
PHYSICAL REVIEW D VOLUME 35, NUMBER 12 15 JUNE 1987

Unstable compactification in ten-dimensional theories
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We discuss the stability of ten-dimensional Einstein-Maxwell and Einstein-Maxwell-scalar
theories with M& &(S &&S &S compactification. Although these theories are able to accommodate
chiral fermions, it is found that this compactification contains tachyonic modes. As a result the
M4)&S )&S &S does not exist as a true background state.

I. INTRODUCTION

Some possibilities have appeared to unify all four in-
teractions in a consistent way by superstring theories. '

These superstring theories can compactify to four dimen-
sions with Calabi- Yau space, so that this compactification
provides a phenomenologically acceptable model. Note
that Calabi- Yau space exists only as an approximate
ground state. In order that this space exists as an exact
ground state, two difficulties should be evident: one is the
lack of an apparent dynamical reason for the particular
spontaneous compactification M &o ~M4 )&M and the
other is the lack of a dynamical explanation for singling
out a Calabi-Yau space among all possible Ricci-flat com-
pact mani folds.

On the other hand, the stability of compactification of
higher-dimensional theories is crucial for the true physical
ground state. ' The reason is that the flat-space-time
procedure for obtaining the true vacuum state must be
modified, since in the presence of gravity there is no
universal conserved energy functional which allows us to
compare the energies of two field configurations. To in-
vestigate the classical stability of the nonlinear system
means to assess the reliability of the linearized approxima-
tion. Stability refers to the persistence of some properties
under certain perturbations. It is required that classical
stability of the vacuum under small perturbations be a
necessary condition for stability in the complete quantum
theory.

It seems that the full analysis of the stability for
M4&(Calabi-Yau space) is almost impossible, due to the
unknown metric of Calabi-Yau space and the complexity
of superstring theories. In this paper, we wish to study
thoroughly the stability of M4&S &(S &(S compactifi-
cation in ten-dimensional Einstein-Maxwell and Einstein-
Maxwell-scalar theories. We note that these models do
not have the same field content as in the case of super-
string theories. Further, M«S &S &S does not exist
as the exact ground-state solution. However, this compac-
tification is phenomenologically acceptable, since this is
able to accommodate chiral fermions. It is thus impor-
tant to analyze completely the stability of

M4)&S &&S &S compactification within the restricted
models, which gives M4 &S && S &S compactification
and provides then the complete analysis of classical stabil-
ity.

Before we proceed, it is useful to review the general
procedure of stability analysis in higher-dimensional
theories. " We look first for a solution to classical
equations. We expand fields around their background
values and then express the Lagrangian in terms of the
fluctuation fields. From the bilinear parts of the La-
grangian we obtain the linearized equations, which govern
the propagation of the fluctuation fields. Also these
linearized equations can be obtained by linearizing the
classical equations. These are solved to express the per-
turbation fields in terms of external sources. Finally these
isolated fields are substituted into the bilinear Lagrangian
to obtain the fluctuation Green's functions. If the classi-
cal background state is stable, it requires that the Green's
functions all do not contain a tachyon (negative mass
square) or ghost (negative-norm state).

In Sec. II we describe the criterion on the classical sta-
bility: the tachyon and ghost. Section III is devoted to
the analysis of the stability of the Einstein-Maxwell
theory. In Sec. IV the Einstein-Maxwell-scalar system is
introduced to see the effects of a scalar field on the stabili-
ty of the Einstein-Maxwell system. Finally we discuss the
stability of monopole compactification in Sec. V.

II. CRITERION ON STABILITY:
TACHYON AND GHOST

The constraints for not having a ghost and tachyon fol-
low from the requirement of having a real mass and
positive-definite residue at the pole. Although the condi-
tion of real mass is obvious, the requirement of a
positive-definite state needs some explanations. The ex-
istence of a ghost appears to cause theory to either violate
unitarity requirements or to allow negative-energy states.
Unlike the gauge ghost, which cannot appear on the exter-
nal legs in a Feynman diagram, the ghost can in fact
propagate. To distinguish it from the gauge ghost, it is
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sometimes called a "poltergeist, " a noisy and mischievous
ghost. ' For simplicity, let us consider for a moment
quantum electrodynamics (QED), where the same situa-
tion as quantum gravity exists. We require the unitarity
for the photon-photon scattering S matrix to maintain
the physical significance. Using the Ward identity for
photon-photon scattering, the sum over the scalar photon
Ao and longitudinal-polarized photon A3 contributes pre-
cisely zero. To be more specific, the negative probability
state of the scalar photon which is the longitudinal-
polarized state has canceled against the positive longitudi-
nal probability state. Then this leaves two transverse
states which have a positive probability. In other words,
the restriction of the S matrix to the space of transversely
polarized photons provides us with a unitary operator.
The unitarity gets rid of the unphysical components Ap
and A3 in QED. Since the S-matrix element is just the
Green's function with the external legs removed and with
the external momenta put on the mass shell, all Green's
functions should be positive definite at the pole.

