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A renormalization framework is presented for calculating radiative SU(2) X U(1) gauge symmetry
breaking in no-scale supergravity models. In this framework one naturally incorporates so-called
threshold effects due to finite particle masses, without introducing an infrared cutoff scale. In this
way it is possible to calculate the weak scale directly in terms of the fundamental parameters of the
theory. The conventional way of calculating radiative symmetry breaking, using a renormalization-
group (RG) approach, is reviewed, and it is explained why this approach fails to go beyond a
leading-logarithmic approximation. It is pointed out that for an adequate calculation of the weak
scale one has to include the two-loop leading logarithms and the one-loop calculation has to be per-
formed in the vacuum where SU(2) X U(1) is broken. The new renormalization framework is illus-
trated by performing a one-loop calculation in the no-scale E, model. Instead of using running pa-
rameters, as in the RG approach, all quantities correspond to physical observables in this framework.
For the study of radiative symmetry breaking a coupled set of linear algebraic equations is obtained,
whose solutions coincide with those of the RG approach to the order of accuracy of the latter
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method.

I. INTRODUCTION

In the last couple of years there have been various at-
tempts to obtain a phenomenologically acceptable particle
spectrum from the low-energy limit of N =1 supergravity
models.! =% A certain class of these models, the so-called
no-scale models,* is particularly interesting, because they
resemble the effective field theory that one obtains as the
low-energy limit of string theories.” In these models, su-
persymmetry is broken in a hidden sector that only cou-
ples to the observable world through gravitational interac-
tions. The effective potential describing the light fields of
the observable sector is extracted from these theories by
taking the large-Mp (Planck mass) limit in a suitable way
(the so-called flat limit). The resulting low-energy poten-
tial consists of a supersymmetric part, plus some soft-
supersymmetry-breaking terms. The supersymmetric part
is given by the superpotential of the light fields of the
theory, in the same way as in nongravitational theories.
The supersymmetry-breaking terms are additional scalar
mass terms m_ or trilinear scalar couplings A°, labeled by
i. In formula

V() =V ($,SUSY)+ 8V (d,m?,A4°) . (1)

In addition the gauginos associated with the gauge bo-
sons acquire a mass M;. Here, and throughout this pa-
per, I will assume the no-scale hypothesis*® that m,-0 and
A,-O are zero: supersymmetry is only broken by the gaugi-
no masses M,-O.

At the tree level, V. does not have a minimum that
breaks SU(2) < U(1). However, as a result of one-loop
contributions some of the scalar masses are driven nega-
tive and SU(2) x U(1)-breaking occurs.” These corrections
are presently calculated using the B functions obtained
from the modified minimal subtraction scheme (MS),
which describe the scaling of running parameters #i,;%(u),
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A;(u), and M;(u) with respect to a fictitious scale u.
m;2(w), A;(n), and M;(u) are equated with m?, 4?2, and
M} for p1 equal to the unification scale My(~ 10'> GeV).
The parameters m;, A;, and M;, which include the one-
loop corrections, are then defined as the values of 7 ),
A;(n), and M;(pn) for p equal to the weak scale Q ~250
GeV. For instance, in Fig. 1 the typical scaling with u is
sketched for the mass m % of a non-Higgs field (i.e., a sca-
lar quark or lepton) and for the mass m,> of a Higgs
field. The negative value of m,?=m,%(Q) will lead to
spontaneous symmetry breaking in the potential (1).
Because of the large hierarchy, the one-loop corrections
generate large logarithms of the form

2
myp -

FIG. 1. Two typical behaviors of masses 7,2 as a function of
the scale u. m,; could describe the u dependence of a non-
Higgs-scalar mass (scalar quark or lepton), and /i, of a Higgs
scalar. Radiative corrections shift the initial values (m?)? and
(m$)?* at My to their final values m ;2 and m,? at Q.
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(a/m)msysyIn(My /Q), where 4ma is a generic gauge or
Yukawa (coupling)?, and mgysy? is any of the
supersymmetry-breaking parameters m,-o, A,-O, or M,~O. The
MS procedure takes all these large logarithm, into ac-
count. Although this is a one-loop calculation, I will call
this an order-1 results, because (a/m)In(My /Q) is of order
L

All scalar particle masses obtained in this way are thus
typically of order mgysy?. In particular, the Higgs parti-
cle masses (i.e., m,” in Fig. 1) are of order mgygy?’, and
since they define the weak scale Q through their vacuum
expectation values (VEV’s), phenomenology requires
mgysy to be of order of the weak scale. For example, in
the no-scale models in the initial gaugino masses are of
order Q and set the scale of all light particles in the prob-
lem.

As one can see from the steepness of 7#,%(u) in Fig. 1
around p=Q, the value obtained for m,? depends very
much on the value that one assumes for Q. ﬁzz(,u) de-
pends roughly logarithmically on p around =0, so that
changing Q to Q' gives #i,2(Q")=[1—cIn(Q'/Q)]
7,%(Q), with ¢ a number of ~1. This easily leads to an
uncertainty in m,? as big as 50%.

This question of “where to stop the running of the f3
functions” cannot be answered within the framework of
MS. The steepness of 7i,%(i) near u?~0 is caused by the
familiar problem of the infrared divergences in massless
field theories. MS ignores all finite-mass effects of the
particles in the loops. One stops running at the scale
pu=0Q to mimic these finite-particle-mass effects, since all
particle masses are roughly of order Q. However, the in-
troduction of the infrared cutoff Q seriously interferes
with one of the most attractive features of supersym-
metry: namely, its ability to explain the gauge hierarchy
and to calculate the masses of the W and Z bosons in
terms of more fundamental parameters of the theory (i.e.,
the gaugino masses).

To obtain these effects correctly, a renormalization
framework, consisting of a precise definition of the pa-
rameters, has to be set up. The situation is similar to the
calculation of radiative corrections to, for instance, muon
decay in the standard model of the weak interactions.
There are two ways of doing this calculation. One is us-
ing S functions of MS, which relate the muon decay con-
stant G, and the electric charge e “at My~ (where the
formula My?>=V2¢?/8G,sin’0y holds) to their values
at the low-energy scales m, or m, (where these couplings
are measured and defined). In this way one obtains a
(good) approximation to the full order a corrections, in-
cluding the leading-logarithmic contributions only. The
second way is setting up a full renormalization framework
for this problem in the manner of Sirlin.® Then coupling
constants are not defined as being variable with respect to
a renormalization scale, but are instead fixed, well-
defined, physical quantities. The radiative corrections
then arise as corrections to relations between different
physical quantities.

For the calculation of radiative symmetry breaking in
low-energy supergravity models the situation is similar.
Instead of running from my to m, one runs from my to
my. In this case, however, the renormalization-group
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equations (RGE’s) of MS give a much poorer approxima-
tion to the full one-loop radiative corrections, because the
radiative effects are very large as a result of the large
hierarchy My /My,. But a more important difference is
that now the scale at which one wants to stop running of
the RGE’s is exactly the scale that one actually wants to
calculate in terms of the supersymmetry-breaking parame-
ters and should therefore not be put in by hand.

For these reasons I will present a consistent renormali-
zation framework for calculating radiative symmetry
breaking in which the finite-particle-mass effects can ex-
plicitly be included. This entails a precise definition of
quantities such as (m)? and m;? and their interrelation.
I will define the parameters in terms of physical quanti-
ties: masses will be defined as poles of propagators and
coupling constants are defined on the mass shell. This
will allow us to calculate the weak scale (and thus all the
light-particle masses) directly in terms of more fundamen-
tal parameters of the theory, omitting the introduction of
an infrared scale Q.

To study the finite-mass effects, one has to go beyond
the leading-logarithmic approximation. The leading-
logarithmic corrections are of order a In(My /Q), which is
order 1, but the question whether to take Q or Q’, but
roughly of the weak scale, is an effect of order
aln(Q/Q’), i.e., order a. Therefore, to study these effects
consistently one has to include all order-a effects. This
will however involve two-loop effects as well. Namely,
the large logarithmics that are generated at two loops will
be of order (a/7)In(My/Q), and since (a/m)In(My/Q)
is of order 1, this is an order-a effect.’ At the order-a
level there is another effect one has to worry about. One
calculates the radiative correction assuming that the
VEV’s of the Higgs fields are equal to zero. This is
motivated by the fact that in the potential (1) at the tree
level SU(2)x U(1) is unbroken. However, is this calcula-
tion correct, when the result of the one-loop calculation
reveals that SU(2)xXU(1) is in fact broken so that the
VEV’s of the Higgs fields are actually nonzero? It will be
shown using a simple example that in general this is
indeed correct as far as the large logs are concerned. This
means that the one-loop large logarithms (order 1 terms)
and the two-loop large logarithms (order-a terms) can be
correctly obtained assuming the VEV’s of the Higgs fields
to be zero. There is however no reason to believe that this
is also true for the one-loop order-a corrections that do
not involve large logarithms, i.e., the small finite terms.

The renormalization framework that I propose is con-
ceptually quite different from the current way of thinking
about the mechanism of radiative symmetry breaking.
Currently, there are roughly two schools of thought. I
will call them the ¢-space approach and the p-space ap-
proach. It is not true that the authors of Refs. 4, 7, and
10 are devoted followers of either the ¢-space or the p-
space approach. The two schools are made up by myself
as a possible way to understand the assumptions that un-
derlie these calculations. Before I present the new frame-
work, let me show that neither the p-space nor the ¢-
space approach represent an appropriate picture for carry-
ing out a consistent renormalization framework although
the order 1 leading logarithms can be correctly obtained in
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this way.

