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Polyakov string theories are quantized by stochastic methods. Langevin equations for a string
coordinate and two-dimensional metric are invariant under general coordinate transformation and

Weyl scaling. In these methods, the conformal anomaly cancels in 26 dimensions and scattering
amplitudes of N tachyons in the tree level are computed. As a first step of analytic computation in

the random surface approach of a Polyakov string, we evaluate the tachyonic mass and the tachyon-
ic scattering amplitude for right triangles.

I. INTRODUCTION

String theories' seem to be an attractive framework for
describing all the forces of nature. A viable quantum
theory of gravity may be achieved by finite superstring
theories. Much work is now in progress for multiloop
computations to understand the quantum behavior of bo-
sonic and superstring theories. One expects that nonper-
turbative aspects of string theories will play a crucial role
in our understanding. To these, the string field theory
and random surface approach to string theory will pro-
vide insights. The latter can be put to numerical compu-
tations by Monte Carlo methods. Gauge theories have
been successfully studied by Monte Carlo techniques.
These procedures inspire a new quantization technique
through Langevin equations.

In this paper, we study stochastic quantization and the
random surface approach to the Polyakov string theory.

In Sec. II Langevin equations for the string coordinate
P(r, o ) and two-dimensional metric g p(r, cr) are written
in a general-coordinate- and Weyl-scaling-invariant way
and solved perturbatively using heat-kernel methods. The
conformal anomaly computed in the stochastic quantiza-
tion formulation cancels in 26 dimensions. Tachyonic
scattering amplitudes are reproduced in the tree diagram.

For the purpose of implementing a Polyakov string into
a numerical Monte Carlo procedure, a random surface ap-
proach is examined in Sec. III. However, it is extremely
difficult to perform an analytic computation. A first step
towards an analytic calculation of tachyonic mass and
scattering amplitudes is taken. Finally we discuss
methods of implementing the random surface approach in
numerical computations.

II. STOCHASTIC QUANTIZATION

Stochastic quantization is formally equivalent to
canonical or path-integral quantizations. Green's func-
tions are evaluated over asymptotic distributions of con-
figurations evolving along the fictitious time governed by
the Langevin equation. Gauge theories have been treated
successfully by this method with and without gauge fix-
ing, and a further numerical computation has been per-
formed.

The non-necessity of gauge fixing and the possibility of
implementing into numerical work initiate applications of
stochastic quantization techniques to string theories. We
propose a stochastic quantization procedure for the Po-
lyakov string theory which preserves both general-
coordinate and Weyl-scaling invariances. We briefly corn-
ment on stochastic quantization of string field theory in
the light cone.

A. General-coordinate- and
weyl-scale-transformation-invariant

Langevin equation

The Polyakov string action for P and g p of given to-
pology is

S=, f d P gg Pa PP, g=det(g p),

where a' is the Regge slope carrying negative-two mass
dimensions (we set 2rta'=1) and P is a two-dimensional
coordinate (r, o ).

The standard procedure of stochastic quantization gives
the Langevin equation for P with fictitious time t as

ap(g;t) 1

at g
a„(egg'a„)y(g;t)+ &,(g; t), (2)

To obtain Langevin equation for g p, we split g & into a
t-independent background g ~ and t-dependent h ~ as

g p(g;t)=g p(g)+h p(g;t), (3)

its equation is proposed as

ah p(g;t) =(~.e, ,'g.pg")a.y—a,—y+&.p(g;t) . (4)

[We have not yet rigorously proved that Eqs. (2) and (4)
give the correct quantum theory of Eq. (1).] Here ri~ and
tl p are the stochastic noise of p and h p, respectively.
For simplicity, we require that p, g p, h p, rl~, and g p
satisfy the boundary condition of a closed string.