On the other hand, the unitarity of QED is achieved in
a nonperturbative way (canonical formalism). ' It is al-
ready known that the Ward identities guarantee unitarity
in QED. For an explicit example, let us consider the
four-dimensional QED Lagrangian as

A p
——Ap+ ehpco, g' =g+ eB,

cu'=u, B'=B, (2.8)

where g is the Lagrangian multiplier and co comes from
the U(1) gauge transformation (A„—A~+8„co). via the
Noether procedure we also can obtain the generator Qs of
BRS symmetry. Then the physical vacuum can be de-
fined by

QB l0~ (2.9)

W = —V —g ( —5R +aR +pRMiv R

+yRmivj ~R ), (2.10)

where 5 is positive constant with dimension of (mass) and
a,p, y are constants with dimension of (mass)'. From the
Lagrangian we obtain the field equation

Kugo and Ojima have shown that (2.9) reproduces (2.5).
However, in path-integral quantization, the maintenance
of unitarity is not as easily achieved as in the canonical
formalism. Now we wish to show an explicit example for
this purpose. In order to include both the effects of
higher dimensions and curvature-squared terms, let us
consider the five-dimensional pure gravity with squared
terms as'

WEED = —
4 F„,F"'+Br)„A"+—,$B (2.1) 0

RMN (2.1 1)
where B is an auxiliary scalar field. Note that the /=1
case corresponds to the Feynman gauge. The equation of
motion leads to

A~ —a~a.A =a~B, (2.2)

i3„A"+gB =0 .

Eliminating B from (2.2) by means of (2.3), we obtain

(2.3)

g~ + ——1 BB A =0. (2.4)

a ke ' +a ke''d k

[(27r) 2']'~
with co=(k )'~ . Here a (k) and at(k) satisfy the follow-
ing commutation rules:

(2.6)

[a(k),at(k')]=6 (k —k'),
[a (k),a (k ')]=[a (k),at(k ')]=0 .

(2.7)

Note that the Becchi-Rouet-Stora (BRS) symmetry is all
that is required to guarantee the Ward identity in QED.
Adding the —g co term, which comes from the gauge in-
variance of (2.3) to (2.1), this Lagrangian is invariant
under the infinitesimal BRS transformation:

Further from these equations we learn that B =0 and
0 A =0, so that both B and B.A are free fields. In this

case, the subsidiary condition for getting rid of the un-
physical states Ao and A3 is

B+(x)
~
0)phy, ——0, (2.5)

where B+ is the positive-frequency (annihilating) part of
B as

which corresponds to M4&S' background geometry. To
see whether or not this background really exists, we need
the small fluctuation analysis. According to the general
procedure of stability analysis, we obtain the massive pole
terms as

1
massive 4

p +M
p+4y

(P+4y)(p'+M') +6

I ~ij 3 ~ij +kk
I

where M =(n!2nR) with the radius of extra circle R.
We observe from (2.12) that the only p= —4y and ~=y
case avoids the negative-norm state (ghost). Here the rela-
tion a=y comes from the Bianchi identity for graviton.

III. EINSTEIN-MAXWELL THEORY

The D-dimensional Einstein-Maxwell theory with
cosmological constants k is

—fd xV' —g 2
R + 4F~~F +A,

K
(3.1)

(3.2)

where R is the curvature scalar with R~~=Rp~~, the
metric is ( —+ + + . . + ). The index M is split into
p=0, 1,2, 3; m&

——4, 5; m& ——6.7; m3 ——8,9. Here K is the
ten-dimensional gravitational coupling. The field equa-
tions for graviton and Maxwell parts are

R K'F Fp F' 2+ 2(2 D) g~+
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VMF =0. (3.3) and other terms vanish. The small fluctuation of RM& is

In this paper dimensions D is chosen to be 10 and this
space is compactified into Mq XS XS XS by giving the
following vacuum expectation values:

Q 1

5RM~ =K( , A—hM~ +V(MV hz)g —, V—(~V&)hg )

with the Lichnerowicz operator AhMN ..

