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In this paper we present an alternate way of computing amplitudes in quantum field theory in the
context of background-field quantization. We concentrate mainly on one-loop effects. The Feyn-
man diagrams of the usual perturbation series are avoided by first performing the functional in-

tegration and then using a perturbative expansion due to Schwinger. In this approach we regulate
operators rather than the initial Lagrangian. To one-loop order our scheme reduces to a perturba-
tive expansion of the well-known g function associated with the superdeterminant of an operator.
This technique preserves all symmetries present in the initial theory and does not lead to any explicit
divergences as the regulating parameter approaches its limiting value. For illustration, we apply our
approach to a toy (&P )6 scalar theory, to Yang-Mills theory in the covariant gauge, and to quantum
electrodynamics. This method reproduces the usual axial anomaly in the three-point functions VVA

and AHA. Operator regularization is used in a dimensionally regulated theory reproducing the usual
results obtained in the dimensionally regulated Feynman-diagram approach. An outline of how
operator regularization is applied beyond one-loop order is provided. Other possible applications of
operator regularization are discussed.

I. INTRODUCTION

The fundamental entity of quantum field theory is the
generating functional of Green's functions. Expanding
this quantity in powers of Planck s constant A, yielding
the so-called "loop expansion, " has provided a way of
studying the properties of many field-theory models.
Regulating divergences which occur in the evaluation of
this generating functional in a manner that respects sym-
metries appearing in the initial Lagrangian is a problem
that has received much attention. In the usual Feynman
perturbation series these divergences are regulated by the
introduction of a new parameter into the initial Lagrang-
ian. In the case of gauge theories, and especially, super-
symmetry, it has proved very difficult to find a successful
regularization procedure. Any procedure for regulating
supersymmetric theories which involves moving away
from four dimensions runs into difficulties with the treat-
ment of y5—a matrix inherently connected to four dimen-
sions.

Operator regularization is a regulating procedure which
avoids the difficulty of regulating Feynman integrals in a
symmetry-preserving way by regulating the determinants
of operators and inverses of operators which occur direct-
ly in the generating functional. In this paper we restrict
our attention to the one-loop generating functional —this
involves the determinants of operators. The two-loop, or
O(fi ), generating functional, which involves the deter-
minants of operators, will be considered in a separate pa-
per. However the basic regularization technique is the
same. We regularize the logarithm of an operator lnA
and from this we can deduce the regulated form of detA
appropriate to the O(A') generating functional and the re-

gulated form of A ' appropriate to the 0 (A ) generating
functional.

At the one-loop level the method of operator regulariza-
tion reduces to g-function regularization of functional
determinants. However the g function has been used here-
tofore in computations of one-loop Euclidean effective ac-
tions within the context of a heat-kernel expansion. In
this work we propose a different use for the g function as
a means to compute perturbatively one-loop Euclidean
Green's functions without encountering any divergences.

Expanding the generating functional in powers of the
classical background field in background-field quantiza-
tion leads directly to the one-particle-irreducible (1PI)
Green's functions. In the operator regularization method
a perturbative expansion introduced by Schwinger, but
rarely used finds a natural setting. At the one-loop level
this perturb@five expansion can be applied directly to the
g function. Expressions for the regulated functions are
then obtained by inspection —the evaluation of the result-
ing expressions involves well-defined finite momentum in-
tegrals. The evaluation leads to the finite Green's func-
tions. It is a feature of the general method and not just of
the one-loop cases treated in this paper that no divergent
integrals are explicitly encountered.

It is important to note that operator regularization can
be applied to all orders of the loop expansion, in principle,
not just to one-loop order. Thus it can be interpreted as a
generalization to all orders of the g function regulariza-
tion at the one-loop level. However, we must emphasize
that our use of g function regularization is intrinsically
different from that of other authors. ' ' We use the
g function as a regularization of Green's functions in per-
turbation theory.
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It is instructive to apply operator regularization to vari-
ous models and to compute Green's functions in these
models. This serves the dual purpose of showing how the
procedure works and comparing the operator-regulated
Green's functions with those obtained in the more conven-
tional approaches. We apply the method in this paper to
the computation of one-loop Green's functions in models
with external bose fields only —a (P )6 scalar field theory
(a toy model used to illustrate the details of the calcula-
tion of Green's functions), pure Yang-Mills theory, and a
massless spinor model with Abelian vector and axial-
vector fields —and in a model with external bose fields
and external Fermi fields: namely, massless QED.

In Yang-Mills theory we treat he vacuum polarization
in an arbitrary covariant gauge. We explicitly compute
this Green s function in a particular gauge. This calcula-
tion is similar to computations using "proper time" in-
tegration in Ref. 7, but here no divergences occur. The
operator regularization prescription renders all integrals
well behaved.

The inclusion of external Fermi fields as well as exter-
nal Bose fields involves the use of supermatrices. ' ' In
particular at the one-loop level the generating functional
is the superdeterminant of a supermatrix. ' ' It is
known that the superdeterminant has two representations
in terms of the even and odd blocks of a supermatrix.
The use of a perturbative expansion in the regularized ver-
sions of the two different representations of the super-
determinant gives rise to two different calculational paths
to the Green's functions. In principle we are free to use
either calculational path, but in practice it turns out that
one proves to be more convenient than the other. For
purposes of illustration, we compute the fermion propaga-
tor and 1PI vertex function in each approach. While the
results in the two approaches are not the same, they are
related by finite renormalizations.

In Euclidean space the occurrence of Abelian axial-
vector fields, either quantum or classical, coupled to spi-
nor fields, is problematical as gauge invariant couplings
are not Hermitian. To overcome this problem, and restore
Hermiticity, we continue the axial-vector field to imagi-
nary values in Euclidean space. ' ' Unfortunately this is
at the expense of axial-gauge invariance. The interesting
Green's functions in the axial model are the ( VVA ) and
(AAA ) three-point functions. By examining the g func-
tions associated with these three-point functions we show
that at the one-loop-level operator regularization repro-
duces automatically the usual anomaly in the divergence
of the Abelian axial-vector currents involved. A peculiar
feature, however, is that the two-point function (AA ) is
not transverse. Perhaps this is not a surprising result as
we have dispensed with axial-gauge invariance. Transver-
sability of (AA ) can be restored by a finite renormaliza-
tion.

While the main purpose of this paper is to discuss
operator regularization as the regularization procedure in
quantum field theory, we also examine the use of dimen-
sional regularization in conjunction with the Schwinger
expansion and operator regularization. It is interesting to
note that if the Dirac algebra and the momentum in-
tegrals are done in (arbitrary) n dimensions with a view to

ending up in (integer) d dimensions, then operator regu-
larization as a regularization procedure is redundant —it
just reduces to the usual representations for lnA and A
Furthermore, for most (but not all) of the Green's func-
tions which we have computed using dimensional regular-
ization precisely the same results are obtained as in the di-
m ensionally regulated Feynman diagram approach—
including any divergences. Thus if dimensional regulari-
zation is used in the Schwinger expansion it is necessary
to provide a subtraction procedure. It is a remarkable fact
that the results obtained for the ( VVA ) and (AAA )
three-point functions should prove to be exceptions to the
above rule.

For these Green's functions we find that the dimension-
ally regulated Schwinger expansion reproduces the usual
anomaly in the divergence of the Abelian axial-vector
currents in n dimensions irrespective of whether we treat
yz as being tota11y anticommuting or according to the
't Hooft-Veltman prescription. '

This paper is arranged as follows. In Sec. II we set out
the essential features of operator regularization and of the
perturbative procedure for calculating Euclidean Green's
functions. In this section a sample calculation in a toy
(P )6 model is examined in detail to illustrate the pro-
cedure. Section III contains a discussion of the vacuum
polarization in pure Yang-Mills theory. Section IV is de-
voted to the inclusion of external Fermi fields in the con-
text of massless QED. In Sec. V we show how operator
regularization can be applied to models with external
axial-vector currents. In Sec. VI we use dimensional regu-
larization in the Schwinger perturbative expansion, while
Sec. VII contains a discussion of the results obtained.

There are two appendixes. In Appendix A we consider
the approach of Lee and Rim' to the inclusion of Fermi
fields. We show that the two forms of the one-loop gen-
erating functional used in Sec. IV can also be obtained in
this approach. In Appendix B we write out the full regu-
lated one-loop generating functional appropriate to the
approach of Sec. IV.

