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A series of theorems have been proved showing that localization in quantum mechanics is incon-
sistent with Einstein causality. In this paper a simple model of a localized source and a localized
detector is studied. This model does not satisfy the assumptions of the rigorous theorems; nonethe-
less, it is found that the model violates Einstein causality. The effect is very small and resides in the

nonresonant part of the transition probability.

I. INTRODUCTION

In a series of interesting papers,'™* a set of theorems
have proved that the localization of relativistic quantum
systems leads to violation of Einstein causality. Einstein
causality is taken to mean no signal can propagate faster
than the speed of light. These papers show that under the
condition of translation invariance of the Hamiltonian
and a weak condition on the energy-momentum spectrum,
a wave function vanishing outside a finite open region of
space-time must vanish identically. Hegerfeldt* has re-
cently strengthened this result to show that if the wave
function is exponentially bounded outside a finite open
spatial region at ¢t =0, for ¢ >0 the wave function cannot
be exponentially bounded anywhere in space.

An experimental test of the violation of Einstein causal-
ity presents many difficulties. For multiparticle systems
the theorems predict that the center-of-mass coordinate
spreads over all space instantaneously. It is not clear
what meaning can be applied to the notion of the detec-
tion of the center of mass since technically the theorem
should apply to the entire system including the detector,
because it is the entire Hamiltonian that is translationally
invariant. Hegerfeldt and Ruijssenaars have also shown
that scattering states also may spread instantaneously.’

In this paper we examine the question of whether non-
causal signals can be detected by considering a model that
does not satisfy the technical requirements of Refs. 1—4,
but has the advantage of being calculable and manifestly
noncausal. The source of the noncausality is the Feyn-
man propagator of the photon. It has been known for a
long time that this propagator is nonzero outside the light
cone determined by the argument of the propagator.® It
can be shown that for infinite times the noncausal part of
the propagator vanishes; however, as we shall see, this is
not true for finite times. If these signals can be detected
nothing very surprising follows since no conflict between
relativity and quantum mechanics is implied by this re-
sult, if by special relativity we understand a set of invari-
ance principles and not Einstein causality. However,
there are implications for the precise measurement of
time. If such signals are undetectable because of some
fundamental quantum principle, then Einstein causality is
compatible with quantum mechanics.

In the next section we define the model system in detail.
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After presenting our analysis of the noncausal effect, we
briefly examine the question of whether this system is too
idealized to provide a test of the detectability of the non-
causal signal.

II. MODEL

The system is composed of a source and a detector each
containing two-level atoms coupled to the electromagnetic
field. The atoms in the source and detector are assumed
to be localized in two disjoint spatial regions Vg and Vp.
At the start of the experiment all the atoms in the source
are in their excited states, all the atoms in the detector are
in their ground states, and no photons are present. If the
minimum separation of Vs and ¥V} is L then noncausality
manifests itself by the appearance of an excited atom in
the detector at a time ¢ <L /c where ¢ is the speed of
light. As stated in the Introduction this occurs because of
the nonlocal nature of the Feynman propagator.

The relation between the spreading of the wave func-
tion in Refs. 1—4 and the noncausal nature of the Feyn-
mann propagator is not entirely clear to me. However, if
the model system described above is treated as a coherent
quantum system so that it is described by a wave function,
then the fact that, in principle, for >0 a photon can be
emitted and detected instantaneously anywhere leads to
the instantaneous spreading of the center of mass of the
system.

One more remark might be in order before turning to
the computation. The Feynman propagator is noncausal
for all types of particles and so the possibility of detecting
noncausal photons does not seem to be directly related to
the nonexistance of an observable position operator for the
photon.®

The Hamiltonian for the model is

H=H,+H,=H,+Hs+Hp , 2.1

where H, is the unperturbed Hamiltonian for the atoms
and the electromagnetic field, Hy and Hp describe the in-
teraction between the electromagnetic field and the source
and detector atoms, respectively. For simplicity the
atoms are assumed to have only two levels. For N =S or
D

Hy= 3 p;"E;(b] +b)),
JEN

(2.2)
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where p; is the electric dipole moment of the jth atom, E;
is the electric field operator evaluated at the position of
the jth atom, and bj and b; are the operators that corre-
spond to the excitation and deexcitation of the jth atom.
This Hamiltonian has been exhaustively analyzed.” In
particular it is the leading order in a multipole expansion
of the minimal coupling Hamiltonian and is manifestly
gauge invariant.®°
The initial state of the system is taken to be

‘V(O)Zq)DXSQY s (2.3)

where @, is the state of the detector with all atoms in the
ground state, X is the state of the system with all atoms
in their excited state, and (1, is the vacuum state of the
electromagnetic field.