(3.11)

n&
Fm n

= ~m n
1 2 a 2 1

ea&

n2
Fmn = ~mn2 2 2ea2

n3
Fm n = 2&mn3

2ea 3

(3.4)

AhM~ = — hM~ —2R~p~gh +2R (Mph)v) . (3.12)

The symmetrization (antisymmetrization) with unit
strength is shown by round (square) brackets. The gauge
is fixed to eliminate dependent fields corresponding to the
invariance of general coordinate and Abelian gauge
transformations as

The lower latin indices starting from the middle with sub-
scripts 1, 2, and 3 refer to the world indices of
S )&S &&S, respectively. Here n; and a; are the mono-
pole charges and radii of each S, and e is the gauge cou-
pling constant of U(1) interactions. To give Minkowski-
space compactification, the cosmological constant is ad-
justed as

VAh B ———,
' VBhA, VAa =0 . (3.13)

O(hzz —,'gzzhc )—+2R(~ch ~)

The linearized equations of (3.2) and (3.3) in tangent
frames with external sources T„~ and J„are

3

,'F"=—
2ea; 2

2

(3.5)
+2&F(pcs) —

2 K7/ggF fcD ———Tg~,o c OCD

V"f~g+vV"( —,
'

h cog 2h(g Fc~—) = —J~ .

(3.14)

(3.15)

2

a; —K
2 2

8e
(3.6)

The radii of S )&S XS are related to the monopole
charges as Here we have introduced external sources to obtain the

fluctuation Green's functions. As a result of the Bianchi
identity for a graviton, these satisfy the source conserva-
tion law:

Then the vacuum expectation values of FAB can be writ-
ten in the tangent frame as

TAB KFOBc

VAJ =0.

(3.16)

(3.17)

Q V2 Q V2 Q V2
45 ~ 67 ~ 89

Ka) KQ2 KQ3
(3.7)

The stability of this compactification will be determined
by examining the tachyonic modes in the linearized level.
The fields are expanded around the background state:

0
RMN gMN +KhMN (3.8)

0
~M ~M +QM (3.9)

0 0
R44 =R44 =— 1 o o

R66 ——R77 ———
Q 1 Q 2

(3.10)
o oR 88

——R99 ———
Q 3

where a superscript zero denotes the background values.
The backgrounds for the Ricci tensor in tangent frames
are read from (3.2) as

For a ten-dimensional massless graviton, there are 35 in-
dependent components. ' Considering both the ten-
dimensional symmetric tensor and the gauge condition in
(3.13), we find that there exist 45 components. The
remaining ten dependent components can be eliminated
from the above conservation law.

In practical calculations, the computation would be
rather difficult because of the curved background associ-
ated with the three two-spheres. To cope with this it is
useful to expand all fields and sources in spherical har-
monics on each two-sphere. The symmetry group of the
background includes rotations of three two-spheres cou-
pled to appropriate frame rotations and three U(l) gauge
transformations. For an explicit example, let us choose
the two-sphere as a SU(2)/U(1). The frame rotations are
determined by the invariance e (y), y =x&,x&, a =+,—,
and the U(1) transformations by the invariance of e (y).
A left translation g of the quotient space SU(2)/U(1)
(parametrized by the representative elements L») induces
a U(1) rotation h, such that gL» =L» h. On writing
h =exp(/gal), one finds
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e —+(y') =e —+(y)exp(+i g),
e'(y') =e'(y) —dg .

