---------------|------------------|------------------|-------------------------|---------------------------|--------------------------|--------------------------|---------------------------|
| $T(MeV^{-1})$ |                  | 20               | 30                      | 40                        | 50                       | 70                       | 90                        |
| 10            | -0.4777          | -0.5183          | -0.5278                 | -0.5312                   | -0.5343                  | -0.5378                  | -0.5396                   |
|               | -0.3259 <i>i</i> | -0.1987 <i>i</i> | -0.1605 <i>i</i>        | -0.13 <b>5</b> 2 <i>i</i> | -0.1237 <i>i</i>         | -0.1098 <i>i</i>         | -0.1022i                  |
| 20            | -0.4502          | -0.3945          | -0.3381                 | -0.3087                   | -0.2973                  | -0.2803                  | -0.2727                   |
|               | 0.1090 <i>i</i>  | 0.2096 <i>i</i>  | 0.2552 <i>i</i>         | 0.2785 <i>i</i>           | 0.2884 <i>i</i>          | 0.3016 <i>i</i>          | 0.3070 <i>i</i>           |
| 30            |                  | -0.2090          | -0.1367                 | $-0.8356 \times 10^{-1}$  | $-0.5483 \times 10^{-1}$ | $-0.2843 \times 10^{-1}$ | $-0.1578 \times 10^{-1}$  |
|               |                  | 0.3600 <i>i</i>  | 0.3728 <i>i</i>         | 0.3745 <i>i</i>           | 0.3750 <i>i</i>          | 0.3720 <i>i</i>          | 0.3713 <i>i</i>           |
| 40            |                  |                  | $0.3465 \times 10^{-1}$ | $0.8307 \times 10^{-1}$   | 0.1143                   | 0.1507                   | 0.1639                    |
|               |                  |                  | 0.4013 <i>i</i>         | 0.3798 <i>i</i>           | 0.3673 <i>i</i>          | 0.3453 <i>i</i>          | 0.3361 <i>i</i>           |
| 50            |                  |                  |                         | 0.2132                    | 0.2365                   | 0.2717                   | 0.2859                    |
|               |                  |                  |                         | 0.3465 <i>i</i>           | 0.3203 <i>i</i>          | 0.2837 <i>i</i>          | 0.2622 <i>i</i>           |
| 60            |                  |                  |                         |                           | 0.3311                   | 0.3623                   | 0.3737                    |
|               |                  |                  |                         |                           | 0.2559 <i>i</i>          | 0.2060 <i>i</i>          | 0.1771 <i>i</i>           |
| 70            |                  |                  |                         |                           |                          | 0.4236                   | 0.4287                    |
|               |                  |                  |                         |                           |                          | 0.1205 <i>i</i>          | $0.8441 \times 10^{-1}i$  |
| 80            |                  |                  |                         |                           |                          | 0.4566                   | 0.4573                    |
|               |                  |                  |                         |                           |                          | $0.3348 \times 10^{-1}i$ | $-0.8920 \times 10^{-2}i$ |
| 90            |                  |                  |                         |                           |                          |                          | 0.4672                    |
|               |                  |                  |                         |                           |                          |                          | -0.1001i                  |
| 100           |                  |                  |                         |                           |                          |                          | 0.4675                    |
|               |                  |                  |                         |                           |                          |                          | -0.1833i                  |
| 110           |                  |                  |                         |                           |                          |                          | 0.4527                    |
|               |                  |                  |                         |                           |                          |                          | -0.2587 <i>i</i>          |
| 120           |                  |                  |                         |                           |                          |                          | 0.4357                    |
|               |                  |                  |                         |                           |                          |                          | -0.3334 <i>i</i>          |