P;(x)=f;(x)+h;(x) . (2.1)

The field P;(x) may be either fermionic or bosonic.
The generating functional for Green's functions in the

theory in the presence of a source function J;(x) is given
by

Z[f, ,J&]= f dh„exp f dx[W(f, +hj)+J;h;]

(2.2)

We will be dealing exclusively with theories defined in
Euclidean space. The Lagrangian W is composed of the
classical Lagrangian Wo plus any gauge-fixing Wsr and

II. FORMALISM

The background-field method in the context of path-
integral quantization ' ' is the starting point of our
procedure. We consider the general case where a field
P;(x) is split into a classical part f;(x) and a quantum
part h;(x),
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1+ —)bpjk)ht. hg. hk h (2.3)

Since in this paper we are dealing exclusively with "one-
loop" effects we restrict our attention to those terms in
Eq. (2.3) that are bilinear in h;. (By the word "one loop"
we mean "to first order in A." Since we are not dealing
with the Feynman perturbation series, we do not strictly
speaking encounter the "loops" that occur in Feynman di-
agrams. ) We thus consider only

,
'

h;M~—(fj.)hj . . (2.4)

ghost terms Wg that may be required. The general form
of W(f;+h;) that we will consider is

W(f;, h; ) = ,' h;—MJ(fj)h~+ , a;,—k(fj)h;h hk

Upon substituting Eq.(2.4) into Eq. (2.2) we arrive at the
one-loop generating functional

Z[fJ,O]= J dhkexp J dx[ —,'h;M;. (f )h ] . (2.5)

Evaluation of the functional integral in Eq. (2.5) involves
the "superdeterminant" of M;J, as h; may be either fer-
mionic or bosonic. ' ' To see how the superdeter-
minant arises, let us consider a general integral of the
form

I = J db df exp[ ,
'

(bM—»b +fMgg b

+bMt ff+fMIff )] . (2.6)

In the argument of the exponential on the right-hand side
of Eq. (2.6) we can complete the square in either the bo-
sonic variable b or the fermionic variable f. This leads to
either

or

I= J db df exp[ ,' [b(M—» Mt fMff Mfg)b+(f +bMgfMff )Mff(Mff Mft b+f)]} (2.7a)

I= f db dfexp[ —,[(b+fMIt, M» ')M»(M» 'MtIf+b)+f(MII MINIM—qt, 'MqI)f]} . (2.7b)

In Eq. (2.7a) we shift the variable of integration

f~f' =f+Mgf 'MIg b

sdetM =detM»det '(My~ MfQM» Mbf ) .

(2.11b)

to obtain

I= J dbexp[ ,'[b(M» —M»M&& '—M&, )b]}

X J df exp[ ,
'

(fMIIf )] . —

Similarly, if in Eq. (2.7b) we make the shift

b ~b'= b+M» 'MtI f,
we obtain

(2.8a)
Z, [fJ,O]=sdet '~ [MJ(fj)] . (2.12)

We now see by Eqs. (2.11) and (2.12) that Z& is given
by the ratio of determinants of operators. In our ap-
proach it is these operators that are regulated. We regu-
late the logarithm of an operator H according to

Equation (2.5) shows that the one-loop generating func-
tional for Careen's functions is given by

I= J db exp [ , ( bMbb b )]—
X J df exp[ ,' [f(MII MI&M» 'M—»)f]}.—

lnH = lim
s~O

H
mfG1$

dm m —1

(m =1,2, 3, . . . ) .

(2.13)

The standard integrals

det '~ A = f db exp[ —,'(blab)],

det' B= d exp —, B

(2.8b)

(2.9a)

(2.9b)

detH =exp(tr lnH) =exp tr lim
s~O

dm m —1

H
mfds

We use this equation to deduce the regulated form of both
detH and H ' as

can now be applied to Eqs. (2.8a) and (2.8b) to show that and

(2.14a)

I=sdet ' M,
where

(2.10)
dm &m

H —s —]

dH s O ds
(2.14b)

Mbb Mbf
M=

with either

sdetM =det(M» M»M~~ 'Myq )det —'MyI (2.11a)

or

oo

H '= f dt t' 'exp( Ht)—
r(s) (2.15)

in Eq. (2.14a) we arrive at the result

It is Eq. (2.14a) with m =1 that we will use to regulate
the determinants occurring in Eq. (2.12).

If we now rewrite H 'as
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detH =exp[ —g'(0)],

where we have defined the g function

(2.16a)

g(s)= J dt t' 'trexp( Ht—) .=
r(s) (2.16b)

dt
detH =exp —tr —e

t
(2.17)

[An infinite constant independent of H has been discarded
in Eq. (2.17).]

We note from Eq. (2.17) that

This is the usual g-function regularization of the deter-
minant of an operator.

In Ref. 9 Schwinger does not employ the g function,
but rather uses the standard integral

ln( A /B) = —J (e "'—e ')
t

to write

Thus Schwinger's detH is an unregulated expression; it is
necessary to provide a regularization to obtain well-
defined results. In Sec. VI we make use of dimensional
regularization in this context.

Equation (2.16) has been used before to discuss the
one-loop generating functional directly. We propose to
use Eq. (2.16) to compute one-loop Green's functions.
This allows us to use the parameter s in Eq. (2.16) to re-
gulate the theory mthout having to insert a regulating pa-
rameter into the initial Lagrangian. Two appealing
features of this approach are that symmetries of the
theory are not explicitly broken and that no explicit ultra-
violet divergences are ever encountered. Both of' these
points will be illustrated in subsequent sections.

The procedure by which we extract one-loop Green's
functions from Eq. (2.12) is completely distinct from the
Feynman perturbation expansion. We rely rather on a
perturbative expansion due to Schwinger for tre ' in
Eq. (2.16b). Our first step is to separate H into

( detH )s,h„;„s„——exp [ lim [—I (s )g(s ) ] ]s~0

=exp[ —I (0)g(0)] . (2.18)

H =Ho+HI (2.19)

where Ho is independent of the background field f; and
Ht is at least linear in f;. The expansion is

Ho.t — Hot ( ——t) i —(1—u)Hot —uHottre '=tr e +( t)e HJ—+ du e Hte Ht

( t)'——(1 —u)Hpt —u (1—v)Hpt —uvHpt+ did ~ dU e HIe HIe HI+ '

3 0 0
(2.20)

Using Eq. (2.20) in Eq. (2.16) we obtain an expression for g(s) that can be used to generate one-loop, 1PI Green's func-
tions. In the expression

1 oo
1

—Hpt —Hpt
2 1

detH =exp —lim dt t' tr e —te HI+ — du e
s o ds I (s) 2

( 1 u)Hpt uHpt
HI e HI

t —(1 —u)Hpt —u (1—v)H pt —uvHpt
v e HIe HIe HI+

3 0 0

(2.21)

we need only consider those terms of order n in the background field to obtain the n-point one-loop 1PI Green s func-
tions. From Eq. (2.21) it is apparent that our identification of Ho is constrained by the requirement that it has positive
eigenvalues to ensure convergence of the t integrals.

To illustrate this procedure, let us consider the massless P scalar theory in six dimensions. The Lagrangian for this
model is

(2.22)

Upon making the expansion of Eq. (2.1) in a classical field f and a quantum field h, P =f+h, we see that the bilinear
term in the Lagrangian is

W' '= ——,'h(x)[p +if(x)]h (x) . (2.23)

(We have used the notation p„=—iB„.) Equations (2.11) and (2.12) for this model reduce to a particularly simple form
for the generating functional Z1..