The ¢-space approach calculates radiative corrections
to the shape of the effective potential (1) in a Coleman-
Weinberg!! kind of fashion. One obtains here large nega-
tive contributions to the potential of the form
m2¢%In(¢ /My) with ¢ of order of the weak scale. In Ap-
pendix A I will show that the definition of m implicitly
used in this scheme 3V /3¢? | o= MX=m2 does not corre-

spond to the physical mass of a particle, and furthermore,
the relation of m, defined in this way, to m/, that appears
in the effective potential (1) is obscure. I will show that
all physical quantities should be defined at the minimum
of the potential. The one-loop corrections to the relations
between parameters thus defined are of order @ and do
not involve large logarithms.

In the p-space approach, one assumes that the parame-
ters m?, A, and M} in (1) are defined at very large Eu-
clidean momentum p?= —My? This approach is very
similar to the Georgi-Quinn-Weinberg mechanism.!?
Here one relates the gauge couplings g,(my ), g,(my),
and g(my ) of SU(3), SU(2), and U(1), respectively, to a
single gauge coupling g(My) defined at My through the
renormalization-group equation (RGE’s). In the potential
(1) one now assumes that m? and A are defined at
p?= —My? and one obtains their values at p>= —my? by
running the RGE’s down to low-energy scales. The re-
sulting parameters are then substituted in the potential (1)
and spontaneous symmetry breaking occurs. I will show
that the interpretation of a running mass as an effective,
i.e., physical mass at some high-energy scale is incorrect.
The statement that “the mass at p>= —My? is equal to
m}” is ambiguous in the sense that the momentum depen-
dence of #,;%(p) for p between My and Q is not well de-
fined. Running masses can be used as a tool for the study
of the RGE’s of Green’s functions,'® but unlike running
couplings, they themselves do not have a physical inter-
pretation. Their momentum dependence is renormaliza-
tion prescription dependent.

In practice, both the p-space and the ¢-space approach
yield the same result. Both method ultimately approxi-
mate their calculation by using the RGE’s obtained from
MS, where the running parameter ¢ =In(¢/My) in the ¢-
space approach, and ?=In(p/My) in the p-space ap-
proach. In the ¢-space approach one stops running the
RGE’s at ¢ =my, because that is where one expects the
VEYV of ¢ to be. In the p-space approach one stops run-
ning at p2= —m,? because one expects threshold effects
due to the finite mass of the particles in the loop to effec-
tively make the right-hand side of the RGE’s zero at the
point. With the scaling arguments of the p- and ¢-space
approaches one obtains the correct leading logarithms.
These approaches however resist a clear definition of their
parameters and are therefore not suitable for a study of
the full order a effects.

I propose to introduce the following framework for cal-
culating the radiatively corrected quantities m;, A;, and
M;. As we saw, m?, A,~°, and M,~° are defined as the nu-
merical values that one obtains for the physical scalar
masses m;, the trilinear scalar couplings A4;, and for the
gaugino masses M; by taking the flat limit in the full su-
pergravity theory. The flat limit is an algebraic procedure
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to eliminate all the heavy fields. The resulting theory is
an effective theory in the sense that it is only valid up to
momenta somewhere well below the heavy scale (My or
Mp). The values m?, 42, and M? are only approxima-
tions to the correct values m;, A4;, and M; because all ra-
diative corrections have been ignored. These parameters
describe the low-energy physics and since we will assume
that the heavy particles will decouple in the radiative
corrections, one only has to calculate the radiative correc-
tions to these parameters due to the light particles. In the
no-scale models the low-energy theory is supersymmetric
except for the presence of the gaugino masses. m; and
A,-o are zero and supersymmetry would also prevent these
parameters from being generated radiatively. However,
when the supersymmetry is broken by the gaugino masses
M;, m;, and A; will be generated radiatively and receive
contributions proportional to aM;*In(A /Q), with Q of or-
der of M;. A can be as big as the momentum scale up to
which we believe that the effective theory is valid, i.e.,
A =~My. No renormalization, i.e., subtraction of counter-
terms, on these parameters is being performed.

The idea here resembles somewhat the calculation of
the electromagnetic radiative corrections to nuclear 8 de-
cay in the old Fermi theory."* When one attempts to re-
late the B-decay constant to the muon-decay constant G,
on the one-loop level, one encounters an infinite term of
order In(A/m,), where m, is the proton mass. One does
not renormalize this term away by, for instance, introduc-
ing a counterterm for G, at the tree level. Instead the
cutoff should be equated to the energy scale where one ex-
pects the Fermi theory to break down. Indeed, the calcu-
lation in the renormalizable standard model revealed later
that this term was genuine with A replaced by m . (In
retrospect, a precise measurement of both muon decay
and nuclear B decay could in principle have enabled peo-
ple to measure In(A/m,), and thus m3, by the late
1950s). The presence of these large radiative effects is due
to the existence of nonconserved axial-vector currents,
which in the standard model arise through the breakdown
of SU(2) X U(1) gauge symmetry. If the SU(2) X U(1) sym-
metry were unbroken these large logarithms would not be
present. This fact is also reflected by the fact that the
SU(2) X U(1) symmetry forbids a counterterm to cancel
this infinity.

For the supersymmetric potential (1) the situation is
similar. Because of supersymmetry and chiral-symmetry
scalar masses m, and trilinear couplings 4. are forbidden
in (1). These symmetries also prevent these parameters
from being generated radiatively. However, when the su-
persymmetry is broken by the gaugino masses M;, m;,
and A; will be generated radiatively and receive contribu-
tions proportional to aM;%n(A/Q). A can be as big as
the momentum scale up to which we believe that the ef-
fective theory is valid, i.e., A~My.

The outlined approach gives the correct interpretation
of the parameters in the theory, and results in an unambi-
guous procedure for calculating the order-a (or any order)
corrections to the supersymmetry-breaking parameters in
effective low-energy supergravity theories. For lack of a
better name, I will call this the A-space approach. All pa-
rameters in this approach are defined on the mass shell
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and therefore represent physical quantities. Since the
corrections to the soft-supersymmetry-breaking terms are
simple one-loop integrals with a cutoff A, one can calcu-
late them explicitly, including finite-mass effects in the
loops, so that one does not have the infrared problems
that one usually encounters using the MS S functions.
The full threshold, i.e., the full order-«, corrections can be
calculated in this approach. They require, however, a
two-loop calculation of the leading logarithms and a
better understanding of the question whether one can ob-
tain the one-loop order-a terms (i.e., the terms not involv-
ing leading logarithms) while calculating in the wrong
vacuum. I have recalculated the order 1 corrections in
this framework for the no-scale model based on the gauge
group E4 and the results agree with those obtained using
the MS method.

This paper is organized as follows. In Sec. II I will
start with a brief outline of the derivation of the low-
energy potential' in supergravity theories, that describes
the light fields of the observable sector. In Sec. III I will
introduce the A-space approach, which is a method for
calculating radiative symmetry breaking to arbitrary accu-
racy. I will illustrate this approach by calculating the or-
der 1 contributions in the no-scale model based on the
gauge group E4. Then I will show in general that at the
order 1 level the A-space solutions agree with
renormalization-group approaches. In Sec. IV I will ad-
dress the question whether one can perform these calcula-
tions in the wrong vacuum. In Sec. V I will summarize
the results and I will outline a program for studying
threshold effects using the A-space approach. In Appen-
dix A I will discuss the ¢-space and p-space approaches as
mechanisms for radiative symmetry breaking. I will re-
view how physical parameters are defined in the language
of effective potentials which will explain why the ¢-space
approach is inappropriate when one wants to calculate
beyond the leading logarithms. I discuss the p-space ap-
proach and show that the concept of a running mass can-
not be used for describing radiative symmetry breaking. I
will remind the reader what originally motivated running
masses for the study of asymptotic behavior of Green’s
functions, and I will explain the difference of these two
applications. Finally, in Appendix B, I will summarize
the order 1 results of the A-space approach, applied to the
no-scale model based on the gauge group Eg.

II. THE EFFECTIVE POTENTIAL OF THE LIGHT
FIELDS IN THE OBSERVABLE SECTOR

In the class of supergravity models I consider unextend-
ed (N =1) supersymmetry is broken by very large scalar-

J

V(z,Z)= exp |87G

zlza|2+§1z~h12]

+ 87TGZa [f Z)+f ]

<215

2

<3 |2

h

+87TGE,,[f 2)+f(2)]

—247G | f(2)+f(D)|?
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field VEV’s of order 10" GeV. The scalars that have
these large VEV’s form a “hidden sector” that does not
interact directly with the ordinary fields (quarks, leptons,
gauge and Higgs bosons, and their superpartners) of the
“observable sector.” That is, the superpotential of the
theory breaks up into a sum of two terms:

ftotal S S f +f (2)

where S® and S " are the left-chiral fields of the observ-
able and hidden sector, respectively. With a minimal
kinematic term and no other interactions, the potential of
the scalar (nonauxiliary) components z¢ zh of §9, S*
would take the form

2
aftota]
V(z,Z)= —_—
a% a9z
af(z)

(3)

303

az

and the spontaneous breakdown of supersymmetry in the
hidden sector could have no effect on the observable sec-
tor. When coupled to super%ravity, the news that super-
symmetry is broken by the Z” VEV’s is carried over to the
observable superfields by gravity and its superpartners,
which interact with both sectors.

