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The Hamiltonian formalism for the multidimensional equation X =F(x,x,t) is presented. The
link between the whole variety of Hamiltonians for a given F is established. It is shown that two
equivalent Lagrangians are connected by a chain of successive transformations of the form

L —KL +M where both K and M are constants of the motion.

I. INTRODUCTION

Recently, an alternative approach for constructing a
Lagrangian from its equation of motion (usually known as
the inverse problem of the calculus of variations) has been
presented.! It has been shown that any Lagrangian from
which the regular n-dimensional second-order system of
differential equations

X'=F'(x/,x/1) (1.1)
can be derived, may be written (up to a total time deriva-
tive) as a linear combination of its own equations of
motion (1.1).

As stated in Ref. 1 this universality is much wider than
the usual T —V construction which is valid only when
forces are derivable from a potential.

On the other hand, it is sometimes impossible to find a
(second-order) Lagrangian depending on x/,x/, and t
only, from which arbitrary equations of the type (1.1)
could be obtained.>>

These results are of fundamental importance not only
in the understanding of classical systems, but for their
quantizations. In fact, the whole set of equivalent La-
grangians (and Hamiltonians) of a given physical system
can be treated on the same footing, the peculiarities distin-
guishing one from another being completely contained in
the coefficients of the linear combination. There are,
however, two important issues to be addressed before any
quantization scheme is attempted: (a) the complete
canonical treatment for acceleration-dependent Lagrang-
ian systems; and (b) an interpretation for the ambiguities
residing in the infinite classes of classical equivalent La-
grangians. In this paper we discuss the above-mentioned
problems at the classical level. The treatment of the
quantization problem will be presented elsewhere.*

In Sec. II the canonical formalism for Lagrangians
L (x,x,x,t) is presented, following the method of Lanc-
zos.> This method introduces a number of auxiliary vari-
ables and the resulting constraints are treated in Sec. III
using Dirac’s formalism for constrained Hamiltonian sys-
tems.® Section IV is devoted to the discussion of the
transformations that link equivalent Lagrangians. Some
open problems and prospects at the quantum level are
presented in Sec. V.

II. a LAGRANGIANS AND THEIR HAMILTONIANS

The so-called inverse problem of the calculus of varia-
tions for classical mechanics has been largely studied! >’
and a variety of approaches exists. For the present pur-
pose, however, it is sufficient to recall that the whole set
of s-equivalent Lagrangians® that originate the equations
of motion

X —Fix/%11)=0 (2.1

can be written as'

L=L(x\x7x70)=p;(x/,x 7, t)[x ' —F(x),%7,0] 2.2)

provided
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The symbol d/dt stands for on-shell time derivative;
i.e.,
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Note that Eq. (2.3) implies that there exists a function
A(x',x",1) such that ;= —3A/3x ' (see Ref. 1) and con-
sequently L =L +dA /dt depends only on x/, x‘, and t.
This fact would suggest that it suffices to study
acceleration-independent Lagrangians. However, because
of the universality of the form (2.2) already mentioned in
the Introduction, it deserves special attention. Moreover,
it seems necessary to construct the associated Hamiltonian
formalism—provided it exists—to compare the quantum
behavior generated by L and L.

The complete set of solutions of (2.3)—(2.5) is given by

aC aC aC
2 +C .4.+"' +Can—i .27’
dx ' ox ' dx '

Hi= Cl s (2.7)
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where the C;=C;(x’/,x/,t) are 2n functionally indepen-
dent constants of the motion of Eq. (2.1).

Care should be taken in using the correct Euler-
Lagrange (EL) operator E; to derive Eq. (2.1) from La-
grangian (2.2); i.e.,

d®> 9

dr? axi

d 3 3
dt 3xi Ax'

We now want to emphasize that (2.2), together with
(2.7), solves completely the problem of finding a Lagrang-
ian from the equations of motion. Any other Lagrangian
L that gives rise to the same equations is necessarily of
the same form as L modulo a total time derivative of a
function of the coordinates, the velocities, and time:

L=i;(Xx"—F)4+A(x/,% 1) . 2.9)

The Hamiltonian formalism for Lagrangian (2.9) will
be constructed closely following Lanczos’s procedure for
Lagrangians containing higher than first derivatives.” By
adding extra variables, the variational problem will be
converted into another one which does not involve deriva-
tives higher than the first. From now on, indices will be
dropped and we will work formally in one dimension but
all the results can be extended to an arbitrary number of
degrees of freedom.

