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Relativistic dynamics and Lorentz contraction

W. Glockle
Institut fiir Theoretische Physik, Ruhr Un-iversitat Bochum, D 463-0Bochum I, Federa!Republic of Germany

Y. Nogami
Department of Physics, McMaster University, Hamilton, Ontario, Canada L8$4MI

(Received 27 January 1987)

Regarding the structure of a bound system of two particles in relativistic quantum mechanics we
raise the following question: Does the shape of (i.e., the density distribution in) a bound system in
motion always conform to Lorentz contraction? A negative possibility is illustrated by means of the
Bakamjian-Thomas model which is relativistically covariant in the sense that the generators of the
Poincare algebra for the model can be constructed explicitly. The degree of deviation from Lorentz
contraction will depend on the choice of the interaction. We examine another model of two interact-
ing particles, which is based on field theory. The (approximate) results indicate that the deviation
from Lorentz contraction in this model is, if not zero, very small.

I. INTRODUCTION

Consider an object which is spherical in shape when it
is at rest. If the object is set in motion with a constant
speed U in the z direction, one expects on the basis of
Lorentz contraction that the shape of the object will be-
come ellipsoidal; the radius in the z direction is shortened
by the ratio of I/@=[1—(v/c) ]'~ while the radii in the
x and y directions remain unchanged. This Lorentz con-
traction is based on pure kinematics, with no reference to
the dynamical structure of the object. If one thinks of
this problem as one of quantum dynamics, however,
Lorentz contraction is not a very simple phenomenon.
Let us consider a bound system of two spinless particles.
Then the wave function squared determines the density
distribution in the system. Lorentz contraction will imply
that, when the system is boosted, the density and hence
the wave function scale in a certain simple manner. On
the other hand, the wave function is determined by the in-
teraction between the two particles. How does the in-
teraction conspire so that the resulting wave function ex-
hibits such a scaling property? Does any interaction lead
to exact Lorentz contraction provided that the
system/model is relativistically covariant?

In order to answer the questions raised above, we exam-
ine a model of a two body bound system in the
Bakamjian-Thomas (BT) scheme. ' This tnodel belongs
to what Dirac called the "instant form" of the formula-
tion of the relativistic two-body problem. The two parti-
cles are at equal times, and are interacting directly. By a
direct interaction we mean that the interaction term in the
Hamiltonian is expressed explicitly in terms of the
dynamical variables of the particles (their positions and
momenta). In the BT scheme one can set np an interac-
tion in such a way that the ten generators of the Poincare
algebra can be constructed explicitly. These generators
are the Hamiltonian 8, the total momentum P, the total

angular momentum J, and the Lorentz-boost operator K.
The model is thus relativistically covariant. Within the
scheme there remains wide latitude for the choice of in-
teraction. In fact one can start by assuming a wave func-
tion in a certain form and then determine an interaction
which reproduces the assumed wave function. In this way
the BT scheme allows one to construct a solvable, rela-
tivistically covariant model of interacting particles. Using
such a model we examine how the wave function and the
density distribution of a bound system depend on the velo-
city of the system. We find that the density distribution
does not exactly conform to Lorentz contraction.

How well Lorentz contraction is observed will depend
on the choice of the interaction. Despite its ingenious
mechanism, we feel that the type of interaction introduced
in the BT scheme is rather artificial. As a more natural
and realistic alternative we consider a model of a two-
body system based on field theory. Starting with interact-
ing meson and nucleon fields, one can eliminate the meson
field by means of Okubo's projection technique. This can
be done in successive orders in the meson-nucleon cou-
pling constant g. We examine only the lowest order, i.e.,
g, in this paper. Up to the same order in g, one can con-
struct all generators of the Poincare algebra. ' The model
in this approximation does not exactly obey the relativistic
energy-momentum relation and Lorentz contraction.
However, we find the deviation unexpectedly small. This
is unexpected because the model is supposed to be covari-
ant only up to the order of g . Implications of this find-
ing will be discussed.