(3.18)

Invariance of the background under rotation of the two-
sphere is obtained if the frames e +—are rotated through g
and the Maxwell field A~ undergoes a gauge transforma-
tion with the parameter A=n]gl2 as

(3.19)

This is quite enough to give invariance under x-
independent left translations. In other words, rotations of
the two-sphere must be associated with tangent space ro-
tations in the 4-5 plane in order to preserve the form of
the background. Therefore, the fluctuation fields to be
expanded (h44, hss, h45, . . . ) must first be rearranged into
irreducible pieces of SO(2), the tangent space group of the
two-sphere. In general, the tangent space group of D-
dimensional space is SO(D). The reason is that the prin-
ciple of equivalence requires that the special relativity
should apply in a locally inertial frame, and in particular,
that it should make no difference which locally inertial
frame we choose at each point. Note that the background
state is invariant under the transformations of Poincare
X(SU(2) XU(1))]X(SU(2) XU(1))2X(SU(2) X U(1))3
where the subscripts 1,2,3 denote each two-sphere, respec-
tively.

After the harmonic expansions are performed, the

four-dimensional scalars are given by

h+] ] ———,(h44+h, s), h+2 2 = —,(h«+h77),
l

h+3 3 ———, (hgg+h99)

h+]~] ———,
' (h« —hss+2ih45),

h ~2+2 ———,(h66 —h77+2ih67),

h+3+3 =
& (hgg —h99+2]hg9)

/l +]+2 —l (h46 h57+lh{)5 +lh47 )

h+]+3 l (h4g h59+l/lsg+lh49)

h+2+3 ———,(h 6g
—h 57+ ]/l 7g+ih 69 ),

h+]+q ——,
'

(h4—6+h57+ih56+ih47),

/l+]+3 T(h4g+h59+l/l5g lh49)

/]+2+3 =
7 (/l6g+h57+lh7g 69)

(3.20)

Q+) = 1 1

v'2 (a4+ias ), a+3 —— (a6+ia7)
2

1
a+3 —— (ag+ia9) .

2

Labeling the isohelicity of each two-sphere as (A.],A2, /. 3),
then h ]+3 has ( —1, 1,0). The four-dimensional graviton
h,b, its trace h, ', vector Q„and the above scalars satisfy
the following linearized equations of motion:

3
p2+ ~i,

h, '+4 g h+, , +4 g (a+, —a;)= —T, ',
l

(3.21)

p2
Qi

h &+2 g h +i]h+j —j
4

h+~
Qj

P +g h, +j+
i Qi

v 2P.
Qj

~i,
Q+j+ ~

Q =T +j
Qj

—2 2 (a+ —a &)
—g (a+,.—a;) = 2T+j j, (3 22)—

Qj i Ql-

(3.23)

L;+g 2 2 h+j+j T+j+j
Q Q

(3.24)

L; QLk akP +g h+j+k+ 1+
Qj

~i,
Q+j+

Qj

Qj1+
Qk

Q+k T+j+k (3.25)

L; V'Lk akP +g h+j+k+ 1—
Q i Q Qj

L;

l l

Q+J+
Qj

Qj
Q+k ——T j+k

Qk
(3.26)

(3.27)

L;l

i

Q;—1+ ~+j+;
Qj

1Vi,
2 Qj
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QL, —2
v 2P'T. , +

Q)

(T+ +;+T+J; ) =+ J+J, (3.29)

~i,v 2P T~b +g ( T~+,. +T~; ) =0,
a;

(3.30)

vL,
v 2P'J, +g (J+;+J;)=0.

ag
(3.31)

with L ] ——1;(1;+1). Here a11 indices i,j,k run from 1 to 3.
The harmonic expansions of the source conservation laws
are

To isolate the true physical modes, we follow the pro-
cedure of Refs. 8—11. Solving the fields in terms of
sources requires a 29 X 29 matrix. However a 29 & 29 ma-
trix is split into 16&(16 and 13&13 matrices by the fol-
lowing linear combinations of fields. The former one is
composed o h'„h+J J (a+i.—a ~), (h, +, —h, j)7
(h J+k+h+~. k) for j&k, and (h+J+], +h ~ k) for
j~k. The latter consists of (a+J+a J), (h, +~

—h, ~),
(h z+k —h+J k) for j~k, (h+J+k —h z k) for j&k,
and a, . Note that the repeated indices j and k do not
mean to sum over j and k. At this stage it seems that the
analytic computation for all different l; and a; is not
feasible. However, as suggested by our previous work, "
the analytic computations can be carried out for
a1 ——az ——a3 ——a, l;=1~=1, and lk ——0. We choose here
l1 ——l2 ——1 and l3 ——0. Let us first consider a 16)& 16 ma-
trix. This reduces to 9)&9 and 4X4 matrices with three
decoupling combinations (h+J+k+h z k). The 4X4
matrix is composed of (a+& —a z), (h, +z+h, q),
(h ]+~+h+] ~), and (h z+&+h+z &). The fields of
the 4&4 form are

a+3 —a 3
——S1 —— 1

(P +M )(P +M )