Let us define new variables v and a as

(2.10)
(2.11)

Then we can incorporate (2.10) and (2.11) into (2.9). In
addition, to ensure that the above equations hold, we add
them to the Lagrangian as subsidiary (constraint) condi-
tions with appropriate Lagrange multipliers » and a that
should be considered as new variables as well.

Thus, our starting point will be of the modified La-
grangian

L'=u(x,v,0)[a —F(x,0,0)] +o(x —v)+a(v —a)

+AL,a+Av+A, (2.12)

(the subscript ,x denotes differentiation with respect to x,
etc.).
The equation of motion

x —F(x,x,t)=0, (2.13)

the defining equations (2.10) and (2.11), and the equations
for the Lagrange multipliers @ and a are obtained from
L' by independent variations of x, v, a, o, and a, as can
easily be verified.

To construct the associated Hamiltonian, the canonical
momenta conjugated to x, v, a, ®, and @ must be calculat-
ed. From (2.12),

pxsaﬁl_'zw , (2.14a)
ox

UEE)L_:a s (2.14b)
v

pazégz , (2.14¢)
da
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PmE§£.=0 , (2.14d)
dw
pa=2L o (2.14e)
da
The Hamiltonian is then
H=p,v+pa—pula—F)—A,a—A,v—A,. (2.15)

Equations (2.14) constitute a set of constraints in the
sense that they do not allow us to solve the velocities in
terms of the momenta and the coordinates. Consequently,
to reach a consistent Hamiltonian picture use of Dirac’s
formalism for constrained systems® has to be made.

III. DIRAC’S METHOD FOR X —F(x,x,t)=0

Because of the fact that Egs. (2.14) do not contain ve-
locities at all, there are five primary constraints:

b1=py—w=~0, (3.1
$,=p,—a=0, (3.2)
¢3=p,=0, (3.3)
ba=pa~0, (3.4)
bs=p, ~0 . (3.5)

In order to get the correct equations of motion with the
usual Poisson brackets (PB’s) one must allow arbitrary
linear combinations of these constraints to be added to the
Hamiltonian (2.15):

H' =H +\'¢;

=pv +pya —pla —F)—3A+Aig; . (3.6)

Here, the A’ are Lagrange multipliers and the 3 denotes
total time derivative of any function of x, x, and ¢, where
x and X have been replaced by v and a, respectively.

The Poisson brackets are

[x4,pp]l=67 (3.7)

with the identification x!=x, x?’=v, x’=a, x*=o0,

x’=a, etc.

Consistency requires that the constraints must be
preserved in time, so their time derivatives should also be
weakly zero:

: a¢;

¢i=[¢),H']|+——=0, (3.8)
at

dr1=[ula —F) +A,a+A v0+A,],—A=0, (3.9

1= —pe+[la—F)+A,a+A0+A,],—=0,

(3.10)
=1, =0, (3.11)
ds=A,=0, (3.12)
bs=—p,+pn+A,~0. (3.13)

Equations (3.9)—(3.12) determine A,, A, A3, A4, Whereas
Eq. (3.13) is a new (secondary) constraint.
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Let us impose that this new constraint,

$¢=—pytu+A,=0, (3.14)
be maintained in time
$e=3u+3(A ,)—[py,H']
=3u+3(A ) +p,—[ula —F)] ,—(dA) ,=0. (3.15)

Equations (3.15) is a new constraint that by virtue of the
algebraic identities

A ,)—(BA) ,=—A, (3.16)
and

ou—[pla —F)] ,=uF) ,+u v+p, (3.17)
can be written as

d7=px —A x+(uF) , +p v +u,~0. (3.18)

Imposing once again that the recently born constraint
must be preserved in time, we get an equation for A%, and
hence no new constraints appear in the theory.