This “news” appears in the following two ways. (1)
The spontaneous supersymmetry breakdown in the hidden
sector produces a massless Goldstone fermion, which gets
absorbed by the gravitino, giving the latter a mass mj ;.
m3,, is determined in terms of VEV’s of the fields in the
hidden sector. The minimum usually contains a flat
direction, so that ms,, is undetermined at this stage. The
finite gravitino mass will generate gaugino masses at the
one-loop level through graphs in Fig. 2. The presence of
the gaugino masses explicitly breaks supersymmetry in
the observable sector. The size of the gaugino masses is
undetermined, but has to be chosen to be of the order of
the weak scale in order to lead to acceptable phenomenol-

ogy.

(2) The effective potential describing the light
fields which transforms under a subgroup G,
of G [G=SU(5),Eq etc., G;=SU3)xSUQR)xUM)"
n=1,2,...] is obtained by replacing all the heavy fields

by their VEV and taking the flat limit. For instance, in
the earlier supergravity models, where the supersymmetry
is broken in the hidden sector with superpotential f using
the O’Raifeartaigh mechanism, the total supergravity po-
tential is given by

+ szz ’ 4
k
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FIG. 2. Contributions to the gaugino masses from the spin-%
gravitino . A°is the gauge boson associated with A°.

where G =1/M;? is Newton’s constant. The last term in
(4) consists of the sum over D terms for the different sim-
ple sectors of the gauge group. The potential Vg(z,) in
terms of the light fields z, only, with |z, | =0(Q), is ob-
tained from the full supergravity potential ¥ (z,,Z;,) by re-
placing all the heavy scalars Z, by their VEV’s:
Zy—{Z)=pn+ |2, |, where |Z,| is the deviation of
(2, ) from the common scale u. Vg(z,) is then obtained
by taking the flat limit

Veilz, )= lim V([.L+ f?;, | »Zg) -
nw mw
e’ Mp

For instance, for the potential (4) u is the scale of the
VEV’s in the hidden sector that break supersymmetry,
and one obtains'’

5}
Ver= 3, 9f(z)

2
+D terms
5 az

+m3/222 |z, | 240 (1m0 f (2)
a

ms,
Mp

+M3/440 ‘ (5)

with ms,, =p3/Mp?, f(Z5)=0(u®). f is the superpoten-
tial containing the light fields only, which transforms
under G;. The first two terms in (5) are exactly the ones
one would obtain in a model just based on supersymmetric
matter coupled to G;. The last two terms break super-
symmetry explicitly.

In the more recent no-scale or string inspired models
these supersymmetry-breaking terms in the potential (5)
are absent. In that case the only signal of supersymmetry
breaking is the finite gaugino masses, which in those
models are given by m,,,~m;,°/Mp?.  Since the
supersymmetry-breaking parameters set the scale of all
particle masses and in particular of the Higgs-boson mass,
they are chosen so as to give the right weak scale. The
main point I want to make here is that in all of these
models there is a scale p in the hidden sector, which is ei-
ther a free parameter, or the VEV of a field whose size is
not determined by the shape of the potential in the hidden
sector. The supersymmetry-breaking terms in the observ-
able sector are given in terms of u and are, as far as the
calculation of weak symmetry breaking is concerned, free
parameters.

For the study of the low-energy physics in no-scale
models it is sufficient to consider the supersymmetric po-
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tential ¥V, based on the group G,, augmented by soft-
supersymmetric-breaking terms V,, which contain mass
terms m, and trilinear terms A4.:

Vee(2) =V (z;SUSY) + V,(z;m2, A7) (6)

m? and A; are functions of y and |2, | and have to be
taken of O (Q) because of phenomenology.

In the particular case (5) this means m;,, =0(Q), so
that u=0((QMp?)!”?). In the no-scale models m; and
A,-O are zero at the tree level, and supersymmetry is only
broken by the presence of nonzero gaugino masses
MPi =3,2,1,...). The tree-level values m/, AP, and M}
can now be taken as boundary conditions for the subse-
quent study of SU(2) X U(1) breaking.

III. A RENORMALIZATION FRAMEWORK FOR
LOW-ENERGY SUPERGRAVITY MODELS: THE
A-SPACE APPROACH

The current way of calculating radiative symmetry
breaking uses a renormalization-group approach, which
relates the input parameters “defined at a large scale My”
to “low-energy parameters defined at the weak scale.”
This method correctly gives the leading-logarithms radia-
tive corrections, but it fails to give information about
threshold effects, which are crucial for the determination
of the weak scale, as I explained in the Introduction.

To treat these threshold effects correctly, a consistent
renormalization framework has to be introduced in which
all the parameters are defined as physical quantities. The
running mass picture of the ¢-space and p-space ap-
proaches does not lend itself for this purpose as I explain
in Appendix A.

I propose to introduce the following framework for cal-
culating the radiatively corrected quantities m;, A4;, and
M;. As we saw in Sec. II, m?, 4°, and M} are defined as
the numerical values that one obtains for the physical sca-
lar masses m;, the trilinear scalar couplings A;, and for
the gaugino masses M; by taking the flat limit in the full
supergravity theory. The flat limit is an algebraic pro-
cedure to eliminate all the heavy fields. The resulting
theory is an effective theory in the sense that it is only
valid up to momenta somewhere well below the heavy
scale (My or Mp). The values m?, A0, and M,-° are only
approximations to the correct values m;, A;, and M; be-
cause all radiative corrections have been ignored. These
parameters describe the low-energy physics and since we
will assume that the heavy particles will decouple in the
radiative corrections, one only has to calculate the radia-
tive corrections to these parameters due to the light parti-
cles. In the no-scale models the low-energy theory is su-
persymmetric except for the presence of the gaugino
masses. m,-° and A,~° are zero and supersymmetry would
also prevent these parameters from being generated rela-
tively. However, when the supersymmetry is broken by
the gaugino masses M;, m;, and A4; will be generated radi-
atively and receive contributions proportional to
aM;’In(A /Q), with Q of order of M;. A can be as big as
the momentum scale up to which we believe that the ef-
fective theory is valid, i.e., A=~My. No renormalization,
i.e., subtraction of counterterms, on these parameters is
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being performed.

The important idea underlying this approach is that ra-
diative corrections are finite and calculable when they are
the result of the breakdown of a symmetry, in this case
supersymmetry. In the Introduction I mentioned how
large radiative corrections to nuclear 3 decay are related
to the breakdown of SU(2) X U(1) gauge symmetry. With
SU(2) X U(1) unbroken, there are no large radiative effects.
In the case at hand, the scalar potential V is supersym-
metric when m; and A; are zero. These parameters would
remain zero also in the presence of radiative corrections,
due to supersymmetry. Supersymmetry forbids counter-
terms for these parameters, so when supersymmetry is
broken by the gaugino masses the corrections to these pa-
rameters are finite.

As an example, consider, for instance, a theory which is
chiral invariant and describes a massless electron 1,.
Chiral invariance forbids a mass counterterm for the elec-
tron and so radiative corrections to the electron mass have
to be finite. In fact they are zero. Let us also assume that
there is a Yukawa coupling with strength 4 between some
massless scalar ¢, the electron ¢,, and another massless
fermion X:

hy.Xé+H.c. (7

Equation (7) does not break chiral invariance if we let ¢
transform with an appropriate phase.

Suppose chiral invariance is broken in this theory by
the sudden appearance of a mass term for X:

myXX . (8)

We do not know what mechanism caused the appearance
of this chiral-symmetry-breaking term, but I will assume
it to be the result of some more fundamental theory which
sets in at an energy scale My. So now our theory consist-
ing of @, ¥., and X is only an effective theory valid up to
the scale My.

Because of (8) a finite electron mass will be generated
radiatively (see Fig. 3):

mez;mxln— . (9)

In (9) an ultraviolet cutoff A =My has been used to evalu-
ate the integral and my in the denominator of the loga-
rithm is the result of the finite X mass in the graph. The
electron mass receives no renormalization because the
chiral symmetry of the “electron sector” forbids an elec-
tron mass counterterm.

In the effective low-energy supergravity theory we have

\
1

1
Yo N x h

FIG. 3. Chiral symmetry breaking in the X sector radiatively
induces a finite electron mass.
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exactly the same situation. It is the no-scale model that
explains why the tree-level values of the supersymmetry-
breaking parameters m and A, are zero, and they would
remain zero in the presence of radiative corrections if su-
persymmetry were unbroken. The supersymmetry break-
ing, in the form of gaugino masses, leads to deviations for
the scalar masses and trilinear couplings from zero. They
are proportional to InA, and A can be as big as the energy
scale up to which one believes theory to be valid.

This approach results in an unambiguous procedure for
calculating the order-a (or any order) corrections to the
supersymmetry breaking parameters in effective low-
energy supergravity theories. For lack of a better name, I
will call this the A-space approach. All parameters in this
approach are defined on the mass shell and therefore
represent physical quantities. Since the corrections to the
soft-supersymmetry-breaking terms are simple one-loop
integrals with a cutoff A, one can calculate them explicit-
ly, including finite-mass effects in the loops, so that one
does not have the infrared problems that one usually en-
counters using the MS S functions. The full threshold,
i.e., the full order-a, corrections can be calculated in this
approach. They require, however, a two-loop calculation
of the leading logarithms and a better understanding of
the question whether one can obtain the one-loop order-a
(i.e., the terms not involving leading logarithms) while cal-
culating in the wrong vacuum. For a summary of all the
order-a effects that have to be incorporated to study the
threshold effects, see Sec. V.