| scatt      | ering tin        | ne 1 nas been    | chosen in all    | cases to corr    | espond to a n    | ninimum of th    | he function $\Delta$ | < >.             |
|------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------|------------------|
|            | v                | 10               | 20               | 30               | 40               | 50               | 70                   | 90               |
| $n_{\min}$ | n <sub>max</sub> | <u> </u>         |                  |                  |                  |                  |                      |                  |
| 2          | 2                | 0.8263           | 0.6801           | 0.5966           | 0.5150           | 0.4757           | 0.3568               | 0.3392           |
|            |                  | -0.5261 <i>i</i> | -0.7145 <i>i</i> | -0.7900          | -0.8481 <i>i</i> | -0.8714 <i>i</i> | -0.9253 <i>i</i>     | -0.9197 <i>i</i> |
| 2          | 4                | 0.8727           | 0.7444           | 0.6686           | 0.5928           | 0.5561           |                      |                  |
|            |                  | -0.4615 <i>i</i> | -0.6555 <i>i</i> | -0.7353 <i>i</i> | —0.7977 <i>i</i> | -0.8234 <i>i</i> |                      |                  |
| 2          | 6                | 0.8744           | 0.7467           | 0.6712           | 0.5957           |                  |                      |                  |
|            |                  | -0.4590 <i>i</i> | -0.6531 <i>i</i> | -0.7330 <i>i</i> | -0.7956 <i>i</i> |                  |                      |                  |
| 2          | 8                | 0.8745           | 0.7469           | 0.6686           | 0.5959           |                  |                      |                  |
|            |                  | -0.4589 <i>i</i> | -0.6530 <i>i</i> | -0.7355 <i>i</i> | -0.7955 <i>i</i> |                  |                      |                  |

TABLE VII. Dependence of the S-matrix element  $\langle \Omega_{out} | S_N(T) | \Omega_{in} \rangle$  for two-particle scattering on the number  $\nu$  of expansion functions and on the virtual-particle-number cutoff, i.e.,  $n_{in} = n_{out} = 2$ . The scattering time T has been chosen in all cases to correspond to a minimum of the function  $\Delta_{<>>}$ .

TABLE VIII. Same as in Table V, but  $\lambda = \frac{1}{4}$  MeV<sup>2</sup>, i.e.,  $\lambda_{eff} = 1$ .