Zi ——det '
(p +if) . (2.24)

The absence of fermions in this model considerably reduces the complexity of the superdeterminant we have to deal with.
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If we now identify the operators HD and HI in Eq. (2.19) with p and Af, respectively, then by Eq. (2.21), Eq. (2.24)
can be written

2 2 —u 2t
Z exp lim dt t s tr e p te p g + dg e ( u )p t g e up

2 0 ds I(s) o 2

1 1 —(1 —u)p t(gf )
—u(1 —v)p t

3 0 0

x(&f)e "'p '(&f)+ . (2.25)

To one-loop order this series plays the same role as Feynman rules in the usual perturbation theory. &f, for example, we
want to evaluate the one-loop correction to the two-point function in this model, we restrict our attention to the term bi-
linear in f on the right-hand side of Eq. (2.25). This leaves us with

r

Z)ff —exp ———lim dt tr du e " "'p 'fe " 'f
2 o ds I(s) 0 2

(2.26)

The next step is to compute the functional trace

—(1—u)p tf —up y) (2.27)

Schwinger has pointed out that such traces are most easi-

ly evaluated in momentum space. We introduce a com-
plete orthonormal set of states

I p & that are eigenstates of
the operator p&, where, in n dimensions,

places. Using Eq. (2.28), we rewrite Eq. (2.30) as

d d 2 2qe —[(1—u)P t+uq t] p Q q p
(2m. )

(2.31)

After shifting the variable of integration p ~p +q, Eq.
(2.31) becomes

and

& x
I p &

=e'P "/(2m. )" (2.28a) d p d q —[(1—u)(p+q) +uq ]t
(2qr)'

(2.32)

& p I f I q & =f (p —q)/(2~)"' (2.28b)

On the right-hand side of Eq. (2.28b), f(p —q) is the
Fourier transform off(x):

Finally, in Eq. (2.32), we shift the variable of integration
q~q+( I —u)p so that

P e
—[q +u(1 —u)P ]t p p 2 33

(2qr)
J' x f( )

ix (p —q—)
P q (2~) /2

Equation (2.27) takes the form

It. = J d pd qd rd s&pIe " "'P'Iq&

(2.29) This procedure for computing the trace in Eq. (2.27) can
be easily adapted to any term in Eq. (2.25).

Upon substituting Eq. (2.33) into Eq. (2.26), we find
that

x &q If I
«&&»

I

e "' 'Is &&s If Ip&

upon inserting 1 = d p p p at the appropriate

Z(ff exp[ 2 off (0)]

where

(2.34a)

d (2.34b)

We use Eq. (2.15) to integrate over t:

f~ ( )= d'p (p)f( —p) du
2I (s) ' o (2~)6 [q2+„(1 „)p2]+2 '

[We see at this stage that the parameters u, v, . . . in Eq. (2.25) play roles akin to the Feynman parameters in the usual
approach. ]

The standard integral

d"q (q )" 1 z („~2)+, I (r+nl2)1 (m r nl2)——
c

(2qr)" (q2+c~)m (16'»2)u»4 I (n /) 2(1m)
(2.36)
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gives

A. I (s+2) d f( )f( ) d [u(1 —u)p ]' ' I (s —1)
2I (s) o (4 )3 I (s +2) (2.37)

Equation (2.37) can also be arrived at by first integrating
over q in Eq. (2.34b) using the standard integrals

d"d g ]q2 (2.38)
)n (4 )n/2

and then using Eq. (2.15) to integrate over t. In Eq. (2.37)
the u integral can now be evaluated as it is of the form

1

duu' '
1 —u' ' au+b 1 —u

Z=
det' "8 (2.42)

regulate these determinants through use of the g function
yielding

I

the only external fields present are bose, these choices are
identical.

(3) Having written the one-loop generating functional as
a ratio of determinants of operators

, r(r)r(s)=a 'b
r(r+s)

where a =b = 1. We consequently find that

(2.39) Z= exp ——,
' g'"(0)

exp ——,
' g' (0)

(2.43)

X' r(s —1)r'(2 —s)
r(s) r(4 —2s)

d
X p —p p

(4vr)'

d pf,f (p)f ( —p)
(4vr)'

2

X — [I+s(—, —Inp2)+ . . ] . (2.40)

At no stage in the calculation have we encountered any
explicitly divergent integrals, and we see that gj~(0) is
well defined.

Substitution of Eq. (2.40) into Eq. (2.34a) yields our fi-
nal expression for ZIff..

ZIff —exp p —p p lnp ——, . 2.41
24 (4~)'

We see that we have recovered the usual result based on
computing regularized Feynman diagrams followed by a
renormalization to excise infinities that arise as the regu-
lating parameter (e.g. , n, the dimension of space-time) ap-
proaches its limiting value.

It is straightforward to adapt the above procedure to
compute one-loop 1PI n-point Green's functions in any
theory. Our procedure is quite distinct from the usual
Feynman approach (although some of the integrals we
must evaluate are superficially similar to the usual Feyn-
man integrals. ) It is not possible to generate our perturba-
tion series by simply taking unregulated Feynman in-

tegrals and inserting the regulating parameter s in some
prescribed way. Consequently our procedure is not some
special case of the approach of either Lee and Milgram '

or Speer.
We now list the steps in our procedure for computing

one-loop 1PI n-point Green's functions.
(1) Identify the term in the Lagrangian that is bilinear

in the quantum fields [cf. Eq. (2.5)].
(2) Determine which form of the superdeterminant for

the one-loop generating functional is most convenient for
the process to be computed [cf. Eqs. (2.11) and (2.12)]. If

as the full one-loop generating functional is given by

Z =exp ——,
' g [g„"(0)—g„(0)]

III. YANG-MILLS THEORY

The Lagrangian for a classical Yang-Mills field W„' in
Euclidean space is

Wo ——,' F„'„(W)F„'„(W')—, (3 1)

where

F„'„(W) =B„W'—B,W„'+gf' 'W„W'„.

The expansion of 8'„' into a classical piece Vz and a
quantum piece Q&,

W„'=V„'+g„', (3.2)

leads to the bilinear effective Lagrangian

[cf. Eq. (2.16)].
(4) Expand each g function in powers of that part of the

operator that depends on the external fields using Eq.
(2.20).

(5) Select those terms in the expansion appropriate for
the n-point Green's function we wish to compute. We
denote these by g„"(s)and g„(s).

(6) Evaluate the trace of the terms selected in momen-
tum space using Eq. (2.28).

(7) Perform the relevant momentum and parameter in-
tegrations using Eqs. (2.36), (2.38), and (2.39) to obtain the
final expressions for g„"(s)and g„(s).

(8) The amplitude corresponding to the one-loop 1PI
n-point Green's function is given by

——,
' [g„"(0)—g„(0)]
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W= ——Q' D ' (V)5 — 1 ——D' (V)D (V)

+2gf'~ F~„(V) Q„c'—D ' (V)c (3.3)

Z i
——det[ —D ~ab( V) ]

Xdet ' —D ( V)$„1 D~&( V)Dub( V)
1

provided we work in the background gauge-covariant
Honerkamp gauge

+2gf'~ F~p ( V) (3.5)

D„'(V)Q„=O.

Here we have defined

D b( V) =g o&b+gf~tp&VP

(3.4) For purposes of illustration, in this paper we will focus
our attention on the two-point amplitude.

We can now regulate the determinants in Eq. (3.5) by
Eq. (2.21). First of all, if Ho=p 6'~,

and c' and c are complex anticommuting scalar ghost
fields.

From Eqs. (3.3) and (2.12) we see immediately that the
generating functional for all one-loop 1PI n-point Green's
functions is

H& ———t'gf t' (p ~ V&+ V&.p ) g2f~Pif I'qbgv. Vq

then, to second order in the background field V„,

tre '+'=tr e '6' +( t)e t' '( g—f't"f—"q VP Vq)

du e " "' '[ igf' '(p—V~+ V~ p. )]e " [ igf"~ (p.—V + V p)]+( —t)'
0 (3.6)

The trace in Eq. (3.6) can be evaluated using the methods explained in the preceding section. A straightforward calcula-
tion leads to the second-order expression for g'vv(s) associated with det[ —D ( V)]:

2 ab

Pvv(s)=, dpV (p)V ( p) F4 2
— (p ) ( —&„X+pp ).I (2 —s)I (1 —s)

(4m ) I 4 —2s
(3.7)

In the second determinant occurring in Eq. (3.5), we restrict our attention for the purposes of calculational simplicity
to the gauge given by a = 1. A computation similar to the above shows that the second-order term in the g function asso-
ciated with det[ —6„~' ( V) 2gf'~ F~ (—V)] is

2( )
g 2 d4 Va( )Vb( )

I (2 —s)l (1—s)4 C5'
(4'�)2 " I (4—2s)

I 1—
(p') '( &„a'+p'„p.)—. (3.8)

Combining Eqs. (2.16), (3.5), (3.7), and (3.8) we find that, for the two-point function,

Z, vv=exp[ —gvv(0)+ 2/vv(0)]

=exp
2C gab

f d'p V„'(p)V ( —p)( p'6„„+p„p)( ——, ——"
, »p')

2(4~)
(3.9)

We thus see that the usual "—"
, lnp " term in the vacuum-polarization tensor is recovered. The factor of —'," is peculiar to

the regularization procedure being employed and can be changed by a finite renormalization.
Kallosh's theorem' leads us to expect that this coefficient of lnp in Eq. (3.9) is independent of the gauge condition

used. It is therefore of interest to see how the computation of the vacuum polarization with a arbitrary differs from the
a= 1 computation given above. For a&1 the Ho associated with the second determinant in Eq. (3.5) must be identified
with p 5& —(1—1/a)p&p„. The nondiagonal nature of Ho forces us to consider integrals of the form