II. BAKAM JIAN- THOMAS MODEL

Let us consider a system of two spinless particles of
equal mass m. We work in momentum space until we ex-
amine the wave function in coordinate space. In the ab-
sence of interaction the energy of the system is given by
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Ep ——gE;, (2.1) bound-state wave function it~ in the c.m. frame is deter-
mined by the Schrodinger equation

where i ( = 1,2) refers to the particles, and Mf=mbf (2.13)

E =(m. +p )' (2.2)

Mp ——(Ep P)'/— (2.3)

where p; is the momentum of particle i, and p; =
I p; I

We use units such that c =Pi= 1. We define the free mass
operator by

where the eigenvalue mb is the rest mass of the bound sys-
tem. Recalling Eqs. (2.8) and (2.11), one can write Eq.
(2.13) more explicitly as

f dk'M(k, k')i'(k')=2(m +k )' P(k)

+ f dk'v(k, k')P(k')

where = mba(k) . (2.14)

P =pi+P2 (2.4)

is the total momentum. For later convenience we also de-
fine the relative momentum by

1P=T(pi P2) . (2.5)

We now introduce energies co; and momenta k;, which
are related to E; and p; via the Lorentz transformation
associated with the velocity P/Ep. .

iui (EpEi p& P )
1

Mp

p;.P
l(..; =p;— E—

Mp
' Mp+Ep

(2.6)

(2.7)

As expected, ki+k2 ——0 and iv; =(m +k; )' . We intro-
duce k and co such that k~ ———k2 ——k and co&

——cu2 ——co. It
is easy to confirm that

Mp = g io; =2ci7 (2.8)

The transformation inverse to Eqs. (2.6) and (2.7) is given
by

E; = (Epiv;+k; P),1

Mp
(2.9)

p k-P
M EMp Mp+Ep

(2.10)

Now the idea of Bakamjian and Thomas is to introduce
an interaction through the mass operator

M =Mp+U, (2.11)

where u depends only on the momentum k (Ref. 6). In
the center-of-mass (c.m. ) frame in which P=O, the M of
Eq. (2.11) is the Hamiltonian. In a general frame the
Hamiltonian is given by

H =(M'+P')'" . (2.12)

Of course [H, P]=0. One can go on to construct the total
angular momentum J and the Lorentz-boost operator K,
which, together with H and P, form the ten generators of
the Poincare algebra; for this we refer the reader to Refs.
1 and 2.

We are now in a position to examine the structure of a
bound system. As mentioned above, M is the Hamiltoni-
an of the two body system in the c m. frame. The

When P&0, Eq. (2.14) is replaced by

(M2+P2)1/2q (m 2+P2)1/2q (2.15)

Since P commutes with H, P is a constant of the motion.
Clearly the relativistic energy-momentum relation is satis-
fied. The eigenfunction g for Eq. (2.15) is the same as
that for Eq. (2.14). Therefore P depends on P only
through k. In order to see the P dependence of P, one has
to express k in terms of p and P. Let us denote the wave
function so obtained by P(p, P). The probability must not
be affected by the variable change from k, P to p, P; hence

f dk
I
W(k) I'= f dp

I 4(p P) I' (2.16)

where P is a fixed constant vector. This is satisfied if it~

and P are related by

i'(k)= J'/ (t(p, P), (2.17)

where J is the Jacobian for the variable transformation:

g(p p) 2EiE2
B(k,P) coEp

(2.18)

(2' mb) g (k)—
v (k)= f dk(2iu mb)p (k)— (2.20)

Equation (2.17) is a crucial formula in our model
analysis.

If the interaction is of the form of u(
I
k —k'

I
), then it

corresponds to a local central interaction in coordinate
space, and Eq. (2.14) can be separated into partial waves.
Since we are interested in the ground state, we take the s
state; i}/(k) then becomes spherically symmetric with
respect to k. Alternatively, one can assume that v(k, k') is
separable, i.e.,

f dk'v(k, k')P(k')=v(k) f dk'u(k')1t(k'), (2.19)

which represents a nonlocal separable interaction. This
interaction acts only in the s state; again g(k)=i'(k) is
spherical.