Ensemble averages of these noises are defined by
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(rj&(g;t)r}&(g', t') ) =2 5'(g, g')5(t t'—)
g

f [Dg~]q~(g;t)g~(g', t')exp ——,
' f d gdt~g rl (j;t)

f [DrI&]exp ——,
' f d gdt~gq (g;t)

(5)

(rI p(g;t)g p(g', t')) =2g (pg )~ 5 (g, g')5lt t')—
g

p Q p t Q p
', t' exp ——,

' d g g '~g '
q p, ~ Q p

f [Dg p]exp ——,
' f d'g~gg 'Pg '~rt p(g;t)rt p(g;t)

(6)

(8)X 7}y(g'; t') .
For the case of a constant curvature metric for genus )2,
the heat kernel in Eq. (8) can be constructed through the
Poincare series as

(9)
yCI

Here - denotes the two-dimensional Laplacian in con-
stant curvature g p. In complex coordinate z =~+I,o.,
the action of y =(,' d ) with ad —bc = 1 on z is

The stochastic ensemble average (6) should not contain
the metric g p in the exponent, since g & is the noise driv-
ing Langevin equation for the metric g ~. This situation
is circumvented by splitting as in Eq. (3).

Alternatively, one may set up the Langevin equation for
g p without splitting as in Eq. (3). The exponent of the
noise average in Eq. (6) contains g p and is not Gaussian.
See Ref. 6 for a discussion of non-Gaussian noise in sto-
chastic quantization of Einstein gravity.

The noises g~ and g p are a scalar and second-rank ten-
sor, respectively, and Eqs. (2)—(6) have the proper
general-coordinate transformation.

Under the transformations

~'=e '&'~,

(('(g;t') =p(g;t),
g' p(g;t')=e '~'g p(g;t),

q,'(g;t')=e '~'~, (g;t),
rI p(g;t')=rt p(g;t) .

Equations (2)—(6) are covariant. It is worthwhile to note
that the fictitious time t transforms also under Weyl scal-
ing. In fact, this transformation is nothing but the local
Weyl symmetry in the context of stochastic quantization.

It is difficult to solve coupled Eqs. (2) and (4) analyti-
cally. However, these can be treated perturbatively order
by order in h p. To the zeroth order in h p, Eq. (2) can
be integrated exactly for a t-independent background g p
[see also Eqs. (13) and (22)]. The solution of Eq. (2) is

q(q;t)= f d'g'&g(q') f dt'Wt t')(q e—

yz =(az+b) j(cz+d). The explicit form of go" (z,z') in
Eq. (9) is well known:

coshd =1+ I
z —z'

[

2 Imz Imz'

The propagator for P is worked out as

lim (P(g;t)P(g';t)) = f dt'K'(g, g'),

by using Eqs. (5), (8), and (9).
Actually at the tree level (i.e., Riemann surface with

zero genus), it is much easier to work as in Ref. 4 with the
gauge-fixed action

S„,= f dzdz(a, ya, y+b a,c'+b B,c'), (12)

where b and c are antighost and ghost fields. As a ghost
and antighost, in fact, decouple from the string coordi-
nates, we only need the Langevin equation for P(z, z, ;t):

a
at y(z, z;t) =a,a y(z, z;t)+~(z, z;t)

with

(rt(z, z;t)rt(z', z ', t') ) =25'(z z')5(t t') .— —

B. Conformal anomaly in stochastic quantization

As an application of stochastic quantization, we com-
pute the conformal anomaly. The gauge-fixed action (12)
contains anticommuting Faddeev-Popov ghost fields.
These ghosts are bosonized as in Ref. 8 by replacing con-
formal dimension-one current j =2 bc with bosonic
current j =BY. The resulting action reads

,'away+ ' (axax+—i—', zx) .2' (13)

The trace of the momentum-energy tensor is

t /4— —b l4tI"(z.z ) = '
db ', (la)

(4~t) ~ d (coshb —coshd)

where
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( T) = —1 ——(away)+ 1 ——(aran)1 d l d
2 2 2' 2

1 ——(RX) — i (1 —d)(ClX) .
3 d 3

4m 2 4m.