I= f d q f du f dtPq„„(q,t)exp t u (q+p) o„„1———(q+p)„(q—+p)„

+(1—u) q 5„„—1 ——q„q
1

(3.10)
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where P~„„(q,t) is a complicated, field-dependent func-
tion of q . The exponential factor in Eq. (3.10) can be
simplified using the complete set of orthonormal projec-
tion operators:

(4.1)

We use Hermitian y matrices satisfying ty„,y ) =25„,.
The background-field expansion is

T„„(q)=(o„q„—q /q ),
L„„(q)=q„q/q

(3.11a)

(3.11b)

W„=V„+Q„,
&=~+0,

(4.2a)

(4.2b)

These allow us to write

1
exp —u q 5&„—1 ——q„q„2

CX
J

—uq t Tp+ —L,
„

1

where V„and q are the classical fields and Q„and P are
the quantum fields. We use an arbitrary covariant gauge
for the quantization of Q„.To compute the one-loop 1PI
generating functional we need only consider the terms in
the Lagrangian bilinear in the quantum fields: namely,

T

~"'=4&4+
~ Q„p'o„. 1 ———p„p. Q.e

e
—utq Z +e —"tq lag

PV pv (3.12)

1
expQ=exp —u q o„q„q+ —qn„n„t-a (3.13)

The projection operators can now be absorbed into the
polynomial P~& in Eq. (3.10) and the integral over q
can be evaluated in a straightforward (albeit tedious)
fashion.

It is not immediately apparent how noncovariant
gauges are to be handled in our approach. For example,
in the planar gauge we are confronted with expressions of
the form

—egg/ —eggs, (4.3)

where

g =y"( i c)p ——e Vp ) =p —eI

The formalism of Sec. II cannot be directly applied to
the bilinear Lagrangian W' ' of Eq. (4.3) as 1( and p are
independent quantum fields in the associated path in-
tegral. However, it is possible to rewrite W' ' in the form
of Eq. (2.4) by the following device. We introduce the no-
tation

The expansion of Eq. (3.12) is not feasible, as the matrix
in the exponent of Eq. (3.13) cannot be decomposed into
orthogonal projection operators. It is necessary to diago-
nalize Q but this leads to apparently intractable momen-
tum integrals. Similar considerations apply in the axial,
light-cone, and Coulomb gauges.

IV. QED AND THE INCLUSION OF EXTERNAL
FERMIONS

6'=l0 Pl

and we identify the quantum field

h&

h2

(4.4)

In this section we extend operator regularization to the
case where both external bosons and external fermions ap-
pear. We do this to one-loop order in the context of mass-
less QED in Euclidean space, described by a classical La-
grangian

hz

of Eq. (2.4) with ( e ). It is now clear that the bilinear La-
grangian can be written as

~(2) )

(Q qT q)

1 T T
p &pv — 1 — pppv —e'9yj e'9 yp

CX

ey "g
—ey g

T=, h; Mrghj .

f T

(4.5)

It is clear that the Bose-Bose, Bose-Fermi, and Fermi-Fermi blocks of the supermatrix M have the following symmetry
properties:

T= T- T—
Mbb Mbb~ Mff ff ~ Mbf Mfb (4.6)

and that Mbb and Mff are bosonic while M~f and Mfb are fermionic. Evaluation of the path integral (2.5) leads at once
to the one-loop generating functional

Z& =sdet M (4.7)
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As explained in Sec. II, sdetM has two representations. It is only when Mbf and Mfb are nonzero that we have two
representations, i.e., when external fermion fields are involved. Consequently there are two distinct calculational paths
which can be used —approach A when we use Eq. (2.11a) and approach B when we use Eq. (2.11b). We now consider ap-
proaches A and B in turn.

In approach A, using Eq. (2.1la) (see Appendix A) we find

detg

1det'" p'5„. 1 ———p„p. e'—rjy„g 'y—„2I e'—2Iy~ 'y„—rj
CX

(4.8)

where we have used the result

det
0

0 =det g .

In Appendix A, we outline an alternative derivation of Eq. (4.8) based on the approach of Ref. 15. Each of the deter-
minants occurring in Eq. (4.8) requires regularization and a corresponding g function. However the numerator contri-
butes to Green's functions with only external boson lines. As we are interested in this section in Green's functions with
external fermion lines we focus our attention on the denominator of Eq. (4.8).

The regularized one-loop generating functional is, then, by Eq. (2.43),

Z& ——exp[ —,
' g'(0)], (4.9a)

where

s —1 2 1 2— 1 2—g(s) = dt t' tr exp —t p 6p — 1 ——
ppp —e gyp y g —e qy @pe=

r(s) P~ ~ P ~ Pp ey p —ey' (4.9b)

In Eq. (4.9b) it is understood that the exponential is tr[exp( —tH)], where

1 2 1 2 1
Hpv =p ~pv 1 pppv e gpp r.n —e nr. Vpa p —eF' p —eF'

=HOpv+ HIpv (4.10)

As in Eq. (3.12), we find

Our next step is to expand g ' in powers of the background field in the j function (4.9b):

1 1 1 1 1 1 1=—+ —eF'—+ —eF'—eV—+ .
p —eI p p p p p p

(4.11)

It is now straightforward to apply the perturbative expansion of Eq. (2.20) to this g function and to select from the ex-
pansion those terms appropriate for any particular Green s function. For example, for the fermion two-point function
and the fermion-fermion boson three-point function we find

1 1 1 2 —t 2/ag(s)= f dt r'tr rIy —+—ep' —y„2I(e ' T „+e '~ ~ L )r(s) o " p p p
(4. 12)

We are now in a position to complete the computation of the Green s functions following steps six, seven, and eight as
outlined in Sec. II. This is straightforward. Before discussing the results of these computations, we return to the calcu-
lational path based on the other representation of the superdeterminant.

In approach B, using Eq. (2.11b) we find

Z]

e y r)II„„'(y„g) g —e y„rIII„„'Tly„
det' —(g —e y glI„„'rjy„)e (riy ) II„„'rjy„

—1/2( IIa (4.13)
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where we have used the notation

1
&pv=p ~pv 1 — pppv ~a (4.14a)

In Appendix B we write out explicitly the contributions
which we ignore here.

The regularized one-loop generating functional is, then,
in approach 8,

11 -'= '
Pv 2 Pv 2

P
(4.14b)

Z1 ——exp[ ——,
' g'(0) ],

where

(4.19a)

As H„„is independent of the classical background fields
the denominator of Eq. (4.13) can be absorbed into the
normalization of Z&. However this is a special feature of
Abelian gauge theory. For non-Abelian gauge theories
detII&„wi11 depend on classical background fields and
hence cannot be absorbed in this way.

It is interesting to note that the use of a noncovariant
gauge for quantization purposes can be easily incorporat-
ed in approach B for an Abelian gauge theory. It is not
immediately apparent how noncovariant gauges can be in-
corporated into approach A even for an Abelian gauge
theory.

The numerator of Eq. (4.13) is the determinant of any
antisymmetric matrix of the form

oo

g(s) = J dt t' 'tr[exp t (HO—+H, )] . (4.19b)I (s)

Hp ——p
2 (4.20a)

e [p, y ] —e'[p, y„glI„.—'gy.
+e'V'+e'[It', y„t)II„.'sty. [

To use the Schwinger expansion as in Sec. II we have
separated H as

P R
=—H, +H, +H,'+H, . (4.20b)

—R Q

P 0 1 P 'R
—R 1 0 Q+R P 'R

where P = P, Q = —Q a—re identified as

(4.15)

The Schwinger perturbative expansion can now be ap-
plied to the g function (4.19b) in a straightforward
manner. The terms in this expansion appropriate to the
computation of the fermion two-point function and the
vertex function are

and

P =e y AH,„(y„g)
Q=e (r)y„) II p 'r)y„,

R =g —e y r)II „'r)y„.