2I. 2v'L v2X P + z (J+z —J p) —
z (T z+3+T+z 3+T ]+3+T+] 3)— P'(Tg+3+Tg 3)a a a

(3.32)

ha+3+ha
1

+3+T +T
p2+

Q

(3.33)

h+1 3
—h

1
+1—3 + ~ —1+3T

p +

2v'L

Q
(3.34)

h+2 3+h 1
+2 —3 + —2+3T +T

p2+
a

2vL
Q

(3.35)

where

2(L+/2L )
1+

a
(3.36)

The system of the 9&9 matrix is further split into 6&6 and 3)& 3 matrices by the following combinations. The former
is composed of h;, (h+] ]+h+z z), h+q z, (a+] —a, +a+z —a z), (h + +h, ]+h +z+h, z), and
( +, z+h ]+z). The latter consists of (h+], —h+z z), (h, +,+h, , —h, +z —h, ]), and (a+] —a ] —a+z+a z).
From the fields of the 6& 6 matrix, we obtain the relevant physical poles:
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a~) —Q )+a~2 —Q 4

g(P ~M4; )

2Pz~, (4L ~1) Pz~, (L ~1}
a a

2 2L 4&L
X P'+, (~~) —J )+J~z —I z)—,(T~i z+T—i+z)

Q a

v'2
P'(T, ~)+T, )+T,~z+T, z)

2mL, , 2 2I.
3P ~ (3L ~2) P ~ (T~) ) ~T~z z)

a Q Q

P+ 2+ 2
T''2I. 2 (3.37)

'3
4 2L I 2I.+ (P'~M„, ')=2 P'~, ~, Pz~

i=1 Q Q a
2(7L ~4) z 2LP2 ~

Q4 , a2

2
4(4L ~ 1) z 2L 8LP'~, +, L&2) .

a a a

(3.38)

One can easily find the negative pole (tachyonic mass) for L, =Lz ——2 with an arbitrary value of the radius of S . The
explicit results are given by

M4; ———0.41, +3.67, +5.42, +7.83 for a =1 . (3.39)

The residue at this negative pole does not vanish, and hence this pole is not an artifact of gauge. Thus this compactifica-
tion is unstable. The fields from the 3X3 matrix are

a+ &

—a
&

—a+2+a 2 ——52 —— 1

(P ~Mg~ )(P ~M4O )(P +M4 )

—4v'L, 2I.P'+, (T+ i i
—T+z-z)

a Q

+8+ 2+ 2

2I 2

a a
2I.P ~ (J~) —J )

—J~z+J z)
a

1
i
—~+2-2 =

P+ 2+2L 2

Q Q

V'2, 2I. 2Pz~ ~ P(T ~, +T, )
—T ~z —T, z)

a a

2~L
i
—Tiz-z)—

Q

h, ~( ~h, ) ~h, ~2~h,
2IP +

a+1+ a —1+ a+2+ a —2
~ P.S, ,

where
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3

(P +M~+ )(P +M4p )(P +M4 ) = P +
a

—4 P' +' (I. 2)2 4 6
(3.43)

The fields from the 3 & 3 matrix are found to be free from the tachyon for L =2.
The remaining equations of the 13 X 13 matrix can be reduced to 6 & 6 and 4 X 4 matrices with three decoupling fields

(h+J+k —h
& k) for j&k. The 6X6 matrix is further split into 3X3 and 3X3 forms by combining the fields. The

former is given by (a+&+a, +a+&+a ~), (h, +, —h, , +h, +z —h, z), and a, . The latter consists of
(a+, +a, —a+& —a z), (h, +, —h, , —h, +z+h, ~), and (h+& z

—h, +z). The explicit forms of field from the
former are given by

a+1+a 1+a+2+a 2 —S3 ——

2LP+
a

p2+ 2L —1+(4L + 1)'i
a

p2+ 2L —1 —(4L +1)'~~

v'Z, 2I.P + P' T, +1—T, 1+T,+2 —T, 2+
a a

4vi
a4

+(P +M, + )(P +M) )X(J+&+J )+J+p+J p) (3.44)