| ×             | 10              | 20                      | 20                        | 40                        | 50                       | 70                       | 00                       |
|---------------|-----------------|-------------------------|---------------------------|---------------------------|--------------------------|--------------------------|--------------------------|
| $T(MeV^{-1})$ |                 | 20                      | 50                        | 40                        | 50                       | 70                       | 30                       |
| 10            | -0.5350         | -0.5498                 | -0.5471                   | -0.5453                   | -0.5461                  | -0.5468                  | -0.5476                  |
|               | 0.1648 <i>i</i> | 0.2539 <i>i</i>         | 0.2879 <i>i</i>           | 0.3065 <i>i</i>           | 0.3162 <i>i</i>          | 0.3274 <i>i</i>          | 0.3333 <i>i</i>          |
| 20            | -0.6070         | $0.6565 \times 10^{-2}$ | $0.4109 \times 10^{-1}$   | $0.5980 	imes 10^{-1}$    | $0.6813 \times 10^{-1}$  | $0.7588 \times 10^{-1}$  | $0.7961 \times 10^{-1}$  |
|               | 0.4445 <i>i</i> | 0.5129 <i>i</i>         | 0.5333 <i>i</i>           | 0.5404 <i>i</i>           | 0.5441 <i>i</i>          | 0.5518 <i>i</i>          | 0.5559 <i>i</i>          |
| 30            |                 | 0.2935                  | 0.3463                    | 0.3727                    | 0.3817                   | 0.3926                   | 0.3981                   |
|               |                 | 0.4066 <i>i</i>         | 0.3976 <i>i</i>           | 0.3879 <i>i</i>           | 0.3840 <i>i</i>          | 0.3836 <i>i</i>          | 0.3841 <i>i</i>          |
| 40            |                 | 0.4155                  | 0.4785                    | 0.5019                    | 0.5091                   | 0.5179                   | 0.5230                   |
|               |                 | 0.2867 <i>i</i>         | 0.2325 <i>i</i>           | 0.2066 <i>i</i>           | 0.1967 <i>i</i>          | 0.1964 <i>i</i>          | 0.1837 <i>i</i>          |
| 50            |                 | 0.4777                  | 0.5311                    | 0.5437                    | 0.5458                   | 0.5495                   | 0.5524                   |
|               |                 | 0.1693 <i>i</i>         | $0.8660 \times 10^{-1}i$  | $0.5053 \times 10^{-1}i$  | $0.3284 \times 10^{-1}i$ | $0.1388 \times 10^{-1}i$ | $0.6552 \times 10^{-2}i$ |
| 60            |                 |                         | 0.5469                    | 0.5389                    | 0.5315                   | 0.5244                   | 0.5247                   |
|               |                 |                         | $-0.3963 \times 10^{-1}i$ | $-0.8431 \times 10^{-1}i$ | 0.1014 <i>i</i>          | -0.1355 <i>i</i>         | -0.1440 <i>i</i>         |
| 70            |                 |                         | 0.5347                    | 0.5042                    | 0.4842                   | 0.4630                   | 0.4585                   |
|               |                 |                         | -0.1488 <i>i</i>          | -0.1996 <i>i</i>          | -0.2192 <i>i</i>         | -0.2533 <i>i</i>         | -0.3613 <i>i</i>         |
| 80            |                 |                         |                           | 0.4523                    | 0.4218                   | 0.3836                   | 0.3722                   |
|               |                 |                         |                           | -0.2897 <i>i</i>          | -0.3040 <i>i</i>         | -0.3384 <i>i</i>         | -0.3426 <i>i</i>         |
| 90            |                 |                         |                           | 0.3954                    | 0.3568                   | 0.3025                   | 0.2840                   |
|               |                 |                         |                           | -0.3576 <i>i</i>          | -0.3647 <i>i</i>         | -0.3943 <i>i</i>         | -0.3936 <i>i</i>         |
| 100           |                 |                         |                           | 0.3320                    | 0.2916                   | 0.2315                   | 0.2033                   |
|               |                 |                         |                           | -0.4112 <i>i</i>          | -0.4090 <i>i</i>         | -0.4254 <i>i</i>         | -0.4202i                 |
| 110           |                 |                         |                           |                           | 0.2275                   | 0.1624                   | 0.1300                   |
|               |                 |                         |                           |                           | -0.4417 <i>i</i>         | -0.4455 <i>i</i>         | -0.4296 <i>i</i>         |
| 120           |                 |                         |                           |                           |                          | 0.1022                   | $0.6644 	imes 10^{-1}$   |
|               |                 |                         |                           |                           |                          | -0.4533 <i>i</i>         | -0.4236 <i>i</i>         |
| 130           |                 |                         |                           |                           |                          | $0.4824 \times 10^{-1}$  | $0.1584 \times 10^{-1}$  |
|               |                 |                         |                           |                           |                          | —0.4551 <i>i</i>         | -0.4107 <i>i</i>         |
| 140           |                 |                         |                           |                           |                          | $-0.2102 \times 10^{-2}$ | $-0.3078 \times 10^{-1}$ |
|               |                 |                         |                           |                           |                          | -0.4487 <i>i</i>         | -0.3922i                 |
| 150           |                 |                         |                           |                           |                          | $-0.4839 \times 10^{-1}$ | $-0.6795 \times 10^{-1}$ |
|               |                 |                         |                           |                           |                          | —0.4379 <i>i</i>         | -0.3729 <i>i</i>         |
| 160           |                 |                         |                           |                           |                          | $-0.8391 \times 10^{-1}$ | $-0.9548 \times 10^{-1}$ |
|               |                 |                         |                           |                           |                          | -0.4256i                 | -0.3532i                 |
| 170           |                 |                         |                           |                           |                          | -0.1201                  | -0.1157                  |
|               |                 |                         |                           |                           |                          | -0.4061 <i>i</i>         | -0.3233i                 |
| 180           |                 |                         |                           |                           |                          |                          | -0.1282                  |
|               |                 |                         |                           |                           |                          |                          | -0.2930i                 |
| 190           |                 |                         |                           |                           |                          |                          | -0.1351                  |
|               |                 |                         |                           |                           |                          |                          | -0.2660i                 |