(4.16a)

(4.16b)

(4.16c)

g(s) =— dt t'tr[e '~ (Hq+H3)]I s

dt ts+ ltr(e —(1 —u)p tH —up~tH
I (s)

I e

(4.21)

It is easily shown by Eq. (4.15) that

Z, =det' A=det' R det' (R+PR ' Q) (4.17)

=det' (8 e[g,y„r)II„'—r)y, ) )

et 1 /2H (4.18)

As we are interested in computing the fermion two-point
function and the vertex function and as PR '

Q can only
contribute to Careen's functions with at least four external
fermions, we restrict our attention to

Z, =det' (R )

The first term alone contributes to the fermion two-
point function, but both terms contribute nontrivially to
the vertex function. The calculations of the fermion two-
point function and the vertex function are straightfor-
ward, following the procedural steps outlines in Sec. II.

Equations (4.12) and (4.21) are the g functions ap-
propriate to the fermion propagator and the vertex func-
tion in massless QED in the two approaches outlined
above. In approach A we compute from Eq. (4.12) this g
function in the limit of zero mom. entum transfer to the
photon:

g(s)= ~ Jd p

S
1 I (1—s),+1 (2—s) e p2+(a'+ —1) rt(p) p+. V(0) —2s p V(0) t)( —p) .

I (3—s) (1+s) 4n' p'

By Eq. (4.9a) the contributions to the one-loop generating functional will be

1 e 2

Z1 —exp — d p( —, +alna —alnp )r)(p) p+ 2 p (0) g( —p) —a2— e

8m 4m.

e ~ p V(0), J d'pn(pV n( p)—
16~

The one-loop two-point function and vertex function are obtained from lnZ
& by appropriate functional differentiations

It is interesting to note the unusual dependence of these Green s functions on the gauge-fixing parameter a. We can
trace this dependence back to Eq. (4.11), where the second term contained an extra factor of 1/a in the exponential. The
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g(s) =—

a in+ terms in Z& could, however, be removed by a finite renormalization. Their presence in Z& indicates that the impli-
cit renormalization in the operator regularization method differs from the conventional renormalization schemes merely
by finite renormalizations.

Turning now to approach B, we compute from Eq. (4.21) the corresponding g function,
S

e 4 1 I (2—s) e p(z d p qp + 0 —2s p-VO q —p4~ p' I (3—s) 4~2 p'

giving rise, by Eq. (4.19a), to the one-loop generating functional

Z] —exp — 2a d p —, —lnp gp +
&

0 rf —p — 4a d pTIp g —p 2

1 e 4 e e 4 p V(0)
8~ 4~ 16m p

We see by inspection the approaches A and B lead by dif-
ferent calculational paths to Green's functions related to
one another by a-dependent finite renormalizations.

zl =det' [(p eF—igA' —y5) ]
=det' [P —e(pp'+I p) ig(p—A —Ap)y5

+e V +g A +ieg(FA —'A F')y5] . (5.5)
V. AXIAL MODELS

In the preceding sections we have seen how our pro-
cedure leads to finite Green's functions without breaking
any symmetries present in the initial Lagrangian. Since it
is operators that are being regulated rather than the initial
Lagrangian, it is well worth considering how anomalies
occur in our approach. As the Lagrangian is not being al-
tered through the insertion of a regulating parameter that
may fail to respect a symmetry initially present, it is not
immediately clear how anomalies arise.

Let us examine the axial anomaly in an Abelian theory.
We consider a classical axial-vector field A„and a classi-
cal vector field Vp coupled to a quantum Dirac spinor 1i

with the Euclidean space gauge-invariant Lagrangian

(5.1)

We first note that, in order to apply our technique, we
must work in Euclidean space so that the t integral in Eq.
(2.21) converges as t~ao. Since we are in Euclidean
space it is possible to work with a Hermitian representa-
tion for y„and y5. We thus see that ltj(p —ep )ll'j in Eq.
(5.1) is Hermitian provided /=it (and not p=pty4 as in
Minkowski space). This means, however, that the term
—g1TJAy5$ in Eq. (5.1) is not Hermitian.

If we were to restore Hermiticity in Eq. (5.1) by replac-
ing A„byiA„the Lagrangian of the model becomes

p —e~—igAy (5.2)

In computing the anomaly in the divergence of the axial-
vector current, to which A& couples, we exploit a trick
due to Capper. We denote by R2p (pl,P2) the Green's
function (A2( —pl —P2) Vp(pl)V (p2)). It is a standard
result that the anomalous equations are of the form

(P 1 +P2) 2pv(P1P2) ~1EpvattP 1P2

P 1R2pv(P1 rP2 ) ~2~2va13P 1P 2 r
P a P

V a PP2 2pv(P 1 rP2) ~3~2patlp 1P2

(5.6a)

(5.6b)

(5.6c)

where A, ; are constants whose sum is fixed. The Capper
trick is to take appropriate derivatives of Eqs.
(5.6a)—(5.6c) with respect to external momenta and then
to set these momenta equal to zero. We find

R2.p (P P) =~lEp-
R2p„(O,P) = A, 2@2.vpttP

R2pv(PiO) =X3e2paN

(5.7a)

(5.7b)

(5.7c)

The standard approach to the anomalous Feynman dia-
grams for (VVA) cannot uniquely fix kl, A.2, and A, 3
without the imposition of vector gauge invariance but in
our approach gauge invariance is automatically preserved
and their values are uniquely fixed.

Similarly, if S2p (pl, p2) denotes (A2( —pl —p2)
X Ap(pl )A (p2) ) the corresponding anomalous equa-
tions are

f~e 'g, /~Pe ', Ap~Ap ——Bpa, (5.3)

We note that W is invariant under the local gauge
transformations

(Pl +P2) ~2/ (Pl P2) ol~p i3P 1P2

P 1 2 pv(P 1 ~Pt2 ) ~2~Avat3P 1P2.P a P

V a PP 2~xpv(P1 iP2 ) ~3~2 pattP lP 2

(5.8a)

(5.8b)

(5.8c)

Z, =det(p eP' igAy5) . — — (5.4)

In order to apply our method for computing Green's
functions we rewrite Zl in Eq. (5.4) as

but W is not.
Let us examine the three-point functions ( VVA ) and

(AAA ) using W in Eq. (5.2). Equation (2.12) gives the
one-loop generating functional ~2 pv(P~ P) = trl~pva3P

Sxp (O,P) =o 2@2„„pt3P
13

Sxp (p 0) =o3exp 4r

(5.9a)

(5.9b)

(5.9c)

where, again, o.; are constants whose sum is fixed.
Capper's trick yields
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Equations (5.6)—(6.9) show that the (anomalous) diver-

gence of the current associated with an external field in
R (S) is proportional to R (S) where the momentum of the
particular external field has been set equal to zero.

We now apply Eqs. (2.16b) and (2.20) to compute the g
function associated with the three-point functions R and
S. Straightforward computation leads to the results

4g 3

(AAA(s) =
2 p Eapys

(8m )

dp A~pd OA —p p

Feynman-diagram approach employs regulators that do
not fix the values of A,; and o; in Eqs. (5.6) and (5.8) (Ref.
24); only the sums A, i+A,2+A.3 and o &+o2+o 3 are unam-
biguous and the values of A, ; and o'; of Eqs. (5.11) and
(5.12) can only be obtained by invoking vector gauge in-
variance and Bose symmetry.

It is of interest to compute the two-point function
(AA ) using Eq. (5.4). Again, straightforward application
of our procedure leads to

, J d'a(S') 'Z4 2

X —4
I (1—s)I (2—s)I"(1+s)

I (s)I (4—2s)

(5.10a)

y p.A (p)p. A ( —p)

1
p A(p). A( —p)

$ —1
(5.13)

4e g
(vvA (s) = E~prs

(8m )

X y d p[p V~(p)A (0)V ( —p)(p') ']

X
I (1—s)I (1+s)

1 (s)1"(2—2s)
(5.10b)

where we have set the momentum of 2 ~ equal to zero. It
is immediately apparent that g'(0) in Eqs. (5.10a) and
(5.10b) when used in conjunction with Eqs. (5.7) and (5.9)
automatically fixes

for the g function associated with this amplitude. It is
immediately apparent that /zan(0) is not transverse. As
gauge invariance of the form in Eq. (5.3) is not present in
Eq. (5.2), perhaps it is not surprising that we do not ob-
tain gauge-invariant (transverse) results for Cjrreen's func-
tions involving external 3& fields. However, a finite
counterterm can restore transversality in Eq. (5.3); of
course, no such counterterm can eliminate the anomalies
of Eq. (5.11).