S4 ——h, + —hg 1+hg +2 —h,

1

(P +M)+ )(p +M) ')
2L 4v'L

P +
q

(T+,—T, )+T, q+—Tg q)+ q
J, —

a a

v'2, 2L
P, P+ S3

a a
(3.45)

aa
2LP+
a

S4+J,
a

(3.46)

The latter of the 3 & 3 matrices are given by

a+1+a 1
—a+2 —a 2

——Sg ——

2L 4v'L
P + q (J+, +J

&

—J+z —J z) —
q (T+, 2

—T 1+2)
a a

v'2
P'(T, +)—T, , —T, +p+T, p)

a
(3.47)

h +1—h, 1
—h +2+h, 2

——S6 ——

2LP+
a

T, +1 —T, 1
—T, +2+ T, P,S (3 48)

h+1 2
—h

2LP+
a

2v'L
T 1+2 T+1—2+ 2 S6

a
(3.49)

The final 4X4 matrix is composed of (a+&+a &), (h, +&
—h, &), (h+» —h &+&), and (h+Q 3 h z+~). The expli-

cit forms of the fields are

a+3 —a 3 —S7 —— 1

(P +M(+ )(P +M, )

2L 2viP + ~ (J+3+J 3) — ~
(T )+3 T+] 3+T /+3 T+p 3)

a a

v'2 P'(T +3 T 3)
a

(3.50)
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ha+3 —ha —3=
2LP+

a+3 a —3 (3.51)

h+i 3
—h i+

2LP +
a

2VL,
T+J 3 T ]+3 2 S7

a
(3.52)

h+2 3
—h

2LP +
a

2&I,
a

(3.53)

We note that all these fields are free from the tachyonic
modes for L& ——L2 ——2 and L3 ——O.

the following vacuum expectation values, in addition to
Eq. (3.4):

IV. EINSTEIN-MAXWELL-SCALAR SYSTEM y'=c . (4.5)

Since the compactification of ten-dimensional
Maxwell-Einstein theory into M4XS XS &S is unsta-
ble, one may try to cure this instability by coupling some
additional fields to the Maxwell-Einstein system. Most
natural candidates motivated by supergravity theories are
scalar, two-, and three-form potentials, or their dual
fields. In this section, we only consider the case where a
scalar field is coupled to the Einstein-Maxwell system as

The cosmological constant is adjusted as

aCF02
4 (4.6)

to give Minkowski-space compactification.
The stability of this compactification will be shown by

the absence of tachyonic modes in the linearized equations
of motion. In addition to Eqs. (3.8) and (3.9) the scalar
field is expanded around the background as

—f d "xv' —g 2
R +~MA~

K

+ —,
' e~&F„F~~+Xe

—~& (4. 1)

(4.7)

The linearized equations of (4.2)—(4.4) in tangent frames
with external sources Tzz, Jz, and J+ coupled to the
linearized fields hzz, Qz, and g are

The field equations are
2

RMN ———BMd BNp — e F FN + pgMN,
K p 1

2 2(x
2

aPF FMN —aP

(4.2)

(4.3)

(h„~ —,
'

h~~h c)+—2R(~ch g)+2e F(~cf~)

+ 2CX+Rg~ — e 7/ggF fcD = —Tgg (4.8)

V"f~I3 aF~qV @+V—'"( , h cFwa 2h(~—Fca)—
ae F~sf —R~~h +——R—p= —J, (4 9)

V~(e aPFMN) 0 (4.4) = —e
— J~.—aC (4.10)

The corn pactification of ten dimensions into four
space-time dimensions with S )&S )&S is achieved by

Following the same procedure as in the previous section,
the linearized equations of motion are given by

3
l h', +.4+ h+;; +4+ ~ (a+;—a;)=—T', ,

l i
(4.11)

P2 y l

ai
h', +2 g h~;; —h+~

4 4a
2 "+j—j

Qj Qj

—2 2 ,' (a+I —a, ) —g
QL„'

(a+, —a;) = 2T+J z, (4.12)—
a,

P +g h, ~~—
i Qi

(2eac) izz

aa+j+ 2 a = Ta+j
Qj Qj

(4.13)
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L; V Lk ak
2 A+J+k+ 2

1+
a; ak QJ.