=

| v<br>$T(MeV^{-1})$ | 10                      | 20                      | 30                       | 40                              | 50                       | 70                        | 90                                  |
|--------------------|-------------------------|-------------------------|--------------------------|---------------------------------|--------------------------|---------------------------|-------------------------------------|
| 10                 | 0.8500×10 <sup>-1</sup> | 0.9580×10 <sup>-1</sup> | 0.1037                   | $-0.6398 \times 10^{-1}$        | $-0.8095 \times 10^{-1}$ | -0.1075                   | -0.1123                             |
| 20                 | 0.4995 <i>i</i>         | -0.2004i                | -0.2481i                 | -0.2122i                        | -0.2075i                 | -0.2029i                  | -0.2035i                            |
| 20                 |                         | -0.1687i                | -0.3645i                 | -0.3103i                        | -0.2501i                 | -0.1733i                  | -0.1213i                            |
| 30                 |                         |                         | $-0.9626 \times 10^{-1}$ | 0.3189                          | -0.3916                  | 0.3543                    | 0.2945                              |
| 40                 |                         |                         | 0.4290 <i>i</i>          | 0.2497i                         | $0.8910 \times 10^{-1}i$ | -0.1077i                  | -0.1783i                            |
| 40                 |                         |                         |                          | $-0.4433 \times 10$<br>-0.4982i | -0.3511i                 | $-0.6127 \times 10^{-1}i$ | -0.3742<br>$0.7502 \times 10^{-1}i$ |
| 50                 |                         |                         |                          |                                 | -0.2580                  | 0.1263                    | 0.2601                              |
| 60                 |                         |                         |                          |                                 | 0.4358 <i>i</i>          | 0.4623 <i>i</i><br>0.5218 | 0.3270 <i>i</i><br>0.3412           |
| 00                 |                         |                         |                          |                                 |                          | -0.1568i                  | -0.3167i                            |
| 70                 |                         |                         |                          |                                 |                          | $-0.5029 \times 10^{-1}$  | -0.3099                             |
| 80                 |                         |                         |                          |                                 |                          | -0.5931i                  | -0.4336i<br>-0.5234                 |
| 00                 |                         |                         |                          |                                 |                          |                           | 0.1794 <i>i</i>                     |
| 90                 |                         |                         |                          |                                 |                          |                           | $-0.7315 \times 10^{-1}$            |
| 100                |                         |                         |                          |                                 |                          |                           | 0.3758                              |
| 100                |                         |                         |                          |                                 |                          |                           | 0.3649 <i>i</i>                     |

TABLE IX. Same as in Table VI, but  $\lambda = \frac{1}{4}$  MeV<sup>2</sup>, i.e.,  $\lambda_{eff} = 1$ .