If we were to naively ignore problems of Hermiticity
and use Eq. (5.1) directly, then by Eq. (2.12) we would be
faced with the functional

g2 ] g3

2&
(5.1 1) Zi ——det(p —eP —gAy5) . (5.14)

To fix the values of A, z and A, 3 we now compute gi i z (s)
with the momentum of V~ equal to zero and we find

k2 ——A, 3 ——0 . (5.12)

We thus see that the g-function approach automatically
respects gauge invariance in the vector field V" in Eq.
(5.1) and, upon using the prescription of Eq. (5.2) we

unambiguously obtain the correct divergence of the axial-
vector current in both the VVA and AHA three-point
functions, the latter being one third the former.

Two features immediately distinguish our approach
from the usual analysis of the VVA and AHA Careen's

functions based on three-point Feynman diagrams. First
of all, in the Feynman-diagram approach the two dia-
grams associated with ( VVA ) and (AAA ) are superfi-
cially identical once one anticommutes two factors of y&
in (AAA ) through other factors of y„until they are adja-
cent to one another. In the g-function approach the com-
putation of ( VVA ) and (AAA ) are completely distinct;
indeed upon substituting Eq. (5.5) into Eq. (2.21) we see
that (AAA ) receives a contribution only from the term of
order HI while ( VVA ) receives contributions from
terms of order Hl and HI . The second feature of the
g-function approach is that regularization of Eq. (5.4) by
means of Eq. (2.16) unambiguously fixes the value of the
anomaly by Eqs. (5.11) and (5.12). In contrast, the

In order to apply our procedure to the non-Hermitian
operator in Eq. (5.14), we may try to replace (5.14) by

Zi det' [——(p ep g—Ay5—)(p eP' g—Ay5—) ]

=det' [(p —elr —gAyq)(p —ep'+gAy5)] . (5.15)

Applying our approach to compute ( VVA ) and ( AAA )
from Eq. (5.15) we find that these two functions are zero.
[This is not unexpected as Eq. (5.15) is an even function
of g and zero is the only possible answer for the three-
point functions that is Bose symmetric and transverse in
all three vertices. ] Similarly we find that the two-point
function (AA ) is transverse. We thus see that the three-
point and two-point functions are gauge invariant if they
are computed from the gauge-invariant functional (5.15);
unfortunately, we can find no reason to justify computing
Green's functions from Eqs. (5.15).

VI. REGULARIZATION IN n DIMENSIONS

The divergent integrals that occur in the Feynman-
diagram approach to perturbation theory are conveniently



3866 D. G. C. McKEON AND T. N. SHERRY 35

regulated by doing all computations in n dimensions. '

After evaluating all n-dimensional Feynman integrals by
use of Eq. (2.3b) the divergences are parametrized as poles
of the form ( n —4) ', infinities that occur as n ap-
proaches 4 must be removed by renormalization.

It is interesting to see what happens when we apply the

technique of operator regularization to n-dimensional
theories. To illustrate what happens let us examine the
two-point function in the P scalar theory examined in
Sec. II, but now performing all calculations in n, rather
than 6, dimensions. The g function associated with the
two-point function is then given by

(s n)= d"p (p) ( —p)
21 (s) o (2n)~ [ +u ( I —u) ]~+

in place of Eq. (2.35). Evaluating the integrals over q and u in Eq. (6.1) we find

I (s+2 n—/2)1 (n/2 —s —1) 1. d"p 2 I„&2
2 I (s)I (n —2s —2) " (4~)"~2

Upon setting n =6—2e, Eq. (6.2) reduces to

(6.1)

(6.2)

off (s, n )=
3 f (p )f ( —p) — [ 1 +e( —, —y +1n4n —lnp ) +s ( —, —lnp ) ]

d p p s 8 2 8 2

(4~) 6 s+E (6.3)

From Eq. (6.3) it is immediately apparent that off (0) for @&0 is given by

off (O, n )=
3 f (p)f ( —p) — —+ ——y + 1n4vr —lnp

d p p 1 8

(4m ) 6 e 3
(6.4)

This gives precisely the same value for the two-point
function as is calculated from the dimensionally regulated
Feynman diagram for this Careen's function; indeed, even
the pole at e=O is recovered.

From Eq. (6.3) we see that

approach zero after the calculations have been completed.
We also note that in the n-dimensional theory the origi-

nal approach of Schwinger based on Eqs. (2.17) and (2.20)
yields a result identical to Eq. (6.4). This is equivalent to
saying that, in n dimensions,

d d
lim lim off (s, n) & lim lim off (s, n) . (6.5)
s~O dS n~6 n~6 s~O dS lim[1 (s)g(s, n)] = lim g(s, n)

d
s~O s~0 dS

(6.6)

Indeed, on the left-hand side of Eq. (6.5) we recover the fi-
nite result of Eq. (2.40), while on the right-hand side of
Eq. (6.5) we recover Careen's function that is calculated in

the dimensionally regulated Feynman-diagram expansion
as illustrated above. It is interesting to note that in any
given theory the approach based on operator regulariza-
tion gives us a finite answer; the divergence in Eq. (6.4)
occurs only because the theory is altered by allowing e to

This equality is due to the fact that no pole occurs at
s =0 if the tracing operation in Eq. (2.21) is done in
n &integer number of dimensions.

These properties of (P )6 scalar theory given in Eqs.
(6.5) and (6.6) above persist in QED. Explicit computa-
tion yields the following results. For the vacuum-
polarization tensor we get

2

gv&(s, n) = f d "p [1+a(—', —y+ln4m —lnp )+s( —', —lnp )]
12m S+6

x [p'&(p). &( —p) —p. &(p)p I'( —p)] . (6.7)

For the spinor self-energy we get
2

g- (s, n) = f d "p [a+a@(1—y+ln4vr —lnp )+s( —,
' +a lna —a lnp )]g(p)pq( —p),

8~' s+~
(6.8a)

2

(s, n) = f d "p a[1+a(1—y+In4m. —lnp )+s( —,
' —lnp )]g(p)pg( —p)

8~2 s+~
(6.8b)

in approaches A and B of Sec. IV, respectively. For the vertex function, with zero momentum transfer to the photon, we

find similarly
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3 $
g v (s,n)= f d&n [a+a@(l—y+lngm —lnp )+s( —, +alna —alnp )]T)(p)P (0)q( —p)pe

—2a(s +E)r)(p)pal( —p) 2
p V(0)

P
3

g v (s,n)= d"p a [1+@(1—y+ln8n. —Inp )+s( —, —lnp )]TI(p)F'(0)g( —p)
32m' $ +&

(6.9a}

—2(s +~)q(p)p7)(0) p V(0)
(6.9b)

We note that in Eqs. (6.7)—(6.9) when we consider (for @&0)

lim g(s, n)
d

s~O dS

we recover precisely the results of the corresponding dimensionally regulated Feynman integrals. Furthermore, we also
see that Eq. (6.6) is satisfied. If instead we consider

lim limp(s, n)
s~O dS n~4

then we recover the results of Sec. IV for the spinor self-energy and the vertex function.
Of particular interest are the two and three-point functions in the axial model of Sec. V based on Eq. (5.2). If we first

compute the g function associated with the two-point function (AA ) in n dimensions (taking y5 to be anticommuting
with all y„in n dimensions) our standard procedure gives the result

4g d"p 2 „g2 2, I" (n/2 —s)I (s+2 —n/2)
1(s) (4 )"" I"(n —Zs)

2 2 —nx p &(p)p &( —p) —p &(p) &( —p)
2 —n +2$

(6.10)

It is easy to see that if n =4, Eq. (6.10) reduces to Eq. (5.13) and the Green's function computed from /zan(0, 4) is not
transverse. However, if we compute the Green s function (AA ) in n dimensions by considering /zan(O, n) we obtain a
transverse two-point function identical to the result obtained in the dimensionally regulated Feynman-diagram approach.

The g functions associated with the Green s function ( VVA ) and (AHA ), when one of the external momenta associ-
ated with the external axial-vector fields is set equal to zero, are, in n =4—2e dimensions,

d"p, , I (1—s —e)I'(2 —s —e)l (1+s +e)
kz~z(s, n)=4g & hays z &2 [P~A~(P)A&(0)As( —P)(P )

' '] I. I. 4 2 2
( —4+8@

(8 2)n/2

(6.11a)

(6.11b)d"p 2, , I (1+s+e)I (1—s e)—
/vs(s, n)=4e ge Isrs f 2 &z [p Vp(p)A&(0)Vs( p)(p )

' '] — ( —2)
(8n )"

For (AHA ) and ( VVA ), both

lim lim g(s, n ) and hm lim g(s, n )
d. . . d

s~O d$ n~4 n~4 s~O dS

are well defined —in fact they are equal to one another.
This is due to the fact that ( AHA ) and ( VVA ) are not
divergent, in contrast with the Green's functions treated
earlier.