In the model analysis that follows, rather than starting
with a given interaction, we assume an ad hoc 1t(k) [Eq.
(3.6)] and then determine $(p, P) by Eq. (2.17). Once
P(p, P) is specified the structure of the bound state is
completely determined. In case one wonders about the
legitimacy of assuming P(k) arbitrarily, let us point out
that, when p(k) and mb are given, one can easily deter-
mine u(k, k') in the form of Eq. (2.19). If one chooses
v(k) such that
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then Eq. (2.14) is satisfied by the t(( and mb that are in Eq.
(2.20).

Similarly one obtains

III. STRUCTURE OF THE BOUND SYSTEM

Let us denote the relative coordinate for the two parti-
cles by r =r] —r2, which is conjugate to the relative
momentum p. We choose the z axis along the total
momentum P, and calculate (x ) =(y ) and (z ). We
have done this calculation in two ways: methods I and II.

Method I starts with

E,E, 3E,'+W, —mo'E, '
(E g(Ep)2

Mp

E)E2
(3.3)

2
~4(p»)

Bp

Equations (3.2) and (3.3) are valid for any value of P. If
P/m ~& 1, one can expand the above into P, to obtain

= f dk J [J '~'((((k)]
Bp

(3.1) (x') =(x') +P' f dk
Bk

p& [E(Ep(Ep +3Mp ) Mp Ep ]f
x = dk

4 (MpE, Eq )
'2

Ep BP
E,E, ak

(3.2)

where J is given by Eq. (2.17). Equation (3.1) can be re-
duced to

ak'

(3.4)

where the suffixes P and 0 refer to the total momentum,
and

(z) —(z)+P f3 0 gk2 5
(3.5)

As an example, let us assume

P(k)=Ncaa =N(m +k ) (3.6)
P(p, P) = g (1+—,

'
)P((s)P((p, P),

1

(3.9)

P2(x')(, ——(x')p 1—
192 m2

(3.7)

where N=(8m )'~ /n is the normalization factor. Sub-
stituting this P into Eqs. (3.4) and (3.5), we find

where s =p P/pP, P1 with l =0.2, . . . being the Legendre
polynomials, and

1

P((p, P )= f ds P((s)P(p, P. ) . (3.10)

The wave function in coordinate space is given by

(3.8)
()((r,P) =(2m. )

'"f dpe' 'P(p, I')

= g (l+ ,
' )P((t)P((r,P),—

1

(3.11)

where (x')p —(z')p ——m
On the basis of Lorentz contraction one expects that

&x &p= &x &p and (z )p=)' (z )p where y =1—v

Clearly Eqs. (3.7) and (3.8) do not conform to this expec-
tation; (x )( has been reduced. The contraction ratio for
(z )( given by Eq. (3.8) does not agree with y . The
discrepancy is actually of a conceptual nature in the fol-
lowing sense. Note that v =P/(mb +P )' or P=ymbv.
Therefore if one wants to express the contraction factor
given by Eq. (3.8) in terms of v, one has to know mb.
However, as discussed at the end of Sec. II, mb and ((((k )

can be chosen completely independently. In deriving Eqs.
(3.7) and (3.8), it is sufficient to assume g(k), and mb
does not enter at all. Unless mb is specified, v is undeter-
mined.

In method II we expand P(p, P) into partial waves:

where t=r P/rP, and

0((r,P) =(2/ )' (ri' f dp p j((pr)P((p, P) . (3.12)

(z ) = g (1+—, )(l'+ —,
'

) f dr r"(5((r,P)P((r,P)
1,1'

x2~ f dtP, (t)P, (t)t'.

(3.13)

Carrying out the t integration, we obtain

For P=O, g(k)=gp(p, P). As P increases, components
with l =2,4, . . . become important.