Here I will restrict myself to demonstrating that the A-
space approach agrees with the conventional MS pro-
cedure at the one-loop order 1 level. As an example of
this method, I will present the equations for the
supersymmetry-breaking parameters m;, A;, and M; in
the no-scale model based on the gauge group E¢ as
presented in Ref. 6. It is beyond the scope of this discus-
sion to justify an explain all the arguments that lead to the
construction of the effective low-energy theory in this
model. For a review I refer to Ref. 6 the references cited
there.

The model consists of N =1 supergravity with 3 gen-
erations of 27-dimensional chiral superfield representa-
tions of E¢. In addition, there is a hidden sector which
only couples to the observable world through gravity ef-
fects. Some mechanism of supersymmetry breaking in the
hidden sector is assumed,'® which leads to nonzero gravi-
tino masses through the super-Higgs effect. Gravity-loop
effects (Fig. 2) will then induce nonzero gaugino masses
M,~0, i =3,2,1,E, thus breaking supersymmetry in the
observable sector. Eg¢ is broken down to SU(3),
X SU(2), X U(1)y X U(1)g either through a Higgs mecha-
nism, where the VEV’s of the Higgs fields Z are of order
My, or through Wilson-loop effects,!”!® if the model is
the result of a Calabi-Yau compactification of a string
theory. After taking the flat limit (see Sec. II) the model
consists of supersymmetric E¢ with the 3 matter 27’s plus
soft-supersymmetry-breaking terms.

SU(2) X U(1) is broken because loop effects will drive
some of the scalar masses negative. It is well known that
in order to obtain negative (masses)’ for the Higgs fields
one needs reasonably large Yukawa couplings for the
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quarks. The top quark is a natural candidate for this, and
since we ignore all generation mixing we can study the
patterns of SU(2) X U(1) breaking using the particles of
the third generation only. The transformation properties
of the 27s under the unbroken gauge group
SU@3), XSUR), XU(1)y X U(1)g are given in Table L.

The superpotential for the third generation is given by
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TABLE 1. Transformation properties under SU(3),
X SU2); X U(l)y X U(1)g of the chiral matter superfields con-
tained in the 27 of E¢. Group and generation indices are under-
stood. The properly normalized quantites Y and ¥z, such that
TrT,=Tr¥2=Tr¥:% are Y=v3/5Y and
Ye=V3/5Y:.

given by

SU(3), XSUR), x U(l)y X U(l)g

f=hQu°H + A\HHN +«DD°N . (10) Chiral superfield quantum numbers
(We also neglect the bottom-quark Yukawa coupling.) u D
Given this superpotential, the soft-supersymmetry- 0= |4 3:2,%:3)
breaking terms in the low-energy Lagrangian are given by ue 31— 2, 54
_Lsoft:Z(rn;))zlzjl2 dc (—,1,%,—%)
Jj
— v
+(hAPQuH +AASHHN +KkA2DDN +H.c.) L=|, 12—+, -4
+5 EMP(?»,-M+H.c) . (11) e LL15)

i Ve (1,1,0,2)
The sum over j runs over all scalar particles in the observ- H+
able sector. A;, i =3,2,1,E, are the gaugino’s associated H= ‘HO (1,2,%,—%)
with SU(3), XSU@2); XU(l)y XU(l)g. As one can see =
from Table I, only the scalar components of H, H, and N T H® (12,1 1
are candidates for acquiring VEV’s. VEV’s of other parti- T \H- 2= =%)
cles in Table I would either break color or lepton number. N (1,1,0,2)
Assuming the VEV’s of all scalars except N, H, and H to D 3,1, % _%)
be zero, the potential relevant for the study of . G111y
SU(2) x U(1) breaking is S R

Vitiges=(mg)? | H |2 4+(mg)? | H |2+ (mg)?*|N |2+ (AASHHN +H.c.)
+AN|H |?|N|*+ |H|*|N|*+ |HH |?)
& | T it 3802 ge’
=— |H'Z-H+H'-H| +——(|H |>~ |H|**+==(5|N|*~2|H |>— |H |»?*. 12
+= SHAH ZH | +— o =(|H "= [H |+ (5N ["=2|H "= |H|%) (12)

The first four terms in (12) are the supersymmetry-
breaking terms from (11). The other terms come from the
superpotential (10) and the SU(2), U(1l)y, and U(l)y D
terms:

b

z;=H,H,N

2

of +D terms . (13)

9z;

In the no-scale scenario all soft-supersymmetry-breaking
parameters in (11) and (12), except for the gaugino masses,
are equal to zero. We will proceed with the calculation of
the one-loop contributions to the supersymmetry-breaking
parameters with this assumption.

I calculate the corrections to the scalar masses m; in
the following way. Let i I1,,(A,p) denote the one-loop
contribution to the inverse z; propagator. z; can be any
scalar field with tree-level mass m. I include A in I, to
remind us that all the integrals in I1, are evaluated using

an ultraviolet cutoff A which I eventually will equate with
My. The inverse propagator is given by

=i[p?—(m?P+ 10, (A,p)] . (14)

The one-loop mass m; is defined to be the solution to the
equation

[pz_(m,.o)Z_*_Hzi(A,p)] !p2=mi2:0 . (15)

A mass defined in this way, as the pole of the propagator,
is gauge invariant, as has been explicitly verified using R,
gauges. (This is not true for the running masses used in
the p-space approach.)

In this way one obtains, for instance, for my?,
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AZ 2
2_ 2, 2 3ar2, 2 t6ar 2 2
mH—16172 {3M2g2 In M, ]+5M1 g1 In 12]+15M5g5 In =
2 2 2
—3h? szln 3 +m, In A 3 +mpy*n 5 +A4,%n A 3
mg u mgy my
2 A2 2
—A? {mg2n - |+mz’In > |+my’In > |+4,°In s || +0(Q%) |, (16)
myg mg my H

where O (Q%a) contains small calculable order a correc-
tions. In (16) the different terms between the brackets are
multiplied by different logarithmic factors, because the
particle masses in the loops are different for each loop
graph. Notice that in (16) my appears on both sides of
the equation. This equation, together with similar equa-
tions for the other scalar masses, has to be solved self-
consistently for all scalar masses and trilinear couplings in
terms of the supersymmetry-breaking parameters, i.e., the
gaugino masses M;.

Equation (16) displays the full one-loop corrections up
to order a (i.e., leading logarithms plus threshold effect).
However, order-a effects coming from two-loop leading
logs (see Introduction) and order-a effects associated with
the fact that (16) is calculated in the wrong vacuum (see
Sec. IV) are expected to interfere with this order-a result.
Therefore, this one-loop calculation is only consistent at
the order 1 level. Since all scalar and gaugino masses are
of the same order of magnitude (i.e., the weak scale Q),
the difference between, for instance, In(A2/M,?) and
In(A%/my?) is a small order-a effect and should be ig-
nored in this order 1 calculation. I will therefore put all
logarithms equal to a common In(A2/Q?):

my?=(3M,’g," + Mg >+ s Mg’

—3h2F, —\F)t ,
Fy=mg*+m, +my*+A4,%, (17)
F;L=myz+m172+mN2+AAZ s

with ¢ =(--72)In(A%/Q?). 1 want to stress however that
the only reason that I have not included these order-a ef-
fects is for the reasons stated above and is not a limitation
of the A-space approach.

The trilinear scalar couplings A4; are obtained in the fol-
lowing way. Let Ff,f,)e 1oop{ A,p) denote the one-loop contri-

butions to [''*). I now define
AiEF(S):AiO'f'FE)::nL loop(A»PzzQz) ’ (18)

i.e., 4; is defined roughly on mass shell for the scalar par-
ticles. Notice that with definition (18) the color coupling
constant g; which appears in T, loop 18 in the perturba-
tive region [g3%(Q?)/4m <1]. With (18) one obtains, for
instance, for A4, (A,?:O),

Ap=—(FMsgs?+3Myg,° + Mg,
+EMpgpt+ 64,02+ A ANt (19)

where, for the same reasons as above, I have put all

f

threshold masses equal to Q. The full set of algebraic
equations for 4; and m;? is given in Appendix B.

Equations (16) and (19) are to be compared with the
RGE’s for the running mass my>*(¢) and A,(t) that one
obtains, in the ¢-space and p-space approaches,

dmpy’ 1
ar 16#2(—3M22g22—%M12g12—%M52g52
+3h°F, +A°Fy) , (20)
8Ah 1

16 2 2, B 2
or 1677'2( T M3g3 +3Myg," + 5 Mg,

+EMpgp?+6A4,h + 4,07 . 1)

t here is now the renormalization scale, ¢ =In(M?/My?),
and M runs form My to Q. The differences between (17),
(19) and (20), (21) are the following. In Egs. (17) and (19)
the scalar masses m;? and gaugino masses M; are defined
as the poles of their propagators. The dimensionless cou-
pling constants g;, { =3,2,1,E,h,A and the dimensionfull
trilinear scalar couplings A; are defined at the weak scale
Q. All the parameters in Eqs. (B1)—(B14) are constants,
defined at the weak scale. The solution is obtained by
solving this set of coupled linear algebraic equations.
Equations (20) and (21) are two of a set of coupled linear
differential equations. All the parameters that appear
here are functions of the renormalization scale z. The ini-
tial condition for these RGE’s is the vanishing of m and
A,-0 at a scale M =My. In the A-space equations parame-
ters are not defined at a scale My. Instead we require that
m and A} vanish when the (low-energy) effective poten-
tial is calculated as the flat limit of the full supergravity
potential.