In our computations of gzzz(s, n) and gvvz(s, n) we
have treated the n-dimensional yz as totally anticommut-
ing with aII of the y&'s and then set

%'e have not treated the n-dimensional y5 in a special way
such as in the Feynman-diagram approach of Refs. 17
and 26 and yet we recover the correct anomaly in the
( VVA ) and ( AHA ) Green's functions. Remarkably,
even if y~ is defined in n dimensions according to the
't Hooft —Veltman prescription we still recover the results
of Eqs. (6.1la) and (6.11b) as the extra contributions van-
ish identically.

VII. DISCUSSION

Tz ( Y y&3 5) =0,
T~(y ypyrysys)=«ars.

(6.12a)

(6.12b)

In this paper we have given a pedagogical presentation
of an alternative way of computing one-loop 1PI Green's
functions in quantum field theory. Two features of our
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approach distinguish it from the usual techniques.
First of all, the perturbative expansion that we have

used is based on the Schwinger expansion of Eq. {2.20).
This approach does not lead to Feynman diagrams. It is
worth recalling the way in which the one-loop IPI Feyn-
man diagrams are generated in background-field quanti-

zation in order to contrast the Feynman perturbation
series with what happens when we use Eq. (2.20). In the
Feynman approach, MJ(() in Eq. (2.3) is separated as
MJ '+M~~"(f), where M;~.

' contains all parts of M;~ (f).
independent of the background field f. Equation (2.5) is
then written as

$2Z[f,0]= g, —,
' f dx M,',"(f)

0 n! 6J]6J)

,
n

f dhkexp f dx( , h, M—, 'h +J,h, )
J =0

(7.1)

The functional integral over the quantum field hk can
now be evaluated leading to the usual one-loop 1PI Feyn-
man integrals with their associated divergences. In the
approach based on the Schwinger expansion we have first
integrated over hq in Eq. (2.5) to obtain Eq. (2.12) and
only then made a perturbative expansion in order to ob-
tain one-loop 1PI amplitudes.

The second place where our approach differs from the
usual Feynman perturbation series is in the regularization
techniques used. The usual approach is to render diver-
gent Feynman integrals finite through the introduction of
a regulating parameter into the initial Lagrangian (e.g., n,
the number of dimensions of space-time, or m, the mass
of a Pauli-Viiiars regulating field). Such a method has
two disadvantages. First of all, it is not always possible to
introduce the regulating parameter in such a way that all
symmetries of the initial theory are respected. Second,
when the regulating parameter approaches its physical
value divergences appear which must be removed through
a renormalization procedure. Neither of these shortcom-
ings are present in our approach. By evaluating the func-
tional integral over quantum fields prior to making our
perturbation expansion, we are left with determinants of
operators. It is these operators that we regulate, as in Eq.

(2.14a); we do not have to alter the initial Lagrangian in
order to render finite the momentum integrals in the per-
turbation expansion. Regulating operators, and not the
Lagrangian, ensures that symmetries of the initial La-
grangian are undisturbed. It is a remarkable bonus in our
approach that after having performed all momentum in-
tegrations in the perturbation expansion of Eq. (2.21) we
find no divergences as the regulating parameter s ap-
proaches its limiting value of zero.

We would like to speculate that both of the advantages
of our approach persist when we apply our methods to
so-called nonrenormalizable interactions such as quantum
gravity. It is worth investigating whether operator regu-
larization provides a means of computing finite,
symmetry-preserving quantum corrections to the classical
theory of gravity. This is an issue we shall address in a
future publication.

Operator regularization can also be applied beyond
one-loop order. Although the details will be presented
elsewhere' we would like to indicate how operator regular-
ization can be applied to two-loop order and beyond.

If, in Eq. (2.2), we include the terms of order h and h
in Eq. (2.3), then for the generating functional we have

oo

+ ~i 'klni 3i 'i " 6J5J oJ 4' 'i oJoJ 6J 6J

n

X f dhkexp f dx[ ,'h;M)(f)hf+—J;h;] (7.2)

Beyond one-loop order Eq. (7.2) gives rise to contributions to Z that involve inverses of supermatrices rather than super-
determinants [as in Eq. (2.12)]. It is interesting to note that the inverse of a supermatrix has two representations:" name-
ly,

MbQ Mgf

Mfb Mff

(Mbb Mbf Mff Mfb ) 0 1

Mff Mfb(Mbb ™bfMff Mfb )

CVbf Afff
3fff

(7.3a)

T

Mbb Mbf ' 1 Mbb Mbf™ff MfbMbb Mbf ) Mbb

Affb 3fff, O (Mff ™fbMbb Mbf ) —MfbMM,
(7.3b)

It is only in theories with both external bosons and external fermions that these two representations are distinct much as
was seen in Sec. IV for the superdeterminant. To illustrate the use of operator regularization to two-loop order we con-
sider the simple (p )6 model of Sec. II for which both representations of M ' reduce to Mbb

The two Loop 1PI Green's functions for this model come from the generating functional
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A,
2

Z, = f d'xd'y[&x l(p'+if) 'ly)]' (7.4)

as can be seen from Eq. (7.2). To regulate strings of inverses of operators of the form A~ 'A2 '.
A~

' at m-loop or-
der, such as occur in Eq. (7.4), we use Eq. (2.14b) so that

A1 'A2 ' - . A '=lim
s~0

d Pl m
'A ' ' A

m! 2 p (7.5)

Thus, for example, the regulated form of Eq. (7.4) is

d2 2 A2
Z2 ——»'m, f d'xd'y&x l(p'+&f) ' 'ly)&x l(p'+7f) ' 'ly&&x l(p'+~f)

s 0 ds2 2! 2!3!
L

For any operator we can write

(7.6)

(7.8)

s+1

A
—s —1 I QO

d] ]s —At (7.7)=
r(s+ I)

and employ a second perturbative expansion due to Schwinger to write

( Ap+ AI ))t Apt ( 1 Q)Apt QA pt
e ' ' =e '+( t) du e— 'Aze

0
1

Equations (7.5), (7.7), and (7.8) can together be used to compute n-point 1PI Green's functions for any theory to two-loop
order and beyond. We evaluate matrix elements of the perturbation expansion of the regulated operators in momentum
space, exactly as is explained in Sec. II for one-loop Green's functions.

Operator regularization leads to results that are finite and symmetry preserving. As all the integrals are finite there
are no overlapping divergences in our approach. A key ingredient in obtaining finiteness is to have m in Eq. (7.5) equal
to the number of (loop) momentum integrals to be evaluated; this ensures that no poles occur in the limit s~0 perform-
ing all loop momentum integrals. For completeness, we give the expression for the two-point, two-loop 1PI amplitude
arising from Eq. (7.6). It is

d2 2 g4
Z2ff —lim

&2 f d'p f (p)f ( —p)
s o ds 8 (2m)'

&& dkd d d
I (s+1) o o q (q+k+p) [(1—u)k +u(k+p) ]'+

I (s +2) 1+ 2 dQ1dQ2
I (s+1) " (q+k+p)

s+1
1

[(1—u, )k +u)(k+p) ]'+

1

[(1—u ~ )q'+ u 2(q +p)']'+' (7.9)

No explicit divergences occur in Eq. (7.9), either in the in-
tegrals over k and q, or in the limit s~0. We postulate
that finiteness is a feature of operator regularization at
two-loop order and beyond, even for nonrenormaiizable
theories such as gravity.

Finding a suitable regularization scheme for supersym-
metric theories has proved to be a particularly trouble-
some problem. For example, dimensional regularization
adequately preserves any gauge symmetry that may be
present but, since supersymmetry is intrinsically linked to
four dimensions, it has been necessary to adopt a variant
of dimensional regularization, known as dimensional
reduction, in order to handle supersymmetric theories;
even this proposed scheme may fail at higher-loop order.

Operator regularization does not appear to have such
shortcomings. Indeed, we have shown' how our approach
can be used to handle the Wess-Zumino model written in
terms of superfields. We postulate that operator regulari-
zation is a general method for computing 1PI Green's
functions to arbitrary order, without destroying gauge in-
variance or supersymmetry, in such a way that explicit
divergences are never encountered.

We .would now like to mention some problems that we
feei should be addressed within the context of operator
regularization.