The mean-square radii can be calculated as
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(z') =—f, «r'('34o'+ 34—o02+ '21 42'

144 702+, 4244+ „44 + (3.14)

where pl =$&(r,P) Th. e (x ) is obtained by

(x') = —,
' (r' —z2), (3.15)

IV. MODEL BASED ON FIELD THEORY

In the preceding section we examined a solvable, rela-
tivistically covariant model of two-body system in the BT
scheme. We calculated (x )z and (z )p, and found that
their I' dependence does not conform to the Lorentz con-
traction. In the BT scheme, the interaction U can be
chosen arbitrarily as long as it is a function of the variable
k. We feel that, as a realistic model for, say, the
nucleon-nucleon interaction, the BT model is too arbitrary

combined with

(r ) =rr f dr r (po +5/2 +9/4 +. . .
) . (3.16)

For the example of Eq. (3.6) we calculated (x )p and
(z )p by method II, and confirmed Eqs. (3.4)—(3.8). In
all cases that we considered it was sufficient to keep 1=0,
2, and 4.

and artificial. As a model which we think is more natural
and realistic, let us examine one based on interacting
meson and nucleon fields.

We start with a local relativistic field theory of interact-
ing fields of mesons and nucleons, for simplicity, both
considered to be spinless. They interact through the usual
Yukawa coupling with coupling constant g. Let g be the
projection operator into the space of two nucleons. Then
A=1 —g is the projection for the rest of the space. Fol-
lowing Okubo one can decouple the g and A subspaces
with respect to the Hamiltonian H. In other words, one
can find a unitary transformation U such that UHU has
no matrix element connecting the g and A subspaces. In
practice one determines U in the form of a series in
powers of g. When the g-A coupling is eliminated from
H up to order g, one obtains an effective nucleon-
nucleon potential to the same order.

Since we start with a relativistic field theory, we can
easily write down the generators of the Poincare algebra
in terms of the field variables. It was shown in Ref. 5
that when the q-A coupling is eliminated up to order g
in UHU, the same transformation U also eliminates the
g-A coupling in all of the generators of the Poincare alge-
bra. In this way one obtains a model of the nucleon-
nucleon interaction which is covariant to order g . The
nucleon-nucleon interaction Hamiltonian is given by

, ~ (Pl+ P2 P 1 P2) 2H;„,= — dp, dp,dp'ldp2, , [~q (E, E', )'] '—a —(p, )a (p, )a(p', )a(p', ),2(2~)' (E E E'E' )1/2 (4.1)

+int, m

where a and a are nucleon creation and annihilation operators, respectively, E', =(m +p'1)'/, coq=(lM +q )'/,
q=pI —p'~, and p is the meson mass. The interaction term in the boost operator is given by

Lg , ~l-1 (Pl+P2 Pl P2)/~Pl, 2 —1f dpldp2dpldp2, '
[coq —(El E', ) ] 'a (p—l)a (p2)a(p'1)a(p2), (4.2)

2(2m )' (E1E2E '1E2 )
'/

where the suffix m ( = 1,2, 3) specifies the components of K.
If we write the state vector of the two-nucleon system as

~
0) = f dpldp20(pl, p2)a'(pl)a'(p2)

i 0),
we obtain the relativistic Schrodinger equation

, & (Pl+P2 Pl P2) lt'(Pl P2)(El+E2)p(pl, p2) —A, f dp'ldp2, /2 2 2
——Ep(pl, p2),(ElE2E'1E2)' coq (El E', )——

(4.3)

(4.4)

where X is essentially g . We now change the variables from pl and p2 to k and P by means of Eqs. (2.6) and (2.7).
Then Eq. (4.4) becomes

(4 2 P2)1/2~(k p) ~ f dk, [Q( &Pk)Q( pkp)] p(k P) Eq(k p
~k —k' (Ek k')2 2 (4.5)

where Ek =(m +k )'/, and

(4.6)

and

Q(k, p) = 2

co(E1 +E2 )

2
~(4~2+ p2) 1/2 (4.7)

It is remarkable that the interaction in Eq. (4.5) does not

depend on the direction of P. Hence all partial waves are
decoupled. The ground-state wave function ltj(k, p) con-
sists of an s component alone. Unless P=O, however,
p(pl, p2) which is related to p(k, p) through Eq. (4.6) con-
sists of many partial waves because k=

~

k
~

and hence
the Jacobian J depends on the direction of P.