The dimensionless parameters (gauge couplings and
Yukawa couplings), are not generated as a result of super-
symmetry breaking. Their values have to be put in by
hand, either by specifying them directly at the weak scale
[i.e., h%(Q?)] or, if one wishes, one can use RGE’s to re-
late them to their values at My [i.e., h*(My?)] and use
those as input parameters. The RGE’s for 4, A, k, and g;
are also given in Appendix B. It is important to realize,
however, that the dimensionless parameters that appear in
(B1)—(B14) are defined at the weak scale.

The solutions to the order 1 algebraic equations if the
A-space approach that I derived in this section are as gen-
eral as those of the differential equations of MS. Both
equations sum over the leading logarithms. The latter be-
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cause the derivatives of the running parameters are ex-
pressed in terms of the running parameters themselves,
and the former because the constant physical quantities
appear on both sides of the equations and have to be
solved self-consistently. However, the A-space approach
lends itself to include all threshold effects, whereas the
MS method does not.

Let me explain these statements in more detail. Let the
supersymmetry breaking parameters be given by
x;=(m;,A;). Suppose we have performed a full order-a
calculation including the one-loop threshold effects and
the two-loop leading logarithms according to the A-space
approach. We arrive at the coupled set of algebraic equa-
tions:

x,-:Fi(xj,Mk,Az) . (22)

In (22) the dependence of F; on the supersymmetry-
breaking gaugino masses and the cutoff A(=My) is
displayed, and its dependence on gauge and Yukawa cou-
plings is suppressed. Let X;(M j,Az) by a self-consistent
solution to these equations.

Differentiating both sides of (22) with respect to A2
yields

a'x,- 2 aE 5 dx,' aE sz,' aF,
=A 2 +A 2 AT S
dA? oA dA? Ox; dA? OM;

The RGE’s of MS are given by (23) if one ignores the last
two terms on the right-hand side, which are of order a?.
In a full order-a treatment these terms should however
not be ignored because they contain large logs. It is then
obvious that the A-space solution X; is also a solution to
the RGE’s (23). However, X; is a solution that takes the
threshold effects into account. These effects are lost when
one differentiates (22) with respect to A2 and this can only
be patched up by stopping the running of the differential
equations ¢ a common scale Q. It is in this way that the
A-space approach answers the question: “Where do we
stop the running of the masses?”

2

(23)

IV. COMPARISON OF THE RADIATIVE
CORRECTIONS TO THE HIGGS-BOSON MASS
EVALUATED IN THE SYMMETRIC AND
ASYMMETRIC VACUA

In this section I will address an issue that has been ig-
nored in the preceding discussions. At the tree-level
SU(2)x U(1) is unbroken. One calculates the one-loop
corrections to the Higgs-boson masses assuming that the
VEV’s of the Higgs fields are equal to zero. The question
is whether this calculation is correct when the one-loop
calculation reveals that SU(2) X U(1) is in fact broken and
(¢)5<0.

To be more specific, consider, for instance, complex
massive ¢* theory with a potential

V =u’¢’+rp* . (24)

In addition ¢ may couple to other particles and the specif-
ic form of (24) is purely for the sake of argument. When
1?>0, the VEV of ¢ is zero and p? corresponds to the
mass of ¢. The ¢ propagator can be evaluated at one loop
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and this will result in a certain infinite contribution
8u’(A,p) to u?. In the previously discussed supergravity
models the contribution 8u*(A,p) are in fact such that u?
becomes negative. When u? <0, u? does no longer corre-
spond to the mass of a particle. If 7 and X are the real
and imaginary part of ¢, ¢=1/V2(n+iX), then the
masses of 17 and X are given by

m,,2=;;2+3)\v2 R

ul=p 410, (25)
and Av?= —u? One can calculate the one-loop correc-
tions to m,” and my?,

myt—m,*+8m,*(A,p),

(26)
my2—my?+8my3(A,p),

by calculating the propagators for n and X, but what we
are really interested in are the corrections to ‘uz, i.e.,
corrections to the coefficient of ¢2, evaluated in the bro-
ken phase. The question can thus be rephrased as: are the
corrections to u? that are induced in (25) as a result of the
corrections in (26) equal to the corrections 8u*(A,p) ob-
tained in the symmetric case?

For the calculation of the threshold effects we are in-
terested in the full order 1 + order-a effects. The order
1 terms come from the infinities of the one-loop graphs.
The order-a effects come from two sources: two-loop
large logarithms [a’InA?=0(a)], and small one-loop
terms of the form aln(x;?/Q?), with x; any of the
supersymmetry-breaking parameters m;, A;, or M;. In
this section I will show that the infinite contributions to
u? are the same whether they are evaluated in the sym-
metric phase (i.e., {¢)=0) or in the correct vacuum with
(¢ ) =v5£0. Consequently, the leading logarithms (from
one loop, two loops, or any loop) are correctly obtained in
the symmetry phase. However, there is no reason to be-
lieve that this is also true for the small one-loop order-a
corrections.

I will first consider the unbroken (u*>0) case: Let the
tree level plus one-loop contributions to the inverse ¢
propagator be given by

= Fg\)e loop
=pr—pu*+C(A,p)—p3BZ(A,p). (27

The subscript zero denotes an unrenormalized quantity
(1d, Mo, b0, etc.). C, and 8Z are functions of momentum
and of various masses and coupling constants that appear
in the loops. The integrals have been evaluated using an
ultraviolet cutoff A. From (27) we see that the correc-
tions to u? are given by

SuX(A,p)=u>—po?=—C(A,p)+u*8Z (A,p) (28)
and the field ¢ acquires a wave-function renormalization:
d=Z"VAA,p)po=[1—38Z(A,p)]dy - (29)

We can define a counterterm 82 by specifying (28) at a
renormalization point:
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8,“' :[ —-C (A’p) +:u'2(SZ (Arp)] ‘p =renormalization point *
(30)

(Quantities with carets will denote counterterms.) I will
show that in the broken phase 8 ? is given by the same
expression (30). This implies that large InA contributions
to u? are the same whether they are being evaluated in the
symmetric phase or in the broken phase.

S8A(A,p) is defined as the one-loop contribution to the
connected four-point function (i.e., without the wave
function contributions from the external legs):

(A,p) . (31)

In the broken phase, u? <0, the Lagrangian for the scalar
field ¢ is given by

L=| 3,9 | 2—,u02¢02—k0¢04 (32)
with
¢o=%2<no+ixo+uo). (33)

I will now rewrite L in terms of renormalized parameters
and fields. Define

Vo=V +80, Ag=A+OA, pi=pl+842,

(34)
=2 ""¢y=(1—-382)4, ,
L becomes
L=2Z[]8,6|*—+(m, 2+, m*—+5x*]
— (A + 2 Av8Z +v8A +A80) (> +X?)
— F(A+8A+2A8Z) (2 + X2 — 087 . (35)

v is in (35) chosen so as to cancel the tree-level term linear
in 7: v*=—p’/A. The 7 mass counterterm &/,> and
the combined tadpole and X mass counterterm 87 are

given by
87, =802+ 380 24 3v2R ,

~2 ~2 28% (36)
87 =8+ AdD *+v*8A
with 802=2080. Since vo=(dy), v=(¢), and
¢=Z ~12$, we obtain the useful identity:
892=0%8Z . (37)

[In addition, the presence of 8¢ should not prompt anyone
to think of the idea of some sort of RGE that expresses
the behavior of v as a function of the renormalization
scale. v is a constant defined by the shape of the potential
at zero momentum. The presence of &0 is a remnant of
the fact that v is defined as a space-time-independent part
of the field ¢. The latter is subject to wave-function re-
normalization. This is clearly expressed by Eq. (37).]

Similar to (28), let the one-loop correction to m,,2 be
given by

8m 2 (A,p)=—Cy(A,p)+m,*8Z (A,p) . (38)

8m,,,2 can be evaluated using the vertices and propagators
of the unbroken theory, if we add the following rule:
Every external 7 line can disappear into the vacuum with
an amplitude v. So, for instance, the 7 propagator in the
case of pure complex ¢* theory is in the unbroken phase
given by

@ _
',=

X
- ,7+3TQ7 . (39)
X

This can be written in terms of operators of the unbroken
theory as

O O
™mX

The first plus the second term and the third term in (40)
equal the first and the second term in (39), respectively.
The first term in (40) is independent of v and the second
and third terms are proportional to v2. Note that a term
linear in v is absent because of the absence of a 1* cou-
pling in the unbroken potential (24). The terms are higher
powers of v lead to convergent graphs and are of no in-
terest for us. From this expansion we see clearly that in-
finite contributions to the wave-function renormalization
are the same in (28) and (38): any insertion of v in 8Z
leads only to finite contributions. For the same reason,
the infinite contributions to 8A, as defined in (31), are the
same whether they are evaluated in the symmetric or the
broken phase.