The Langevin equation for string coordinates P is given
in Eq. (2), while the bosonized ghost Langevin equation is

in the coincidence limit.
We use the dimensional regularization d =2+e to

compute the nonvanishing trace of the momentum-energy
tensor (14). The first two terms in Eq. (14) do not vanish
only if (a()I)a()()) and (a+aX) are singular. Only a, t in A
(16b) expanded as a power series of r gives rise to a singu-
lar term. Contributions from the first two terms are

ag(g t) 1 3i

()t ~ ~ 4m.
=—0-7 — R +

( T) = R(D+1),
48m.

(17)

with stochastic noise q&.
To compute the nonvanishing momentum-energy trace,

we note that the heat kernel in Eq. (8) for neighboring
points g and g' is given for an arbitrary curved back-
ground as

K'(g g') = ' ex — ' A(g g'r)
(4mr)"~'.

Here o(g, g') is the geodesic length defined between g and
Definitions of D and A are

(16a)

where D is the dimension of P. The third term in Eq. (14)
vanishes, since (RX) is regular. The last term in Eq. (14)
contributes (R/48m)( —27). Thus, the total anomaly

( T'i= R (D+1—27)
48m

cancels in D =26.

C. Tachyonic scattering amplitude

As another sample computation, we compute the N-
tachyon scattering amplitude to the zeroth order of h & in
perturbation expansion. The vertex operator is given as

A(g, g', r)= g a„(g,(')r",
n=0

(16b) yt( ) g e iP.P(z, z; )( (18)

with

ao(g, g) =1,
(2((g,g)= —,'R(g), . . .

(16c)

Here the centered dot denotes the scalar product in 26 di-
mensions and t is fictitious time. By averaging over sto-
chastic noise, the scattering amplitude of N tachyons is
given by

N

A(p, . . . ,p )= )(m f +d'z;V g;V'(z;) . . V'(z„))

N

f [dn) f Qd' &g; p —f d' ~gd [—,'g'(; ) —K(' '(;, )~(; )]

By noting

= »m SONt~+ oo f [dq)exp[ ——,
' f d'zMgdrri'(z;r)]

(19)

f d2zMgK'(z;, z)K'(z, zj. ) =K '(z;, z~. ),
the scattering amplitude is reduced to

N

A(p„. . . ,p )= lim g f g d z;Qg;exp ——,
' g f dr8(t r)p; p K " r'(—z;,z )

t —++ oo i=1 l,J

(20)

Since the kernel for the flat background is

d2k
K'(z, z') = e

—vk e (k (z —z')
g( r)

(2~)
(22)

the exponent in Eq. (21) becomes

d k2
2(t )k2 tk(z; —z )

lim ——gp p dr 8(t r)e ' e-
(2n. )

g p; pjln I
z; —z~ I

(23)

Thus, Eq. (23) is

N

~(p». . . » )=g"f IId', H I,—,
I

i=1 i&j
(24)
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with g, the renormalized coupling constant, which absorbs the divergences emerging from the coincident limit of
ln

l
z; —zj l

. As usual, SL(2,R) invariance of Eq. (24) is fixed by

N

A(p„. . . ,p )=g f /d';5'( — )5'( B—)5'( —y)
l

( — )( — )( — ) l'/ l; —J l
(25)

From the discussion given at the end of Sec. II A, we can see that Eq. (25) is exact at the tree level.

D. Stochastic quantization of string field theories in the light cone

In this section we will discuss the stochastic quantization of string field theory with the gauge fixed as in Ref. 4. For
simplicity, we will work in the light cone, where all the nonphysical degrees of freedom have been eliminated. (For the
treatment of covariant string field theory, see Ref. 10.) The action of open-string field theory takes the form

S=——, d x N x —M N x +— d xi ~ x&~xz~x3 + xJ

(26)

Here
l

V' ') and
l

V' ') are the well-known three- and four-string interaction vertex operators, respectively, whose ex-

plicit forms can be found in Ref. 11. The number operator M in Eqs. (26) acts on H, the Hilbert space of the first-
quantized string.