At this point let us enumerate a few differences between
Eq. (4.5) and Eqs. (2.14) and (2.15) of the BT model.
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0.4135,
1

2,

2

B= 58.96,
272. 85 .

(4.8)

Here we also listed the binding energy B=2m —mb in
MeV for the corresponding choice of A.. With A, =0.4135
fm we mean to simulate the deuteron. For A, =1 and 2,
the binding energy becomes enormous as compared with
typical nuclear-binding energies.

We solved Eq. (4.5) for P=O, 5, and 10 fm ', and
determined the energy E and the wave function 1t/(k, p).
We then calculated (x ) and (z ) by means of method II
as explained in Sec. III. For the energy we compare E
and (ms +P )', where ms Ep p. For——the mean-
square radii, we compare (x )p'/ and (z )p' with

y '(z )o', where )/ '=[1—(PiE) ]'/ . The exact
Lorentz contraction means that (z )p

——)/ '(z )o'

(1) As noted below Eq. (2.15), the g of the BT model
depends on P only implicitly through k. On the contrary,
t/i(k, p) of the present model depends explicitly on P.

(2) When P =0, E of Eq. (4.5) is identified with the rest
mass mb of the bound system. The relativistic energy-
momentum relation E =mb +P is not expected to be
satisfied. However, if one keeps adding corrections of
higher order in g, the relation will eventually be satisfied.
In the BT model the relativistic energy-momentum rela-
tion is automatically satisfied by construction of the
model. Equations (2.14) and (2.15) are exact equations for
the BT model, whereas Eq. (4.5) is only approximate.

(3) The interaction U(k, k') in Eq. (2.14) can be chosen
arbitrarily, whereas the interaction in Eq. (4.5) has been
derived (approximately) from a field theory.

For numerical illustration, we took m to be the nucleon
mass 938.9 MeV =4.758 fm ', and the meson mass
p=0.7 fm '. For k we tried with the following three
values in fm

The results are presented in Table I. Overall the model
is remarkably relativistic. In the case of A. =0.4135 fm
which simulates the deuteron, the relativistic energy-
momentum relation E= (m b +P )

' is practically exact-
ly satisfied. This feature was already emphasized in Ref.
2. For the mean-square radii, the deviation from Lorentz
contraction is hardly discernible. This is surpising be-
cause the model is relativistic only up to the order of g .
Even for A, = 1 and 2 fm, the energy-momentum rela-
tion is very well satisfied. The deviation from Lorentz
contraction is noticeable, but still very small. As men-
tioned earlier, X=1 or 2 fm represents an enormous
strength of the interaction from the nuclear structure
standard. Likewise P = 10 fm ' is a tremendous momen-
tum. It is therefore safe to say that our model is relativis-
tic and that it conforms to Lorentz contraction as far as
nuclear-physics applications are concerned.

Figure 1 shows contour plots for the wave function

P(r, p) = , Po(r, P)+ —,
'

P—z(r,P)P2(t), (4.9)

V. DISCUSSION

The model of a two-body bound system that we con-
structed in Sec. II according to the BT scheme' is rela-
tivistically covariant in the sense that all the ten genera-
tors of the Poincare algebra for the model can be con-
structed explicitly. Nevertheless, when the system is

for P =0, 5, and 10 fm ' with X=0.4315 fm (B=2
MeV). The normalization is chosen (arbitrarily) such that
Po(r, P) = 1 for r =0.05 fm. The contour numbers
1,2,3,. . . correspond to the values 0.40,0.35,0.30, . . . of
P(r, p), respectively. The horizontal axis is in the direc-
tion of P. Figure 2 is similar to Fig. 1, except that A, = 1

fm (B=58.96 MeV). Although only the 1=0 and 2
terms have been included in Eq. (4.9), the effect of the
l =4 term on the contour plots would be hardly visible.