So in the general case, when ¢ also couples to other fer-
mions and gauge fields, we can write

The first term in (41) is equal to the corrections to T’ ;2 Vin
(27):

=p?—pg?+C(A,p)—p*Z(A,p) . (42)

The second term in (41) is equal to v? times the one-loop
corrections to A [see (31)]:

=v2[Ag+BA(A,p)] . (43)

So that we obtain, for Sm,,z(A,p),
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8m,X(A,p)=—C(A,p)+u*8Z (A,p)
—3M2Z (A,p)—3vA(A,p) . (44)

This is to be compared with the expressions for the coun-
terterms (36) and (37):

8712 =8f 2+3A026Z 4 3v8A . 45)
From (44) and (45) we clearly see that

822 =[ — Cy(A,p)+1*8Z (A,p)]| p —renormalization point 5

(46)

i.e., the infinite contributions to p? in the broken phase
are the same as in the unbroken phase [see (28)].

This is of course not really surprising. The unbroken
theory is renormalizable, which means that the parame-
ters in the theory (u, A, and ¢) can be consistently rede-
fined to absorb all infinities. The broken theory is dif-
ferent in the sense that, for instance, the particles have
different masses, and trilinear couplings appear. But the
renormalizability of the theory is still controlled by the
counterterms of the original parameters ,uz, A, and ¢
through the relations (36). It is therefore not surprising
that in the broken theory these parameters absorb the
same infinities as in the unbroken theory. It is clear that
this result is not restricted to one loop only, but should
hold at any loop.

To restate the results of this section: To any order in
perturbation theory, the leading logs of the A-space ap-
proach (or MS S functions) can be correctly obtained in
the symmetric vacuum ({¢ ) =0), which is not the ground
state of the theory. This facilitates calculations enor-
mously. However, there is no reason to believe that this
result also holds for the (small) finite order-a corrections
that have to be included to calculate the threshold effects
correctly.

V. A RECIPE FOR CALCULATING THRESHOLD
EFFECTS: SUMMARY OF RESULTS

This paper was motivated by the observation that
threshold effects can play an important role in the study
of radiative symmetry breaking. Low-energy supergravity
models have the potential to calculate the weak scale in
terms of more fundamental parameters (i.e., the Planck
scale and the supersymmetry-breaking scale p of that hid-
den sector). However, in the conventional MS methods
this feature is spoiled by the explicit introduction of a
weak cutoff scale Q at which one stops the running of the
RGE’s. In addition, lack of knowledge about the precise
value of Q can lead to inaccuracies in the results of the
order of 50%.

It was argued that the RGE’s of MS, whether interpret-
ed in the ¢-space or the p-space approach, do not provide
a clear definition of the supersymmetry-breaking parame-
ters and therefore fail to provide a framework for calcu-
lating threshold effects. For this reason, the A-space ap-
proach was introduced in which threshold effects can
naturally be studied. An additional advantage of this
method is that all parameters are well-defined, physical
(i.e., measurable) quantities.

It was then observed that the study of threshold effects
requires a full order-a calculation, because the difference
between two thresholds aln(A%/Q?) and aIn(A2/Q’?) is
an order-a effect (i.e., not order 1). A full order-a calcu-
lation in the A-space consists of the following steps.

(1) Calculate the full one-loop corrections to the
supersymmetry-breaking parameters (Sec. III) in the bro-
ken vacuum ({¢)5<0). This will yield the same order 1
terms as in the unbroken phase, but has to be performed
in the broken phase to obtain the correct threshold effects
(see Sec. IV).

(2) Calculate the two-loop leading logarithms. Since
alnA? is order 1, a’InA? contributes to the order-a
corrections. This part of the calculation can be performed
in the symmetric ({¢ ) =0) vacuum (see Sec. IV).

(3) Solve the set of coupled algebraic equations that re-
sult from steps (1) and (2) for the supersymmetry-breaking
parameters m;? and A;. Since these equations are self-
consistency equations (such as, for instance, Schwinger-
Dyson equations) they do not just take the leading logs
into account, but sum over all next to leading logs, a"In",
n > 1, as well (see Sec. III).

(4) Perform a Coleman-Weinberg-type calculation on
the low-energy scalar potential to obtain the (small) order
a corrections to the relations but express (¢ ) in terms of
the parameters of the potential (see, for instance, Appen-
dix A).

(5) Substitute the supersymmetry-breaking parameters
m; and A; obtained in step (3) plus the low-energy values
for the gauge and Yukawa couplings into the equations of
step (4) to study the patterns of symmetry breaking and
the particle spectrum. It was demonstrated in Sec. III
that the solutions to the order 1 approximation in the A-
space approach agree with the solutions obtained from the
RGE’s using MS.
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APPENDIX A

In this appendix I will review two current ways of
thinking about the mechanism of radiative symmetry
breaking. I will call them the ¢-space approach and the
p-space approach. It is not true that the authors of Refs.
4, 7, and 10 are devoted followers of either the ¢-space or
the p-space approach. The two schools are made up by
myself as a possible way to understand the assumption
that underlie these calculations. Nevertheless, I hope that
the following discussion will be a fruitful contribution to
a better understanding of the radiative symmetry break-
ing.

In both these approaches parameters defined at a high-
energy scale are related to those at a low-energy scale
through renormalization-group equations and produce the
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correct leading-logarithmic results. However, I will argue
that in these approaches it is unclear how to define the pa-
rameters in terms of physical quantities. Since threshold
effects are caused by nonzero physical masses of particles,
it is clear that these approaches are inappropriate for ob-
taining these effects.

1. The one-loop corrections to the effective potential:
the ¢-space approach

The ¢-approach calculates radiative corrections to the
shape of the potential (6) in a Coleman-Weinberg-type
fashion. One obtains here large negative contributions to
the potential of the form m?¢’In(¢/My). In this section
I would like to explain that when a physical renormaliza-
tion prescription is adopted, these large logarithms for the
mass terms and the other couplings in the potential do not
occur. I will do this by reviewing the original Coleman-
Weinberg calculation!! in massless scalar electrodynamics.
The purpose of this will be demystify the often quoted
dimensional-transmutation mechanism. Subsequently, I
will consider the massive case. Before this, let me explain
what an effective action is, and how it relates to physical
observables. This will be useful for choosing a physical
renormalization prescription.

For simplicity, in explaining the formalism, I will re-
strict myself to the theory of a single scalar field ¢, whose
dynamics are described by a Lagrange density L (¢,0,¢).
The generalization to more complicated cases is trivial.
Let us consider the effect of adding to the Lagrangian
density a linear coupling of ¢ to an external source J(x), a
c-number function of space and time:

L(6,8,6)—>L +J (x)$(x) . (A1)

The connected generating functional W (J) is defined in
terms of the transition amplitude from the vacuum state
in the far past to the vacuum state in the far future, in the
presence of the source J(x):

eiW(J)= (0+ | 0—) i (A2)
We can expand W in a functional Taylor series
1
W= % - f d*, - d**,G"™(xy - x,)
XJ(x1)- - T(x,) . (A3)

It is well known that the successive coefficients in this

series are the connected Green’s functions; G'™ is the sum

of all connected Feynman diagrams with n external lines.
The classical field ¢, is defined by

SW
$X) =375

(0 |¢(x)]07)
(0*107) }J

The effective action I'(¢.), is defined by a functional
Legendre transformation:

(A4)

D )=W WD) — [ d*J(x)¢.(x) . (A5)
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From this definition, it follows directly that

8T
so.x) )

(A6)

The effective action may be expanded in a manner similar
to that of (A3):

r=3 % [d%, - d%,T™(x, - x,)

X¢c(xl)”'¢c(xn) . (A7)

It is possible to show that the successive coefficients in
this series are the one-particle-irreducible (1PI) Green’s
functions (sometimes called proper vertices); I''™ is the
sum of all 1PI Feynman diagrams with n external lines.
(A 1PI Feynman diagram is a connected diagram that
cannot be disconnected by cutting a single internal line.
By convention, 1PI diagrams are evaluated with no propa-
gators on the external lines.) There is an alternative way
to expand the effective action: Instead of expanding in
powers of ¢., we can expand in powers of momentum
(about the point where all external momenta vanish). In
position space, such an expansion looks like

= [d%[—V($.)++(8,6.7Z(g)+ -1, (A8)

where the ellipsis indicates higher-derivative terms.
V(¢,.) is called the effective potential. By comparing the
expansions (A7) and (A8), it is easy to see that the nth
derivative of V is the sum of all 1PI graphs with n van-
ishing external momenta. In tree approximation (that is
to say, neglecting all diagrams with closed loops), Vis just
the ordinary potential.

The usual renormalization conditions of perturbation
theory can be expressed in terms of the functions that
occur in (A8). For example, if one defines the squared
mass of ¢ as the value of the inverse propagator at zero
momentum, then

, d*v

= e (A9)

u

¢=(V)

where ¢ has to be evaluated at the minimum of I':¢=(¢)
because of (A6). Likewise, if we define the four-point
function at zero external momenta to be the coupling con-
stant A, then

_ d*v
de.*

A (A10)

¢=(¢)

In massless (complex) scalar electrodynamics the one-
loop potential is given by

A oA
V= 8'+30m? + ot + 3o A%

1 4 Ag? 1
_ AT |11 All
—+—4!c2¢ In A2 2 ( )

where 8A and 8m? are counterterms to absorb the A-
dependent parts of the one-loop contributions. ¢, and c;
are calculable constants of order . At the tree level, the
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fact that the theory is massless and interacts with a cou-
pling strength A is expressed by
2 4
g —o, 4V —1.
doc” |4-(s)=0 dde” |4_(4)=0

When (¢ ) =0, the coefficient of ¢? is equal to the mass of
the particle. On the one-loop level (¢ )40 and this is no
longer true. Now we have two choices for our mass re-
normalization prescription. We can demand the coeffi-
cient of ¢2 to be equal to zero, i.e., aZV/a¢2 | g=0- This
corresponds to a slight positive curvature at ¢=(¢) and
thus to a massive theory (this is the original Coleman-
Weinberg choice). Alternatlvely we can demand the
theory to be massless, i.e., 3>V /3> | =(4)=0. This leads

(A12)

to a nonzero coefficient of ¢? in the potential. In the
latter case,
2 4
d V; =0, d K =A, (A13)
dde” o—(s) dde” |4—(4)
the potential (A11) becomes
2
¢ 25
S —mr 4 411 == Al4
g et in |- o |6 )
with
m?=(3c,—A){¢)?. (A15)

Requiring the minimum of the potential to be obtained at

(¢) gives

=3(3c; —A){(d?) . (A16)
Note that for this minimum to exist, A has to be chosen a
value of order a and no large logarithms appear. (¢) is
not determined by (A16). This reflects the scale invari-
ance of massless ¢* theory. We did not put a mass scale
into the problem, so we can hardly expect to get one out.