Introducing noise
l
g(x;t) ) with Gaussian distribution, its correlation function is then given as

( l
q(x;t)) (q(x', t')

l

)„„=25"(x x')5(t —t')I—
f [D

l q)] l
zI(x;t)) (zl(x', t')

l
exp ——, f d x dt(g(x;t)

l
g(x;t) )

T

D g exp ——, d xdt gx t gx't

where I is the identity operator in H. With this noise, the Langevin equation for
l
4) reads

l
4(x;t)) =( —M )

l
4( xt)) ——f d xid xz(N(x, ;t)N(xz, t)

l

V '(x,xi,xz))

2

f d xid xzd x3(@( x'it)N( xzt)4( x3 t)
l

V (x xi xzyx3))+
l
zI(x;t)) .

Formally we can analyze Eq. (28) perturbatively in orders of g by expanding
l
N(x;t) ) as

l
N(x;t)) =

l
4,(x;t))+g

l
4&,(x;t))+g'l &bz(x;t))+ .

The zeroth order in g of Eq. (28) is

(27)

(28)

(29)

l
@,(x;t)) =( M') l4,(x;t))+

l

z—)(x;t)),
at

(30)

whose solution is

(31)

with the boundary condition

l
@(x;0)) =0 . (32)

The first-order solution of Eq. (28) is

le, (x;t))= ——,
' f d"x,d"xz f d7 f dpi f 7d2~9 (lx&71 9)( x&7zzl)

&& exp[(7 —7 i )( i+Mi ) + (7 —7 z)( z+Mz )

+(t —r)(V+M )]
l

V' '(x,xi,xz)) . (33)

Here, ; and M; act on the ith space in the direct product of Hilbert spaces. The free propagator can be formally cal-
culated as



3910 I. G. KOH AND R. B. ZHANG 35

« l@0(x)&&c"(x')
I
»= »m & l@0(x,t)&&@0(x't)

I
&. hf~+ oo

5 (x x—')I,—M (34)

or, more explicitly,

& [x'l
I «

I
@0(x)&&+0(x)

I
»

I Ix) &

I

= f [Dx]exp —f dT f doI[B.,x(T,cr)] +[(3 x(T,o)] I 5(x(r', o)—x'(o))5(x(r, (T) —x(o)) . (35)

Here
I I xj & is the eigenstate of the string coordinate x(o. )

in the light-cone gauge, and ~=x+, ~'=x'+. Equation
(35) agrees with the result obtained in Ref. 11.

However, we should point out the problem in Eq. (34).
In terms of components

I4(x;t)&=(t(x;t) I0&+A, (x;t)a') I0&

+h;J(x;t)a') aj)'
I
0&+

I
q(x;t) & =q(x;t)

I
0&+n, (x t)a

+2)i(x;t)a', aj)~
I

0&+. . .

(36)

A, (x;t) = A;(x;t)+rt;(x;t),a
at

h,,(x;t)=( —2~)h,,(x;t)+q,, (x;t) .
a

(37)

Eq. (30) represents an infinite set of Langevin equations
for different spins

a—P(x; t) = ( +2~)(t)(x;t) +g(x; t),

No —N) +N2 ——2(1 —g) .