The computation is straightforward, and consists of
computing the probability of finding an atom in the detec-
tor in the excited state, an atom in the source in the
ground state, and no photons. This is done using pertur-
bation theory after transforming to the interaction pic-

n=1

ture. This computation has been done any number of
times; however, in general only the dominant resonant
term is retained and this term is causal.® It is of interest
to note that if the electric field operator due to radiation
by a source atom is calculated to leading order with the
Hamiltonian used in this paper, it is found to be causal.?
This may seem contradictory, but it is not. The measure-
ment of the electric field operator requires a different type
of experiment than is described here.

III. CALCULATION

Since the computation is standard we summarize it.
The quantity of interest is the probability of finding an
excited atom in the detector and a source atom in the
ground state. The amplitude for this process is

(¥, U,(t)‘llo):(b;bs‘l/o,U,(t)\llo) , (3.1)

where ¥, is defined in (2.3), the D denotes a detector
atom, the S denotes a source atom,

© " t 1, _
Un=1+ 3 {—ﬁi] fo'arz1 fo‘dtz--- I, ‘dt, Hy (1)) -+ Hy(t,) (3.2)

e(i/ﬁ)Ho —(i/R)H yt

H(t)= Hye

(3.3)

with H, and H; defined in (2.1). The leading nonzero term for the process of interest is the n =2 term which can be

written as

1 I ei(md—-ms)t/Z
¥, U (W) = ———(Ps-ppVr2—Ps Vi Pp-Vp) oo | 3.4
(W, Up™(1)¥) 477260ﬁ( s PoVR —Ps ViPp-Vr)p Hwp—as) 3.4
I

where #wp and #iwg are the excitation energies of the Then, using G (Q,)*=G(—Q,1)
atoms and R is the displacement of the detector atom . xR/
from the source atom. Finally, J(x,p)=—im@®(t —R /c)e™""

I———J(wg,a)D)—J(a)D,wS) , (3.5) +21 Imfwde(x _+_w,t)e—-i(x—y)t/28in ©R .
where 0 ¢

(3.7

J(x,p)= fow do[G(x —@,t)e —/x—1/2

; . oR
— G(—x —w,t)e’* P 2]sin— ,
c

(3.6)

G(2Q,1)=e'YsinQt /Q, and c is the speed of light.

The first term in (3.6) contains the resonant term for
which w=x. In order to analyze J for t <R /c, it is use-
ful to isolate this term. Starting with

f_w doG(x —w,t)sin%: —im®(t —R /c)e*R7/e

where ® is the Heaviside step function, it is a simple
matter to show

fowdw G(x —w,t)sin% = —im®(t —R /c)e*R/c

+ fom do G(x —|—a),t)sin£)C£ .

In the standard calculation only the first term, which is
causal, is retained. The second term is much smaller than
the first term, but is nonzero for all ¢ > 0.

The integral in (3.7) is easily evaluated in terms of the
sine and cosine integrals.'°

J(x,y)=—im®(t —R Jc)e*R/e
+iIm{e!* T F(U,)—F(U_)]

_e—ilx—y2g (R /c)}, 3-8)

where
F(z)=e ™ {Ci(x |z | )+isgn(2)[Si(x |z | )—7/2]},

K (z)= —i{sinxzCi(xz) —cosxz[Si(xz) —7/2]} ,

U,=t*R/c, and sgn(x)=x/|x | is the signum func-
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tion. For O <t <R /c, the term containing F(U_) is the
dominant term. Taking |ws—wp | «<ws,
l<«<ws | U_ | <<wgR /c we finally find, for I in (3.4),

L Wp—ws 1 ws+wp

I~ t, 39
i wsop U cos > (3.9)

|

log—wg)t/2

where the terms that have been dropped are of order
cU_/R. This term is rapidly oscillating; nontheless,
there is a nonzero probability of finding the detector atom
excited. ‘

Substituting Eq. (3.9) into Eq. (3.4) and retaining the
dominant term we find

l A A
(Wr, U (thy) =——(pspp —Ps ' RppR)—
Y7, Up Yo arte ti Ps'Pp —Ps Kpp R

The probability of finding a detector atom excited, a
source atom in the ground state, and no photons is

ps’pp’ 1 1

1
R? 97%€*H%c*

P=
54 U_6

-1 1 __1 (3.10)
wsTs 0sTp ks®R*(cU_)

where we have summed over the final states of the detec-
tor atoms, averaged over the orientation of the source di-
poles, and replaced the square of the rapidly oscillating
term by its average. In addition, it has been assumed that
the shuttering of the source and detector from one another

takes place adiabatically so wg=wp by energy conserva-
11

tion.”" In the last term k=w/c and the radiative life-
times of the source and detector atoms has been inserted:
1__po’
T 3meghe®

In averaging over the orientation of the dipoles it has been
assumed that R is constant. This places a condition on
the size of the source and detector. Finally, the counting
rate is given by

d, 1 1 6
=N —P-:N —
" S dt S TS WsTp k59R2(R —ct)’