In the massive case, calculations get fairly complicated.
If one adopts however a physical renormalization scheme,
i.e., one defines all masses and couplings at the minimum
of the potential, the one-loop corrections to these parame-
ters are small.

For instance, in real massive scalar ¢* theory:

1
=3mo’$>+ 2 Mo’ (A17)

with mo% <0 we can define, as one-loop renormalized pa-
rameters,

, d*V d‘v
mo =" 3 , )»o=:i—i; ,
be” lomo Peloo (A18)
. dv 5 dv
- 2 > - 4 .
dbe” |g—(s) dde” |4—(o)

The one-loop corrections to the tree-level relations,
m2=A/3(¢)* and m?= —2m?, are small:

9 1
= [1+——=1 |=71($)?,
‘ + 5 i (¢)
A (A19)
m?=—2mgy? +32 = {O((¢)2’m2)

2, 1 2
—27»m21n-—~———m + M)
m2

(The question of whether or not radiative effects should
be calculated in the shifted vacuum ¢—¢+(d) is ad-
dressed in Sec. IV.) The first term in large parentheses is
a complicated expression in (¢ )? and m? that does not
contain any logarithms. Also since the corrections to my?
in (A18) are small, the Coleman-Weinberg mechanism
does not provide a way to drive masses negative.

In the ¢-space approach, i.e., in the approach that one
does get large corrections using the Coleman-Weinberg
mechanism, one defines A not as in (A13) or (A18) but
rather

a‘v
dbe* |4u
where M is an arbitrary scale, usually taken to be the

grand-unified-theory (GUT) scale. For the massless po-
tential (A 14) A, is related to A through

M= ’ (A20)

Ay=A+c,In—— (A21)

<<15>2 '
When expressed in terms of Ay, the condition for the
minimum (A 16) becomes

s M
3 (¢)?

The assumption in the ¢-space approach is that A, is the
parameter that is obtained from the supergravity calcula-
tion, i.e., one of the parameters that appear in (6). Then a
renormalization-group equation (RGE) is set up to obtain
the “low-energy” value A, which is in our case essentially
achieved by Eq. (A21). With Ay, and M given (M =My),
a prediction for (¢) follows from (A16) or (A22). In this
way the RGE obtained from an equation like (A21) leads
to the correct leading-logarithmic corrections to A.

I find this scenario insufficiently rigorous for the fol-
lowing reason. The input value A,, at the scale ¢ =M, al-
though a legitimate parameter to describe the theory, does
not correspond to the value of the coefficient of ¢* in the
effective potential that is obtained from the supergravity
model, after integrating out the heavy fields. Recall that
in obtaining (6) the heavy fields Z were expanded as
Z=My+¢, with ¢ of order of the weak scale, so that,
heuristically,

Ay =c3 (A22)

_d'v
Z=My d¢4

d*v

A=
dz4

, (A23)

b=my,

which agrees very much with our first definition for A in
(A13), and disagrees very much with the definition (A20)
with M =My. The latter definition is used in the ¢-space
approach, and causes large logarithms. So the parameters
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in (6) are most accurately interpreted as derivatives of ¥V
with respect to ¢, evaluated at roughly the weak scale, and
we should not expect large logarithms to come form the
Coleman-Weinberg-type one-loop potential.

The dimensional-transmutation mechanism does essen-
tially the following. Let A be defined at the minimum of
V through Eq. (A13). Fix A so as to satisfy some
minimalization equation such as (A16), i.e., A has to be
some small order a number. Then use (A21) to express A
in terms of a A;; which is defined through (A20) a dis-
tance M —(¢) away from the physically relevant
minimum. In this way large logarithms are generated. It
is clear that there are a lot of pairs (A, M) that will satis-
fy (A21), but they have no physical interpretation as I ex-
plained.

For the scalar mass m,’ the situation is analogous to
Ap. mp? is defined far away from the minimum of the
potential through

2
d '; =my?. (A24)
do. ¢, =M

This will then again generate large logarithms of the form
am?¢’In(M?/{¢)?), and in particular this will drive some
of the scalar masses negative. Like A,,, my° is as correct
a parameter to describe the theory with as any other. But
it is also of as little physical significance as A, and there
is no apparent reason to equate m,,2, as defined in (A24),
with the input parameter (m)? in (6).

So the ¢-space approach does not provide an adequate
understanding of radiative symmetry breaking, although
it yields the correct leading-logarithmic corrections.
When masses and couplings are defined so that they cor-
respond to physical quantities, the one-loop corrections
are small and do not involve large logarithms. Of course
when we are interested in the full order a corrections in
order to understand threshold effects, these Coleman-
Weinberg-type corrections should nevertheless be includ-
ed.

2. Running masses and coupling constants: the p-space
approach

The p-space approach argues in the following way. It
is assumed that the fields in the effective potential of the
observable sector are of the order of the weak scale Q.
This is a point of view that I defended in the last section,
and led to the conclusion that in the ¢-space approach
large logarithms are absent. However, the p-space now
assumes that the parameters in the potential (6), mp, A,
and the gauge and Yukawa couplings, are defined at mo-
menta p°= —My?. Such a definition is usually motivated
by the statement that this is a natural consequence of el-
iminating the heavy fields.

I do not agree with this point of view for the following
reasons. First of all, the effective potential (6) is obtained
from a tree-level calculation and parameters in a tree-level
potential are not defined at any scale in particular. Dif-
ferent values at different momentum scales only come in
as a result of loop effects. Secondly, the full supergravity
potential can be interpreted as the zero-momentum term
of the full supergravity action in a momentum expansion

of the form (A8):
Tsugra = f d4x[

- Vsugra(zayfh)

+ 58,21 Z gra(2%Z M+ -+ 1,
(A25)

A=ah .

In this way the parameters in the full supergravity poten-
tial ¥V, are defined at zero momenta and tree-level ma-
nipulations of integrating out the heavy fields result in a
potential (6) whose parameters are still defined at zero
momenta.

A different version of the p-space approach reasons as
follows. We agree that the parameters in the potential (6)
are defined at p?=0 and we do no really know their nu-
merical value. We can however obtain information about
their values by relating them to high-momentum values in
very much the same way as the three gauge couplings
g3, 82, and g, of SU(3)xSU(2) x U(1) in a GUT scenario
are explained in terms of one gauge coupling ggur of
SU(5) at scale p?=—My?. For the gauge couplings g;
one can define running couplings g;(p), which represent
the interaction strength of particles interacting with a
momentum transfer — p? (see Fig. 4). One can do this
consistently for any trilinear or quartic couplings in (6).
The RGE’s that one obtains for these parameters in the
approximation that one only takes the large Inp? terms
into account are the same as the ones obtained from MS.
The momentum dependence of trilinear and quartic cou-
plings is unambiguous because they are equal to the renor-
malized three- and four-point functions, and the momen-
tum dependence of the latter is well defined.

The momentum dependence of the renormalized two-
point function is also well defined, but in general its
momentum dependence is parametrized in terms of two
finite momentum-dependent functions:

F(Z):Z(p)[p2_m2(p)] .

The functions Z(p) and m?2(p) are for a particular
momentum (the renormalization point) fixed by the renor-
malization prescription, but the momentum dependence
away from this point can be distributed arbitrarily over
Z(p) and m?*(p). So the momentum dependence of the
propagator is uniquely defined, but the momentum depen-
dence of the mass is not. Therefore, specifying “the mass
at My [m?*(My)] and calculating “the mass at the weak
scale” [m*(Q)], through the momentum dependence of
m*(p) is an ambiguous procedure.

To be more specific, let the one-loop two-point function

(A26)

)
= ~ /

\\q U//
ate) g9(p)  Alply---g--- <Ap)
N A SN
p2 /T AN

FIG. 4. The running couplings g;(p) and A4;(p) as obtained
from MS represent the effective interaction strength of particles
interacting with momentum transfer —p?. % and § are scalar
quarks.
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r (¢2) of a scalar field ¢ with mass m be given by

I =p*—m>+F(p,m;,A)+p>8Z +86m? . (A27)

I have explicitly introduced the momentum independent
wave function and mass counterterms 8Z and dm?2. All
the other parameters in (A27) are renormalized quantities.
F is an order a quantity, which depends on momentum,
various masses m;, among which the mass of the scalar
field ¢ itself, and couplings g;. The integrals in F are
evaluated using a UV cutoff. We will assume the absence
of quadratic divergences in F, as is the case in (softly bro-
ken) supersymmetric theories.