The equations of motion are derived from the total
Hamiltonian (where all the constraints are now incor-
porated)

Hr=p.,v+p,a—pla —F)—dA+N¢;, i=1,...,7,
(3.19)
in the usual way:
X=[x,Hy]=v+A'+A7, (3.20a)
v=[v,Hy]=a +A\*—A%, (3.20b)
o=[w,Hr]=A*, (3.20c)
a=[a,Hr]=A%, (3.20d)
a=[a,Hy]=M\°, (3.20e)
px=[px,Hrl=[pla —F)+3A] . —A%u+A,) .
—A[(uF) ,+p o+p,—A ]y, (3.200)

pv :[pv’HT] = —Px +[.u‘(a —F)+aA],u —}\6(/~L+A,u ),v

—A[(F) y+pv+pu,—ALl, , (3.20g
Po=[pu,Hr]=A", (3.20h)
Pa=[pa,Hr1=2%, (3.20i)
Pa=[pa,Hr]=—p,+pn+A, . (3.20)

Out of all the constraints ¢;,i=1,...,7, only ¢s is
first class (it has vanishing PB’s with all the rest), it
occurs because a has no dynamical equations and there-
fore p, is an arbitrary parameter of the theory. The six
remaining constraints are second class (have nonvanishing
PB’s among themselves) and arise from the introduction
of the auxiliary variables v, @, w, a, and their conjugate
momenta. These variables are redundant in the sense that
they do not correspond to genuine independent degrees of
freedom and therefore should be eventually eliminated
from the theory. This can be done in a systematic manner
by defining the Dirac brackets.” We do this in two stages:
(a) eliminate ¢,, ¢,, &3, and ¢4, defining the one-star

brackets [ , ]* and (b) eliminates ¢¢, ¢; via the two-star
brackets [ , ]**.
(a) Define

Cij=I[¢i¢;1, iLi=1,...,4, (3.21)
and the brackets
.2]*=[y,2]1—-[»,¢:1C ;[ 8;,2] , (3.22)

where C ! is the inverse matrix of C defined in (3.21):

o 0 10
o 0 01

c'=1_{ o0 0o (3.23)
0 —100

The only nonvanishing brackets of any pair of variables of
the set x, v, w, @, a and their conjugate momenta are

[x,0]*=[x,px]* =[v,a]* =[v,p,1* =[a,p,]*=1. (3.24)

Since the star brackets of any dynamical function with the
constraints ¢;,...,d, vanishes identically, we can now
set these constraints strongly to zero, solve the corre-
sponding strong equations for redundant variables o, a,
Pws Po and substitute them whenever they occur. This
amounts to simply dropping @1, . . . , ¢4 from Hp:

H*ZHT | ... 84=0
=p,v+p,a —ula —F)—dA+Aip;, i=5,6,7. (3.25)

The only remaining variables are now x, v, a and their
conjugate momenta.

In order to (b) eliminate ¢¢ and ¢; we define the 22
matrix

Dj;=[7;m;], L,i=12, (3.26)
and the (two-star) brackets
[y)z]**:[y’z]*—[y’ni]Dnlij[nij] ’ (327)
where, by definition DD ~'=TI and n; =¢s,;. Then
0o o
with
O=[(uF) ,+p v+, ], +H1x - (3.29)

The quantity & is different from zero as required by
Eq. (2.5) so that

0o —o!
o' 0
is well defined.

Upon setting ¢s=¢;=0, the only subsisting indepen-
dent dynamical variables are x and v. Hence, the only in-
dependent, nontrivial brackets left is

1
[(uF) ,+po+m, ], +px

The constraints 77, and 77, are now set strongly equal to
Zero so

D '= (3.30)

[x,U]**:

(3.31)
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po=p+A, (3.32)
and

Px=Ax—[(uF) ,+p v+un,]. (3.33)
The Hamiltonian is then

H**=—[(uF) ,+pu v+u, Jo+pF —A, . (3.34)

Since u, A, and F are functions of x, v, and ¢, no further
reduction can be carried out.

It should be stressed that although the dynamical vari-
ables are x and v, they are not in general the canonical
conjugates of each other with respect to the two-star
brackets. In fact, the canonical conjugate of x can be
checked to be the quantity

m(x,0,t) = — ((uF),,,+u,xv +p,+ f,u,xdv +P(x,1) |,

(3.35)

where P(x,t) is an arbitrary function of x and ¢.
In terms of it, the Hamiltonian (3.34) takes the form

H**(x,mt)= [‘n--i—p—o— f,u,xdv]v +uF —A,, (3.36)

where v is an implicit function of x, 7, and t.