P +g z —,h+J+, =T+,+J,
~ a aJ

+J-
QJ

QJ
1 + a+k —T+j+k

Qk

(4.14)

(4.15)

L;P +g h+j+k+
i Qi

1—
Qk

Qk

QJ
a+J+ 2

QJ

aJ
a+k T+j+k ~

Qk
(4.16)

L; ~L;
a, —g (h, +,. —h, ;)=e J,

l l

I., ~i,
J — 2 C i/2 J J ~~+ +ia +

a. a. (e aC) 1/2 ++—1 2( aC)1/2
J I~J l

a;
h+J+;

aJ

(4.17)

L;

!~j l

a~i& 1 ~i.)
—J+i 2 aC 1/2 + 2 aC 1/2aj (e ) 2 aj. (e

(4.18)

L;P'+g g —g (a+; —a;)——g + Q q =J4a' +' ' 2 a2 2 a2 (4.19)

with

L =e l;(l;+1) .

The harmonic expansions of the source conservation laws are the same as in Eqs. (3.29) and (3.31). Solving the fields
in terms of sources requires a 30X30 matrix. Using the same combinations of fields in the previous section, the 30&30
matrix is split into 17)& 17 and 13 && 13 matrices. To see whether or not this system is stable, it is enough to consider only
the relevant 17X 17 matrix. The analytic computations are carried out for a; =a, I&

——l2 ——1, and l3 ——0. In this case, the
relevant form reduces to 10&10 and 4&4 matrices with three decoupling combinations. Furthermore the relevant
10&&10 matrix is split into 7&&7 and 3)&3 matrices by the recombination of fields. From the fields of the 7X7 matrix,
the relevant physical poles are

a+) —Q i +Q+2 —Q

4

g (P'+M,', ')
i=1

2P +2 4L +1+3+
a

P'+ (L +1)2

CX

r

—c z 2L 4~L'—
X e P + z (J+& —J &+J+z —J z) c z (T )+2+ T+1 2)a2 eaCQ 2

v2
(

ac 1/za ( To+1+ Ta —i+ Ta+z+ Ta —z)

2V'L'
z 2(3L +2+3a )

aC 2
3P + 2

2LP+, (T+| i+T+z z)
a

2V L'
z 2 z 2L VL' z 2L 2P'+, L —1 P'+, T+, , + «P'+

e a a a e a a
P + + T2L 2

Q Q

8a~L' z 2L 2+ P2+
eaca2 a2 a2

2L 2+ 2+ 2a a
(4.20)
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where

2L 1+3a 2 2L 2(7L +4+a ) z 2L
4 +

Za a a

4(4L +1)+4(4L +3)a 2 2L 8L
b

I' + + 1 —a L)2
a a a

(4.21)

We note that the limit a~0 of the above equation recov-
ers the Einstein-Maxwell case in the previous section. We
can easily find that there exists an imaginary mass as well
as real masses for lI ——1=l2 and l3 ——0 for the arbitrary
real value n of the coupling of the scalar to Maxwell field
strength. The residue at this pole does not vanish and
thus this pole is not an artifact of the gauge. Therefore,
in spite of the presence of the scalar field, this compactifi-
cation is unstable.

V. DISCUSSIONS

Ten-dimensional Einstein-Maxwell theory with
M4)&S )&S )&S compactification is meaningless in the
sense that this system is suffering from the tachyon in
physical poles. Thus, we do not need the next step for sta-
bility, that is, the existence of a ghost. First of all it is im-

portant to cure this tachyonic mode. Natural candidates
for this purpose are to couple scalar or two- and three-
form potentials to this system in the context of supergrav-
ity. From these couplings the most simple case is the

Einstein-Maxwell-scalar system. However, from the
analysis of Einstein-Maxwell-scalar system, the scalar
field does not cure the tachyonic mass of the Einstein-
Maxwell system. The fact that the presence of a scalar
field does not affect the stability of Einstein-Maxwell
theory is well proved in several models. ' '" Further there
is no sense in studying the cosmological implications of
Einstein-Maxwell or Einstein-Maxwell-scalar theories
with an M4 &S XS XS background configuration,
since M4XS XS XS compactification no longer exists
as a solution of these models.

Finally we note that the full analysis of D =10, N =1
supergravity (the low-energy limit of type-I or heterotic
superstring theories) with M4 XS XS XS compactifica-
tion will remain an open problem.
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