A link is shared by two triangles, giving

(39)

To keep symmetries of theory as much as possible in
random surface formulations, we follow the Regge cal-
culus' idea for a two-dimensional surface. For notations
and completeness we review the basic ideas of a random
surface approach below and in Secs. IIIA and IIIB. In
continuum two-dimensional theory, the metric g t3(r, (7)
and string coordinate P(r, cr) are defined at each point
(r,o) of the two dimensions. In the Regge gravity ap-
proach, ' ' one point (r, (7) is represented by a triangle.
The metric at the point (r, cr) is represented by the length
of the sides of the triangle [see Eq. (43)], and is constant
inside the triangle. The affine connection is nonzero on
the links, and the curvature is concentrated on the vertices
given as deficit angle. The string coordinate at (r, cr) is
now represented by P; defined on the vertices.

One recalls the Euler theorem which gives the relation-
ship between the number of vertices (No), links (N) ), and
triangles (N2 ) in terms of g holes as

[A component expansion of Eq. (28) will also include cou-
plings between different spins. ] The operator —( +2vr)
in the first equation of Eq. (37) is not positive-definite.
The correlation function of P(k;t), Fourier transform of
(b(x; t),

&(t)(k;t)(t(k';t) &„,.„
d7. e2( —r)( —k +2m)(2 )24z24(k+k') (38)0

diverges in the limit t~+ oo for k ~2', leading to the
breakdown of stochastic quantization. This is not surpris-
ing, because the tachyon cannot be quantized consistently.
All of the higher-spin equations in Eq. (37) lead to a sensi-
ble asymptotic limit. The well-known indefinite problem
of higher-spin field action in the covariant formulation'
does not occur. This is one of the advantages of the
light-cone gauge.

In principle, one can calculate the scattering amplitude
in this formulation. However, it is technically very diffi-
cult.

2X) ——3N2 . (40)

0 =ad)+W'2+y43 (42)

where p), p2, and p3 are 26-dimensional vectors at three
vertices of triangle.

The metric for this triangle can be calculated as

g p=B X Bpx

2

2—,(1)3 + 23 —)2 )

2—,(1» + 23 —,2)
3 (43)

For convenience, we embed a triangulated two-
dimensional surface into three-dimensional Euclidean
space. For a particular triangle with vertices x&, x2, and
x3 param etri zati on is given as

x=ax)+px2+yx3, a+p+y= 1, a,p, y &0 . (41)

Similarly the string coordinate inside the triangle is given
as

III. RANDOM SURFACE APPROACH
TO POLYAKOV STRING where

I
I,J I

is length of the link between vertices i and j.
Defining

To implement the Polyakov string theory further into
numerical computations, one triangulates the two-
dimensional surface. One may speculate that the funda-
mental structure of the string world skeet may be a tri-
angulated random surface.

u.~ =a.y'gp'

(4') 43)(02 03)

)
2, (44)
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we can rewrite action (1) on the simplicial surface as'

I dadP~gg PH.p
sum over triangles

(4'
lpga +4~l. +0"l j)'

sum over triangles Ijk
(45)

s=
2 v 3 lInks

(46)

s= I
d'yves

g.pa.y-ap"G „(Q), (47)

We can extend random surface approach to string in
curved target space with action

where 6;J„ is the area of the triangle with vertices i, j, and
k. For a surface consisting of equilateral triangles, Eq.
(45) is simplified as

where G~„(P) is the metric of target space. Equation (45)
is modified to

sum over triangles
(p; ljk+p, lk;+(tkl;, )G „(p) (p,"lj.k+p,"lk;+pkl;, ) .

ijk
(48)

A. Symmetries of simplicial action

B. Quantization of the random surface model

In the path-integral quantization of action (1), one sums
over all possible surfaces and P. Similar summations' are
performed for the quantization of Eq. (45). The measure
for P is simply +,~„,„,„,dP;, but determination of mea-
sure' for g & requires care.

Surfaces are classified by the number of holes g. The
surface of genus g is approximated by %2 triangles.
[Note that No and N& are fixed by Eqs. (39) and (40).]
Different surfaces are obtained by linking the vertices in
all possible, but distinct ways. Link lengths are allowed to
vary with constraint of triangle inequality.