Observe that there are two counterterms in (A27) to re-
move the infinities in . The requirement that m is the
pole of the ¢ propagator and that the residue equals 1
fixes these two counterterms uniquely:

F(m,m;,A)+m?8Z +8m?>=0, (A28)
_an +86Z =0, (A29)
ap pl=m?

and T'*? becomes
ry'=p*—m>+F(p) . (A30)

The finite function F and F' are defined through the Tay-
lor expansion of F around the mass shell:

oF

F(p)=F(m)+(p’—m?) — +F(p),
ap p2em?
~ ~ ~ ~ (A31)
F(p)=(p*—~mHF'(p), Fim)=F'(m)=0,
so that we can write (A30) either as
Iy =p>—m2p), mp)=m?*—F(p),
(A32)
mim)=m?,
or
Iy'=Z(p)p*—m?), Z(p)=1—F'(p),
(A33)

Z(m)=1.

In (A32) I'? is parametrized in terms of a “running
mass” and in (A33) in terms of a “running wave-function
parameter,” which shows the ambiguity of the notion of a
running mass explicitly.

So the assumption used in the calculation of the RGE’s
for the scalar masses in the p-space approach that the
momentum dependence in the leading-logarithmic ap-
proximation corresponds to the RGE’s obtained from MS
is not correct, simply because a there does not exist a
unique momentum dependence for the masses.

At this point it is perhaps clarifying to review the re-
normalization prescription that is used in MS, and why
the renormalized parameters obtained in this renormaliza-
tion scheme are useful for the study of the asymptotic
(i.e., large p?) behavior of the Green’s functions,'® and not
for the study of radiative symmetry breaking following
the p-space approach.

In the conventional renormalization prescriptions the
dependence of the masses, couplings, and wave-function

renormalization parameters on momentum is usually very
complicated due to the presence of masses in the loops.
The resulting RGE’s for the n-point functions are hard to
solve. MS solves this problem in the following way. A
new, unphysical, scale parameter p is introduced into the
problem, and all parameters are renormalized at momenta
p=p. So after renormalization the parameters m?, 8>
and Z are not only a function of momentum, but also of
the renormalization scale pu: m*(p,u), g;(p,n), Z(p,p).
Notice that the dependence of these parameters on pu
arises only through the counterterms. The counterterms
are now chosen so that the dependence of m?, g;, and Z
on u is as simple as possible, with of course the constraint
that all infinities are canceled. This is where MS owes its
name to.

For instance, for I'? in (A27) this can be achieved in
the following way. Since F has dimension of (mass)?, we
canz write F as a sum of terms, proportional to p? and
m;=:

F(pami»A):szO(p7mi:A)+ zmizGi(p7mi7A) .
i

(A34)

The functions G, and G; are dimensionless, and consist
of sums of logarithms with numerical coefficients (i.e., no
(p2/m?" or (m?/p>", n=1,2,3,..., coefficients). In
MS, 8Z and 8m? are defined as

8Z = —Go(u?,0,A) ,
dm?=—m;’G;(u%0,A) .
So that

(A35)
(A36)

L3 (pmi)=Zgs(pot,m)[p? — mygs(p,pt,m)] (A37)
with
mys (P, m;)=m?—m;*G,(p,m;,A)
+m;*G;(n,0,A) —m>Gy(p,m;,A)
+m2Go(p,,0,A) (A38)
and
Zyis(psp,mi) =1+ Golp,m;, A)—Go(u,0,A) . (A39)

I'? in (A37) is a physical parameter and is therefore of
course independent of the renormalization scale u. The
dependence of mM—S2 and Zyg on u is very simple because
Go(u,0,A) and G;(u,0,A) can only be a function of
In(A/u). So

d 2 3 a d 2)
—TI?= g+ B~ — r?=o
#d“ “aﬂ +Bag +¥m, am, +7z

with
d 0 d
B=p BV Vm SR M Yz =H a:lﬂzm—s .
(A40)

Because of MS, 3, Ym,;, and vz are simple polynomials in
the coupling constants and are independent of m;.
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Of course, we are interested in the momentum depen-
dence of T''?, and not in the u dependence. This can
however easily be established through the relation

,u—@—+m,-—a—+pi 2 _op@
m;

Ew » (A41)

So the running masses obtained in MS, together with
the anomalous dimensions, are calculational tools to solve
for the momentum dependence of the Green’s functions.
Through a judicious choice of the counterterms, their
dependence on the renormalization scale u can be chosen
to be very simple. The momentum dependence of the
Green’s functions is then a result of (A40) and (A41). Ob-
serve that the momentum dependence of the masses, as
explicitly displayed in (A38), is never addressed.

A nice illustration of the fact that scaling of a running
mass with respect to u is something very different from
the momentum dependence of the mass is given by the
following example. Consider the contribution to the one-
loop scalar propagator coming from the difference of two
tadpole diagrams as in Fig. 5 with masses m; and m, in
the loop. This contribution 1is proportional to
(m2—my?)In(A) [or (m>—m,*)(1/€+1nu) when di-
mensional regularization is used], and contributes to the
RGE’s of MS, but clearly does not contribute to the
momentum dependence of the mass of ¢, m*(p).

A second problem with this latter approach of running
masses is that with p2= — M2, the physics at that scale
does not really care about these masses at all. With
| p | =10 GeV and masses of the order of the weak
scale the physics at the scale should be completely insensi-
tive to whether the masses are my or, for instance,
10myy, or exactly zero. On the other hand, in the p-space
approach the weak symmetry breaking is sensitive to what
values one assumes for these masses at high energy.

The main result of this section is that specifying scalar
masses m at p>= —My? is an ambiguous procedure, be-
cause the momentum dependence of m is not uniquely de-
fined. The Georgi-Quinn-Weinberg mechanism'? does
work for trilinear and quartic couplings because these
couplings are defined as physical n-point functions.

APPENDIX B

In this appendix I write down explicitly the supersym-
metric one-loop equations for the supersymmetry-
breaking parameters of the E¢ model considered in Sec.

m, Inz
-——- PR
1 /7 \ ", S
O )
\ , \ 4
-_——— el e e

FIG. 5. The difference of two tadpoles diagrams with masses
m, and m, in the loop is proportional to (m;?—m,?)In(A).
These graphs contribute to the RGE’s of MS, but clearly do not
contribute to the momentum dependence of the mass of ¢,
m?(p).

III. An unbroken SU(3). XSU((2); X U(1)y X U(1)g gauge
symmetry is assumed, with “light” matter content given
by a 27 of E¢. These will be assumed to be the third gen-
eration of the standard model.

The scalar masses.

mp®=0My’g,>+ M g >+ s Mp’gg?
—3h%F, —\*F))t , (B1)

my?=(3M,’g," + $M%g >+ s Mg — A2F))t
(B2)

my2=(SMg’g?—2A*F, —3k*F, )t , (B3)

mp?=(5FM3’g> + e M %g >+ s Mg —k*F ot
(B4)

mp *=(FM3’g:> + s M g+ s Mg g > —*F )t

(BS)
mo?=( 5 Ms’%gy"+3M,%g,> + 1M ’g,?

+ Mgl —h?Fy)t (B6)
m, =T My’g%+ 5 M %g,’

— Mgt —2h%Fy )t , (B7)
mg’=(FM3’g"+ M %8>+ s Mg, (B8)
myt=(3M57g,% + s Mg+ s Mggg*)e (B9)
m=(5M g >+ s Mggg*)t , (B10)

m=($Mggg )t .
The trilinear couplings.

Ap=—(FMsg? +3M,g," + 1M g+ + Mig;?

+6h%4, +22 A0t , (B12)
Ar=—(3Myg,°+ Mg, *+ s Mpgg*+3h’4,

+A02 A, + 324,08, (B13)
A= —(FMsgs*+ Mg >+ +Mggg’

42024, + 524, )t (B14)

with

Fr=mg’+m,>+mpy’+4,°,
Fr=mp*+mg+my>+ 4,7, (B15)

FK:mD2+mDCZ+mN2+AK2 .

In (B1)—(B14) t =(+m?)In(A%/Q?), A is the UV cutoff,
and Q is of the order of the weak scale: 100 GeV
<Q <500 GeV. Equations (B1)—(B11) have been ob-
tained using the fact that the quantities

2 2 2 2 2
SY= m," —myp —+-mH2—m1—{ —mMmp -+—ch

+md2—2mu2+mQ2 (B16)
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and

2 1 2 1 2
Sp=2mg*+m,’—3my’—5my

2 2

12,5 4 2 1
+smS+m, —3myg"—3mg

—|—-2—m1\;2—2mD2—%m,_,c2 (B17)
are solutions to (B1)—(B14) with
SY=SE=O .

All terms in (B1)—(B14) that are proportional to Sy and
Sk have been put equal to zero. The vanishing of these
quantities is related to the vanishing of the U(l)y and
U(1)g trace anomalies in the 27 of Eg.

The RGE’s for the gaugino masses and the gauge cou-
plings are given by

dg.> 1 .

dt :g;;z— aga N (Bls)
M

—* zébagazMa (B19)

with t=In(M/My), M is the renormalization scale.
b3;=0, by=3, b;=bg=9.

The RGE’s for the Yukawa couplings 4, A, and « are

given by
dh h
E:—s;;(—ég;f—%gzz——%glz
—3ge?+3h2+ 407, (B20)
dA A
?=§;2—(—%822-13‘0812—1—708E2
+3h24 2024+ 37, (B21)
dk K 8 2 2 _2 12,52
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