(3.11)

when Ny is the number of source atoms. For comparison
the steady-state counting rate for ¢ > R /c is
1 1 1

r,=Ng—
+ S
Ts WsTp kSzR2

4rwg
ry ’

where I is the fullwidth at half-maximum of the spectral
line in radians per sec.!? The ratio of the counting rates is

8 7
1 As s
=3 |— —_—. 3.12
r/ry 2 R —ct | wg ( )
Putting in some typical numbers, Ag=600 nm,

R—ct=3x10"* m, and Tg/0s=2%x10"7, we find
r/r, ~3x1073%2. This corresponds to allowing the
source and detector to interact for a time up to 1 psec be-
fore the causal radiation reaches the detector. Because of
the seventh power appearing in (3.12) if timing could be
improved to 1 fsec, then r/r , ~1.5x 107!, In any case,
the effect while very small is nonetheless present. If it is
detectable in principle, then Einstein causality and locali-

WsWp

2 1
2 U 2

f

zation in quantum mechanics are incompatible. Alterna-
tively, it may be argued that such a small signal cannot in
principle be detected. We now turn to this question.

IV. DISCUSSION

In trying to determine whether the effect computed in
the preceding section is detectable, several questions arise
naturally which are related to the general problem of
whether the system described is overidealized. First there
are questions of whether limitations on sensitivity or due
to noise make it impossible to recognize the signal.
Second, it is necessary to determine whether any shutter-
ing system can be constructed which is compatible with
conditions required for operating the system. Third, there
is the question of whether the Hamiltonian used describes
a physical system at the low level of probability being
considered or whether higher-order terms in the multipole
expansion will contribute in such a way to render the
present analysis useless. Finally there is the question of
whether the semiclassical assumption of the localizability
of the source and detector make sense in the context of
the problem being discussed.

The detection process has been idealized in the first in-
stance by assuming every photon that excites a detector
atom is recorded. Since the detector is open for such a
short time, if a detector atom is excited, the probability of
the excited atom reradiating the photon so it can escape is
negligible. Therefore, the loss of counts will be due to the
internal structure of the detector. It seems that this effect
can be made quite negligible so that every atom that is ex-
cited will generate a signal in the detector.

The detection process has also been idealized by
neglecting false counts. This should be a more serious
problem. The effect of thermal photons can be made
smaller than the signal if the entire experiment is isolated
and run at low temperature. For example, if the tempera-
ture is of order 10~3 K, then with the detector parameters
given in Sec. III, the thermal photon counting rate is less
than 10% of the noncausal counting rate. This tempera-
ture gives us a general idea of the noise suppression neces-
sary to avoid a false count. In addition to thermal pho-
tons, excitations of detector atoms due to radioactive
background and cosmic rays may not be negligible
without special consideration. These effects cannot be es-
timated without a more specific model of the system.

Perhaps the most likely cause of false counts arises
from the switching necessary to perform the experiment.
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The opening and closing of shutters on the time scale re-
quired most likely requires some form of optical switch-
ing. This leads to the possibility of photons from the
switching beams being scattered into the detector.

It seems unlikely that the effect considered here is elim-
inated by higher-order effects. First, the higher-order
multipoles which have been omitted will make much
smaller contributions to the noncausal signal. The sixth
power of (kgcU_) in Eq. (3.10) is characteristic of the
electric dipole interaction, and the higher-order multipole
would contain at least the eighth power of this factor.
Therefore, in the example given following Eq. (3.12), the
higher-order multipoles lead to contributions at least 10~%
times smaller than the electric dipole. Furthermore, it
might be imagined that the transition of interest in the
source and detector atoms have selection rules that
suppress as many of the higher-order multipoles as
desired.

Second, it might be imagined that higher orders in the
electromagnetic coupling might cancel the noncausal ef-
fect computed above. This also seems unlikely since these
effects are suppressed because they are higher order in the

electromagnetic coupling constant, i.e., the fine-structure
constant. In addition, the noncausality arises from the
fact that the photon propagator in Eq. (3.6) contains only
non-negative frequencies; consequently, its source is close-
ly related to the analogous effect found in Refs. 1—4. It is
difficult to see how higher-order perturbation terms could
alter this fundamental fact and the consequent analytic
behavior of the propagator. Of course, in the absence of a
calculation to all orders, it is impossible to rule out the
possibility altogether.

It is evident that several technical problems make the
detection of the noncausal signal difficult. However, none
of the difficulties mentioned above seem to be due to a
fundamental limitation imposed by the laws of quantum
mechanics. This may not be true of the basic assumption
that the source and detector are localized and that there
are no photons present initially. If it were possible to
overcome the technical problems of searching for the
nonacausal signal and it were not found, then the assump-
tion of localization would be suspect. This would require
that a set of conditions be placed on initial conditions
which are more stringent than those presently imposed.
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