Measure for g p is proposed as

g dg p(7, 0') = dl; . (50)
Surfaces given by different i,j &links

linkage of vertices

We now discuss symmetries of action (45). One can
choose a different coordinate a' and P' for P and g p in-
side a particular triangle. One choice of coordinates o.
and P of a triangle is expressed in the coordinates a' and
P' of another triangle. In both cases, a' and Il' are the
general coordinate transformation of a and P. Under this,
Eqs. (43) and (44) are covariant and the action (45) is in-
variant. ' By general-coordinate transformation, one can
always go to the conformal gauge.

Next, we turn to discuss whether the action (45) has
Weyl-scale-transformation invariance. By definition, the
Weyl-scale-transformed metric g

'
p should be of the same

form as g ~..

g~p
——e g~~, (49)

where o~ is a constant given for each triangle. This re-

scales three sides of the triangle by the same factors e
Since each link is shared by two triangles, scaling in one
particular triangle would necessitate the same rescaling
for neighboring triangles. Thus, one has only a global
scale transformation. '

of the link length dl;~ of three sides. Sharing of a link by
two triangles is taken care of by identifying the sides of
adjacent triangles by a Dirac 5 function.

C. Approximate treatment of tachyonic mass
and amplitudes in the random surface approach

An important problem in the random surface approach
is whether Eq. (45) gives the correct continuum limit
where the number of triangles is very large. For example,
do theories given by Eqs. (45) and (1) provide the same
phase transitions? These require deeper analyses which
we will not undertake here. However, since symmetries
(general coordinate transformation and local Weyl scaling)
of action (1) are larger than those (general coordinate
transformation and global scaling) of action (45), it is not
clear at all that actions (1) and (45) have the same limit.
As a preliminary step, we compute the tree amplitude of
tachyon scattering and the ground-state mass in the ran-
dom surface formulation of a Polyakov string in the
path-integral approach.

We take our random surface as shown in Fig. 1, which
is a collection of right triangles with lengths a and b.
Since we have not been able to sum over other two-
dimensional surfaces analytically yet, our computations in
this section should be taken as a first step towards calcu-
lations of tachyonic mass and scattering amplitudes in the
random surface approach.

N+1

I///Il//IIIIIIIII///
II////////I/////I///
/////////II//I//////
/I/l//////I////IIIIIIIIIIIIIIIIIIIIIII// "
/IIIIII///IIIIII//'llIIIIIIIIIIIIII/'IIII/'
II/I'//'III/'IIII/'ll/'ll
////Il/II///IIIIIIII

For a given surface of genus g and particular linkage of
vertices, dg ~ at one triangle is given as a wedge product

FIG. 1. Two-dimensional surface made of right triangles
with sides a and b.
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For right triangles in Fig. 1, the metric (43) is diagonal: S=gP; (5;;Aj+B;;5jj)P; j (52)

a
RaP= 0

0
b2

and Eq. (44) is simplified as

(51) Here P; j denotes the field on site (ij ) in Fig. l. [Ac-
cidently, Eq. (52) happens to agree with the result in Ref.
18 where the lattice approach is taken. ] The matrices A
and B for a closed string are

1B=
b2

2

0

0
0

2

0
0
0

0
0
0

0
0
0

2

0
0
0

0

2

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0
0

0 0
0 0
0 0

—1 0

0
0
0

—1 2

0
0

—1 2

0
0
0

0
0
0

—1 2

0 0
0 0

—1 0
0
0

—1 2

0 —1 2

—1 2

0 —1

(53)

(54)

Tachyonic mass can be evaluated by the same method as
in the continuum theory with the path-integral approach
which is described in Appendix A. Eigenvalues (mlli).
and (2n) in Eq. (A7) are replaced in the random surface
approach by those of A and B matrices, which are

4. 2n~
sin n =1,2, . . . , N,2(N+1) '

4 . 2m'.
b2 M'sin, m =0, 1,2, . . . , M —1,

respectively. Identical computations as in the Appendix
give a contribution of a particular triangle of Fig. 1 to the
tachyonic (mass) as

2G m ( —1)"
rrab 6

However, one should sum over all different lengths of tri-
angles in Eq. (45), and these have not yet been calculated.