asymptotic incoming and outgoing particle numbers, respectively, and by  $n_{\min}$ ,  $n_{\max}$  a lower and an upper cutoff in the virtual particle number, then we have in this case  $n_{\text{in}} = n_{\text{out}} = n_{\text{min}} = n_{\text{max}} = 2$ . In Table VI we have presented the analogous results for  $n_{\rm in} = n_{\rm out} = n_{\rm min}$  $=n_{\rm max}=4$ . One observes a noticeable but slow convergence in v and T in all cases which is even slower as the particle number becomes higher. In Fig. 3 we display the function  $\Delta_{<>>}$ , which is a measure of the violation of energy conservation of  $S_N(T)$ . One observes that with increased number v of expansion functions the minimum of  $\Delta_{<>>}$  becomes deeper and broader. Also, one observes a quasiperiodic structure of  $\Delta_{<>}$ , while the relevant minimum is the first one. Experience with cases (see Ref. 10) where the exact S matrix is known shows that the minimum region of  $\Delta_{< >}$  corresponds to a minimum in the error of  $S_N(T)$  and a region of stability of  $S_N(T)$ . Hence, guided by that experience, we take  $T = T_{\min}$  corresponding to a minimum in  $\Delta_{<>>}$  as the optimal value in  $S_N(T)$ . In analogy to Fig. 3, in Fig. 4 the graph of the function  $\Delta_0$  is displayed, which serves the same purpose. While in the results of Sec. II, with many momentumspace expansion functions, it turned out that  $\Delta_0$  is a suitable function, Fig. 4 shows in our present case a less appealing structure: namely, no clear unique minimum. However, the region where several minima occur close together corresponds to the region in Fig. 3 where  $\Delta_{<>}$ has a minimum. Finally in Table VII we display the effect of including states of virtual particle number off the asymptotic particle number. We display  $\langle \Omega_{\text{out}} | S_N(T) | \Omega_{\text{in}} \rangle$ , with  $T = T_{\text{min}}$  corresponding to  $\Delta_{<>>}$ , as a function of the number v of expansion func-

|            | v                | 10                      | 20               | 30                        | 40                       | 50               | 70      | 90               |
|------------|------------------|-------------------------|------------------|---------------------------|--------------------------|------------------|---------|------------------|
| $n_{\min}$ | n <sub>max</sub> | <u> </u>                |                  |                           |                          |                  |         |                  |
| 2          | 2                | 0.1016                  | 0.4933           | 0.5152                    | 0.3181                   | 0.1907           | -0.1455 | -0.1351          |
|            |                  | 0.4008 <i>i</i>         | 0.1014 <i>i</i>  | -0.2083i                  | -0.4199 <i>i</i>         | -0.4540 <i>i</i> | -0.3821 | -0.2660 <i>i</i> |
| 2          | 4                | -0.5054                 | -0.8075          | -0.4372                   | $-0.1587 \times 10^{-1}$ | 0.1492           |         |                  |
|            |                  | -0.6862i                | 0.3622 <i>i</i>  | 0.7575 <i>i</i>           | 0.7695 <i>i</i>          | 0.7004 <i>i</i>  |         |                  |
| 2          | 6                | -0.1539                 | -0.8723          | -0.7147                   | -0.3846                  |                  |         |                  |
|            |                  | -0.9384 <i>i</i>        | -0.1322 <i>i</i> | 0.3368 <i>i</i>           | 0.4716 <i>i</i>          |                  |         |                  |
| 2          | 8                | $0.3753 \times 10^{-1}$ | -0.7771          | -0.7100                   | -0.4361                  |                  |         |                  |
|            |                  | -0.9672 <i>i</i>        | -0.3320i         | 0.1198 <i>i</i>           | 0.2768 <i>i</i>          |                  |         |                  |
| 2          | 10               | 0.1188                  | -0.6757          | -0.6535                   | -0.4241                  |                  |         |                  |
|            |                  | -0.9568 <i>i</i>        | -0.4395 <i>i</i> | $-0.1031 \times 10^{-2}i$ | 0.1351 <i>i</i>          |                  |         |                  |
| 2          | 12               | 0.1275                  | -0.6718          | -0.6514                   | -0.4231                  |                  |         |                  |
|            |                  | -0.9562 <i>i</i>        | -0.4426 <i>i</i> | $-0.5187 \times 10^{-2}i$ | 0.1308 <i>i</i>          |                  |         |                  |

TABLE X. Same as in Table VII, but  $\lambda = \frac{1}{4}$  MeV<sup>2</sup>, i.e.,  $\lambda_{eff} = 1$ .