It is apparent from the form of the PB’s [x,v]** [see
Eq. (3.31)] that different choices of the functions p might
in general give rise to different realizations of the canoni-
cal algebra and, therefore, to different quantum theories,
originating from the same classical equation (2.1).

In the multidimensional case, Eq. (3.31) reads

[x v/ ]**=—w¥, (3.37)
where W is the inverse matrix of
d oFk I
= | - —_—, (3.38)
Y axd darti TR Ax ! * ax'

M is a (symmetric) nonsingular matrix as ensured by Eq.
(2.5). On the other hand, if 7; is defined through

[x'm1=8} (3.39)
then Eq. (3.37) implies that
ok —M . (3.40)
X

These facts confirm that now there are no constraints left
in the theory since all velocities can be expressed as func-
tions of coordinate and momenta (7).

Moreover, by virtue of the symmetry of M,

amr; 2
Tk (3.41)
axk  ax/

Thus, relation (3.35) can be written in the general case

a k alu’l k alul
I < R L3 WLl hindd
i o DTS

9 )
+ [ a’;" d% %4 p.(xL1) (3.42)

i

IV. LINK BETWEEN EQUIVALENT LAGRANGIANS
(AND HAMILTONIANS)

As we already know, the most general solution of Egs.
(2.3)—(2.5) is given by
aC, aC, aC,,
S+ G+ + G
ox’ ox/ Ax/

/sz(xi,x. i,t)—’:CI

>

(4.1)

where the C; are 2n suitably chosen functionally indepen-
dent constants of motion of Eq. (2.1).
We will now show that any other choice for y;, say,

8C, . 9C, _ 3C;,
—+C T+ +Cy
dx/ dx/ ox/

(4.2)

/‘Ij(xi’-x; iyt)___é]

can be obtained from (4.1) by iteration of the following
transformation process:

u—Ku+M, , (4.3)

where K and M are (matrix functions of) appropriately
selected constants of motion. To see this it suffices to ob-
serve that multiplication of u by any function K generates
extra terms proportional to (dK /dt) or (d *K /dt?) in Eq.
(2.4) for u. Thus, if K is a constant of the motion (i.e.,
K =0 on shell), Ku is a solution of the equation for u as
well. Furthermore, if we add a term of the form M ,
[with (dM /dt)=0] to any solution of (2.4) one obtains the
extra term

d

dt | dt dt

X

am _[éﬂ_f

which vanishes identically.

As can easily be verified, u; can be turned into j; if it
is acted upon (2n + 1) transformations of the type (4.3)
defined by

K, =C,y _3(Cy )" ! withC_,=1,
4.4)
M;=—Cy
fors=1,2,...,n,and

Ki=Cyi_ny—3[Cops_m_117"
with 5_1 arbitrary, (?‘2,,+1 =1,
4.5)

MS=(~?2(S_,,] with 62n+250
for s=n+1, n +2,..., 2n+1. Consequently, any two
Lagrangians L, L which are constructed in the form (2.2)

from p and [, respectively, are related by successive
transformations of the form

L—KL+M ,(X—F) . (4.6)

Correspondingly, as it can be deduced from (3.34) and
using the constancy of K and M, the associated Hamil-
tonians can be found by iteration of

H—KH-M, . @.7)
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V. QUANTIZATION: OPEN PROBLEMS
AND PROSPECTS

In the preceding section we have outlined the canonical
framework for the whole set of Lagrangians generating
the same classical orbits. This can be done directly from
the equations of motion of the system.

This could be the starting point for a quantization of
such systems. One is immediately faced, however, with
the usual problems and ambiguities connected with the in-
version of the limiting process #—0: given the classical
limit (#=0) of some quantum theory, how can we unam-
biguously reproduce the original theory (#5£0)?