TABLE I. The energy E in fm ' and (x )'/ and (z )'/2 in fm for the model of Sec. IV, versus the
total momentum P. For the coupling constant A, , three values given in Eq. (4.8) are considered.
Lorentz-contraction factor y '=[I —(PiE) ]'/ used in the table has been calculated using E listed in
the column E [rather than those of column (Ep 02+P2)'/~]. The (x ) and (z ) have been estimated
with l =0 and 2, except for the values given in parentheses which include the l =4 contribution.

0.4135

p
0
5

10

E
9.51

10.74

13.80

(E 2+P2)1/2

9.51
10.74

13.80

( 2)1/2

2.395
2.374

(2.375)
2.330

(2.342)

(z2 ) 1/2

2.395
2.105

(2.104)
1.645

(1.619)

—I( 2) 1/2

2.395
2.120

1.650

10

9.22
10.48

13~ 58

9.22
10.49

13.60

0.651
0.643

(0.643)
0.625

(0.629)

0.651
0.574

(0.574)
0.449

(0.443)

0.651
0.572

0.441

0
5

10

8 ~ 13
9.48

12.75

8.13
9.55

12.89

0.375
0.367
0.352

0.375
0.332
0.263

0.375
0.319
0.233
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(b)

(c)

FICJ. 1. Contour plots for g(r, p) of Eq. (4.9) with A, =0.4135
fm: (a) P=O, (b) P=5 fm ', (c) P=10 fm '. The contour
indices 1,2,3, . . . are explained in Sec. IV.

FIG. 2. The same as for Fig. 1, except that X=1 fm '. In
both figures, the horizontal axis is in the direction of P.
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boosted, its shape change does not follow the expected
Lorentz contraction. The change in (x ) as shown in Eq.
(3.7) was unexpected. Since the rest mass mb of the
bound system can be chosen arbitrarily in that model, the
change in (z ) given by Eq. (3.8) can be made very dif-
ferent from what is expected on the basis of the Lorentz
contraction. %'e feel, however, that the interaction in the
BT scheme is too arbitrary and ad hoc.

In Sec. IV we examined a model two-body system based
on field theory. We started with meson and nucleon fields
interacting via the usual Yukawa coupling, and projected
out the two-nucleon sector up to order g . The model is
relativistic only to this approximation. To our pleasant
surprise, however, we found the model practically relativ-
istic. As we numerically illustrated, the relativistic
energy-momentum relation for the moving bound system
is satisfied to a very good approximation. The system
also conforms to Lorentz contraction quite well.

This "success" of the model presented in Sec. IV leads
us to conjecture the following. If the order of approxima-
tion (g )" is increased, the proximity to Lorentz contrac-
tion improves, and in the limit of n ~ oo Lorentz contrac-
tion is exactly obeyed. This is a nontrivial conjecture in
view of what we have found with the BT model.

There is another aspect of the model of Sec. IV
which seems to suggest a novel avenue for relativistic
phenomenological description of two-body systems. The
interaction (4.1) is a covariant one-meson-exchange poten-

tial. Obviously this potential is too simple to be a realistic
nucleon-nucleon interaction. Can one make the model
somehow more realistic? In this connection, the model
has an interesting flexibility. Note that H;„, and E;„,
have a common factor [co& —(E& —Ej ) ] ', which corre-
sponds to [co& z' (E—k E„—)'] ' of Eq. (4.5). Even if
this factor is replaced with an arbitrary function of
[co~ (E&—EI —) ], the commutation relations among the
generators of the Poincare algebra remain valid up to the
order of g . In this way one can replace the one-meson-
exchange potential with a more realistic potential. By do-
ing so, however, one loses contact with the field theory
from which the model originates. It remains to be seen
how relativistic such a phenomenological model can be,
i.e., how well the relativistic energy-momentum relation
and Lorentz contraction are obeyed.
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