The tachyonic scattering amplitude in the path-integral
quantization is

n 1Pf

& (p), . . . ,p. ) = f / y —,goabe ' 'e / dy;, J,
t =1 triangles

here go is the coupling constant. The P is integrated out formally to give

~ (p 1 »pn ) ( 2 goab)" g exp g P,D~; 1 )~; j )p,
triangles s, t

(55)

(56)

where Di; j )~; j. ) is the propagator obtained from the action (52). This propagator is hard to obtain. However, for cer-

tain extreme cases with a &~b, one can expand D~; J.~~; J'l as

1 1 1 1IgI —Bg —+Bc—Bg —+IA +BgI
where

(57)

1 a
N+1

1XN 1X(N —1) 1X(N —2)
1X(N —1) 2X(N —1) 2X(N —2)
1 x(N —2) 2X(N —2) 3X(N —2)

1X2
2X2
3X2

1X1
2X1
3X1

(58)

1X2
1X1

2X2
2X1

3X2
3X1

(N —1)X2 (N —1)X1
(N —1)X1 Nx 1

These computations should be taken with the qualification made earlier.
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D. Implementation of random surface into numerical
computations

The Polyakov string can be simulated by Monte Carlo
numerical methods such as lattice gauge theories. One
can ask nonperturbative questions such as whether (1) a
negative mass-squared state in the tree-level spectra of a
bosonic theory persists even in the full quantum theory, or
(2) whether there are phase transitions in string theories.

Starting with some initial triangulated surfaces with P
at vertices, link lengths and string coordinates are updated
by Metropolis algorithms. In the process of iteration,
configurations equivalent up to global scale transforma-
tion may occur several times, since our action is not gauge
fixed. Because the stochastic process is guaranteed to
generate configurations, which have the equal action, with
the same probability, gauge inequivalent configurations
will be duplicated with the same number of times. Thus,
even though the global scale transformation group is non-
compact, gauge fixing is not necessary. It is not clear at
the present moment whether Eq. (25) has the correct con-
tinuum limit. Numerical simulations of action (25) are
planned.

Note also that curved target space action (47) does not
present a new problem, even though integration is impos-
sible analytically. Recently, there have been a number of
works' in this direction.

ence Research Institute program, Ministry of Education,
1987.

APPENDIX

In this appendix we compute the tachyonic mass for the
closed bosonic string in the path-integral approach.

The transition amplitude between the configurations
P(o ) at t =0 and P(o ) at t =7. is given by

( IO),
l

IOI, O) =[det( —8 )] (A2)

The determinant det( —8 ) can be evaluated as a product
of the eigenvalues of —8, which is given by

2

+ (2n)
m. l'

l =1,2, . . . , n=0, 1,2, . . . , (A3)

thai is

=[det( —8 )] ' ' exp( —S,&) (Al)

with det( —8 ) evaluated on the strip [O,vr]&&[0,r]. The
power D —2 results from the standard argument for the
string coordinates and ghosts. In the case /=/=0, S,l

vanishes; (Al) reduces to
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Using

00

one obtains

mb 1

sinhmb 2ma
' I= ——1

12

g2)] (D —2)/2—(D —2) /2
1

exp (1—e
27 12

(A5)

The amplitude (A2) can also be computed in Hamiltonian approach as

(IOI, ~I [01,0)=(IOI le "'l IoI)

[0
INI

2 f „ l (IO)
I
I+I s )

(2n. )

12
1

21-
(A6)

Comparison of (A5) with (A6) results in the extraction of the ground-state mass

D —2
Pl p 27T

12 (A7)
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