tions and the lower and upper cutoff in the virtual particle number. Table VII corresponds to  $n_{\rm in} = n_{\rm out} = 2$  (which has been reported in Table V for  $n_{\rm min} = n_{\rm max} = 2$ ). One observes convergence of the S matrix with respect to increasing the virtual-particle-number cutoff. Increasing the particle-number cutoff from 4 to 6 gives a contribution of 1%. In Tables VIII—X we display the corresponding results in the strong-coupling region  $\lambda_{\rm eff} = 1$ . In general one observes a convergence as in Tables V—VII, however, at a much slower rate. The most important results, in our opinion, are shown in Table X, demonstrating for  $\lambda_{\rm eff} = 1$  convergence of the S matrix with respect to increasing the virtual-particle-number cutoff. However, a 1% contribution is only achieved if one increases the virtual-particle-number cutoff from 10 to 12.

# IV. CONCLUSION

In this paper we have presented results of nonperturbative calculations of the S matrix of the  $(\phi^4)_{1+1}$  model. The parameters which govern the systematic approximation scheme are a momentum-space cutoff  $\Lambda$ , a number v of expansion functions, and a virtual-particle-number cutoff n and a scattering time T. In this work we have extended the results obtained earlier in the small-coupling regime<sup>6</sup> to the strong-coupling regime. We find also in the strong-coupling regime converged results. Because of computer storage limitations we have imposed the constraint of maximally two virtual particles for a twoparticle scattering process, which is not physical in the strong-coupling regime. However, in this case it allows one to compare the nonperturbative result with standard perturbation theory, summing up to infinite order all graphs with two virtual particles, which can be done analytically. Agreement is found within numerical errors in the whole range of  $\lambda_{eff}$  up to  $\lambda_{eff}=3$ . In the case of a small coupling, agreement is also found with first-order perturbation theory. In order to test the sensitivity of the S matrix on higher virtual-particle-number states, we have used in Sec. III a basis of expansion functions, which takes into account the particle number and a discretization of energy, but averages over the momentum degrees of freedom. Using this basis we also find converged results with respect to the number of expansion functions and the time parameter. The calculations show that the Smatrix  $S_N(T)$  converges also with respect to increasing the upper cutoff in the virtual particle number. This is found for  $\lambda_{eff} = \frac{1}{6}$ , but most importantly, also for  $\lambda_{eff} = 1$ .

# ACKNOWLEDGMENTS

R.G. has been supported by la Formation de Chercheurs et l'Aide à la Recherche (FCAR); H.K. has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors are grateful to NSERC and Environment Canada for computer time on the CRAY 1-S.

- <sup>1</sup>Non-perturbative Methods, workshop on Non-perturbative Methods, Montpellier, France, 1985, edited by S. Narison (World Scientific, Singapore, 1986).
- <sup>2</sup>E. D. Brooks and S. C. Frautschi, Z. Phys. C 23, 263 (1984).
- <sup>3</sup>H. C. Pauli, Z. Phys. A 319, 303 (1984).
- <sup>4</sup>H. C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993 (1985); 32, 2001 (1985).
- <sup>5</sup>H. Kröger, J. Math. Phys. 24, 1509 (1983); 25, 1875 (1984).
- <sup>6</sup>H. Kröger, A. Smailagic, and R. Girard, Phys. Rev. D 32, 3221 (1985); R. Girard and H. Kröger, Phys. Lett. 164B, 117

(1985); H. Kröger, A. Smailagic and R. Girard, Can. J. Phys. 64, 611 (1986).

- <sup>7</sup>R. Girard and H. Kröger, Phys. Rev. D 34, 1824 (1986); Z. Phys. C 32, 89 (1986).
- <sup>8</sup>P. M. Stevenson, Phys. Rev. D 32, 1389 (1985).
- <sup>9</sup>S. J. Chang, Phys. Rev. D 13, 2778 (1976); 12, 1071 (1975).
- <sup>10</sup>M. Batinić, Ž. Bajzer, and H. Kröger, Phys. Rev. C 33, 1187 (1986).
- <sup>11</sup>J. M. Hammersley and D. C. Handscomb, *Monte Carlo Methods* (Methuen, London, 1964).