In the present case, over and above the usual ordering
problem!© for the operators in the quantum Hamiltonian,
etc., we have a new source of ambiguity, namely, among
the whole set of choices of the functions u, which one
should be chosen (if there is more than one) when we try
to realize the algebra (3.31)? Are different choices of p
equivalent? If so, in what sense? In order to shed some
light on these issues, which will be more extensively dis-
cussed elsewhere,* let us consider two Lagrangians con-
nected by a single transformation of the type (4.6). This
relation can be written in the more familiar form

E=kL+%Mm, (5.1
dt

where use has been made of the property that M is a con-
stant of the motion. Consider the particular case K =1.
Now, Eq. (5.1) reduces to the standard result that two La-
grangians differing by a total time derivative give the
same EL equations. This is true irrespective of the nature
of M: the (appropriate) EL operator vanishes identically
on any total time derivative. In the particular case where
the function whose total derivative is added to L depends
on x and ¢ only, this transformation corresponds to a
gauge transformation in the quantum theory. To illus-
trate this, consider the case of one degree of freedom with
the simple Lagrangian

L=+x2—V(x) (5.2)
and its equivalent
L=L +Alx,1). (5.3)
The corresponding canonical momenta are
p=L x| (5.4)
0x
=L AL —p+A,, (5.5
ax
and, therefore, the Hamiltonians are, respectively,
2
H= 1’7 +V (5.6)
and
H=2F—A)?+V—-A,. (5.7)

Following the usual correspondence rule of substituting
the canonical momenta conjugate to a variable z by
—i#(0/3z) and H by i#(3/dt), one obtains the

Schrodinger representations associated to (5.6) and (5.7) as

~ # 32 .3
Hy=|-= ax2+V(x) Yix, =i 40x0) (5.8)
and

A 1{ . a ?
Hy=|— |ific—+A, | +V(x)—A, |$(x,0)

2 ox ’ ’

9 ~

=i o(x,1) . (5.9)

At first glance, Egs. (5.8) and (5.9) may seem to
describe completely different systems due to the arbitrari-
ness of the function A. Their equivalence, however, can
be manifestly exhibited if

J:eiA(x,t)w

is replaced in Eq. (5.9). Thus, the addition of a total time
derivative into the Lagrangian can be compensated by the
local gauge transformation (5.10). This result, neverthe-
less, breaks down if A is a function of x as well,!! since in
that case x is a much more complicated function of x and
px and consequently H is not simply a quadratic expres-
sion in (F—A ,). As a result of this, the relation between
the different pictures will not be of the form (5.10). It
should be mentioned though that in particularly simple
cases (e.g., A linear in x), the complications are manage-
able and one can still prove the equivalence of the quan-
tum theories derived from the classical Lagrangians relat-
ed in this manner. This is the case of the supersymmetric
point particle,'> where under a supersymmetry transfor-
mation, the Lagrangian changes by a total time derivative
of a function linear in the coordinates and velocities in the
right combination.*

In the general case, when K is an arbitrary constant of
the motion, the problem becomes extremely difficult and
delicate. We only mention here, for the sake of complete-
ness, that in general the transformation that links i with
¥ will not be a simple change of basis in the Hilbert space,
so that the classical equivalence will not be automatically
extendible to the quantum theory.

(5.10)

VI. CONCLUDING REMARKS

We have carried out the Hamiltonian analysis for the
whole class of Lagrangians that give rise to the same clas-
sical orbits. This is done via acceleration-dependent La-
grangians taking advantage of the fact that any Lagrang-
ian can be written generically as a linear combination of
its own equations of motion. After all the redundant vari-
ables of the theory are removed using Dirac’s method, it is
shown how the freedom in the choice of Lagrangians is
mapped into the Poisson-brackets algebra.'?

The quantum realizations are expected to be radically
different depending on the choice of the Lagrangian:'* in
some cases (such as L =T —V, for instance), the right-
hand side of the algebra of PB’s consists of constants (c
numbers in the quantum theory) whereas for another s-
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equivalent Lagrangian they are functions of the dynami-
cal variables (operators in the quantized version). The
problem of the s-equivalent Lagrangians is reduced to the
class of transformations involving multiplication by arbi-
trary constants of motion and addition of total time
derivatives of them. This scheme makes apparent that the
main obstacle for the quantization of an arbitrary classical
system will be to understand how the classical equivalence
is reflected at the quantum level.
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