First of all, we have already indicated that quantum
gravity may be rendered finite in our approach; this con-
jecture must be tested by explicit computations. Similar-
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ly, we must see if operator regularization is a suitable re-
gulating technique for supersymmetric theories.

Another problem we plan to address is how to deal with
noncovariant gauge in non-Abelian gauge theories. In
Sec. III and IV we have indicated problems that arise
when we try to use operator regularization in conjunction
with such gauges as the Coulomb gauge, the axial gauge,
the planar gauge, or the light-cone gauge. The light-cone
gauge in the conventional Feynman perturbative approach
leads to nonlocal counterterms; it would be interesting to
see what this means in the context of operator regulariza-
tion.

Operator regularization may provide some additional
insight on how anomalies arise in quantum field theory.
In particular, the anomalous four- and five-point func-
tions in theories with non-Abelian axial-vector currents
might be investigated using our technique.

We would also like to apply operator regularization to
see how the anomaly in the divergence of the superfield
supercurrent arises. Discussions on this subject have to
data been obscured by the fact that no suitable regulariza-
tion procedure for supersymmetry has been devised. '

This particular problem may be overcome by operator
regularization.

It is also important that we apply our method to prob-
lems of direct physical interest, such as computing the
electromagnetic moment of the muon in the standard
Weinberg-Salam model. The finite results that we obtain
differ by (at most) a finite renormalization from the re-
sults obtained using, say, the minimal subtraction (MS),
modified minimal subtractions (MS), or momentum-space
(MOM) subtraction scheme in conventional perturbation
theory. It would be of interest to see explicitly the
differences between results obtained in these different ap-
proaches.

Finally, we note that the arbitrary dimensionful param-
eter p that arises in the Feynman perturbation series also
arises in our method. We simply have to rescale the pa-
rameter t in Eq. (2.21) so that r=p t is dimensionless.
This approach to the renormalization group in the context
of operator regularization will be dealt with elsewhere. '

In conclusion, we hope that we have provided an easily
applicable calculational procedure for evaluating Green's
functions in quantum field theory that can be used in a
wide variety of problems.
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W= —,'(b M»b+f Mfbb+b ™t,If+f Mph)

M» Mbf b
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db exp( ,
'

b Ab) =d—et '~ A,

I dF dF exp(FBF) =detB,

dFexp —,F CF =det' C .

(A7a)

(A7b)

(A7c)

We can proceed in two ways: either (a) to complete the
"square" in the fermionic variables F and F or (b) to com-
plete the square in the bosonic variable b.

Consider (a) first. We find

As explained in detail in Sec. II, by completing the square
in the associated Gaussian path integral in either (a) the
fermionic variable f or (b) the bosonic variable b we are
led to two representations of the superdeterminant

sdetM =det(M» MAIM—~~ 'MIq )det 'MII, (A4a)

sdetM =detM» det '(MII M&&M—» 'MI
& ) . (A4b)

However, it is also possible to derive the one-loop 1PI
generating functional without writing W in terms of a su-
permatrix. Indeed, as we saw in Sec. IV, when Dirac spi-
nors are used the Lagrangian

, b M»—b+FMl~b+b Ml pF+FMp~F, (A5)

where F and F are independent quantum Fermi fields, is
not of the form (Al). To see how the same result for the
one-loop generating functional can be obtained directly
from this form of the Lagrangian we consider the general
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J= dFdFdBexp —,'b M»b —b Mt,I;MI;I: 'MI;&b

+ (F+ MbFMFF

FF + FF Fb

(A8)

The change of variables

APPENDIX A

When both external fermion fields and external boson
fields occur in a given model the one-loop 1PI generating gives

F'=F+MI--I- MI--I, b) F ' =F+bMI I'My I' (A9)
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J= f dF'dF'db exp[ —,'b (M» 2—MbFMFF 'MFb)b

+F 'MFFF']
Mfb ——

(—MbF )

Mbf [——MbF, —(MFb) ] .
Fb

(Al lc)

detMFF

det' (Mbb 2M—bFMFF 'MFb )
(A10)

It is now straightforward to show that

det' Mff ——detMFF, (A12a)

To demonstrate the equivalence of the result (A10) and
the generating functional obtained using (A4a) we supply
the link between the two Lagrangians (A 1) and (A5). This
1S

det( Mbb ™bfMff Mfb )

=det(Mb„2Mb—FMFF 'MFb ), (A12b)

MFF

—(MFF )

F- T &'=[F'F], (Al la)

(Al lb)

and, consequently, the equivalence of the two forms of the
generating functional has been established. It was this
latter approach that was used by Lee and Rim in Ref. 15
to derive the one-loop generating functional.

Let us now proceed to complete the square in the vari-

able b in the integral (A6). We find

J= f dF dF db exP( —,
'

[b+Mbb '[M bFF+(FM )) I Mb-b Ib+Mbb '[MbFF+(FM- )T] I

+FMFFF 2[FMF—b+(MbFF) ]Mbb '[MbFF+(FMFb) ]) . (A13)

The change of variable

b'=b+Mbb '[MbFF+(™Fb)]
gives the somewhat simpler integral

J= dF dF db'

(A14)

J= f dFdFdb'exp[ ,
' b' Mbbb—'+ ,'F'f)F'—
+ , FT(0+ ATQ—'b,)F] . —

Using the standard integrals (A7a) and (A7c) we find

det'i /det'i (g+g / 'g)J=

(A19)

Xexp[ ,' b' M»b—'+F(MFF MFbM» —'MbF)F

+,FMFbMbb MFb F det ~ g det (g+/g g) (A20)

+ 2 ™bFMbb MbFF] (A15)

MFF MFbMbb MbF ~

n=—MF-, Mbb-'M,-„',n'= —n,
e=MbFTMbb-'MbF, eT= —e

and complete the square in F to find

(A16a)

(A16b)

(A16c)

J= dF dFdb'

X exp[ , O' Mbbb'—
+ —,

' (F—F'b, 'n-')n(F

However, J is not yet in a form in which the standard in-
tegrals (A7) can be used due to the terms in the exponent
of (A15) quadratic in F and F. To proceed we define

To demonstrate the equivalence of the forms of the
one-loop functional obtained from Eqs. (A4b) and (A20)
we use Eqs. (Al 1) in (A4b). We find

e QT

Mff —MfbMbb 'Mbf= 5 n (A21)

This result clearly demonstrates the equality of the two
forms of the generating functional.

The determinant of this antisymmetric matrix can be
written in terms of 8, L2, and b, , using Eq. (4.17), as

det(Mff MfbMbb 'Mbf) —=det( ~-')det( b' e—b '0)— —-
=detb, det(b, +Qb, 9) .

(A22)

+ , FT(e+ ATQ 'b, )F] . ——
The change of variables

F FTQTQ —1

allows us to write

(A17)

(A18)

APPENDIX 8

In this appendix we write explicitly those terms omitted
in Eq. (4.18). With P, Q, and R defined in Eq. (4.16) we
find that
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R+PR ' Q=(p —eF' —e y„rlH& gy„)
a —'— a —'— a —'—e—'rt gHt„gy,(p e—I e—'r„nH„.ny. ) 'r—,nH,. ny. .

Upon expanding

a —1 —1 —1 2 a
(p —eF' —e' y„rIH„gy ) '=(p) '+(p) '( eP—' e'y—„qH„gy)(p)

a —'— c+(p) '( eF—e''y—„r)H„,tjy )(p) '( eF— e' '—ygrIHt p rjyp)(p) '+—

We find that, by Eq. (4.17),

Z, =det'i [R (R +R ' Q)]

(81)

(82)

a —'— a —'— 4 a —'—=det'~ 'p —e[p, p'}+e V —e [p,y„gH rjy }+e [F,y gH, riy, }+e y„t)H rjy yqrIHt, t)y

—I a —'— a —'——e P eFe—y&r' —IH& rjy, yzrIH t„rjy~ —+ —( —eF' —e y~rIHIs Tlys) —+ y r)H, gy,

} a —1+e' r,nH, ~ or~ —+—
( « —e'rt—~Ht s ~rs) +— (83)

It is evident that Eq. (83) is not as convenient as Eq. (4.8) for computing one-loop 1PI Green's functions with more
than three external lines. However, if one wants to employ a noncovariant gauge in QED it seems necessary to use ap-
proach 8 and, hence, Eq. (83) as the Schwinger expansion cannot easily be applied in approach A when using a nonco-
variant gauge.
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