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Kaluza-Klein ansatz for quadratic-curvature theory. A geometrical way to mass hierarchy

Boris L. Altshuler
Profsoyuzhaya St. 142-2, Apt 11. 5, Moscow 117321, Union of Soviet Socialist Republics

1,'Received 5 March 1987)

Compactification of the N-dimensional gravitational action with R.R terms in a manifold which
is a product of homogeneous compact spaces is considered. The total action of the resulting scalar-
tensor-vector effective theory is deduced; in particular, the explicit formulas are derived for the
gauge coupling constant and the third- and fourth-order noncanonical terms in the Kaluza-Klein
gauge field strength. In pure curvature-squared theory "no-scale" double compactification provides
a mass scale (m) independent of the Planck mass (G ' ). There is a model where the physical
cosmological term is of the order Gm .

I. INTRODUCTION

In the Kaluza-Klein type theories the four-dimensional
matter gauge fields acquire geometrical interpretation as
off-diagonal elements of a higher-dimensional space
metric. The dynamics of higher-dimensional gravitation
is conventionally described by the Einstein-Hilbert action.
Wetterich was the first who generalized it by introducing
terms quadratic in the curvature. The action considered
in that work was
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a 3R (N)2+ a4l 2R (N)

+a5/ )( ~g(
~

)

where l is a length parameter, a, m =1, . . . , 5, are di-
mensionless constants, RzzcD is the Riemann tensor for
the N-dimensional space; g' ' is a determinant of the
metric form. Later on this theory was studied in Ref. 3.
The fact that terms quadratic in the curvature (and
higher-order terms) arise in the field-theory limit of the
anomaly-free superstring theory" initiated a number of
works on the subject (Ref. 7 and references therein). In all
those papers, however, including the pioneer work by
Wetterich, the N-dimensional metric is supposed to have
a block structure, and the dynamics of the Kaluza-Klein
gauge fields in the theory with R.R terms was not con-
sidered. Some qualitative remarks about the dependence
of the gauge coupling constant on the compact space di-
mension D were given in Ref. 2, but no explicit formulas
were derived so far, to the author's knowledge. Moreover,
the noncanonical terms in the effective action of third and
fourth order in the gauge field strength have not been cal-
culated. A standard excuse was that those terms are too
small, of a Planck-length order, as compared with the
canonical Yang-Mills action. This is true indeed, if the
compact-space radius is comparable to the Planck length,
but models are possible where the situation is different
(see below). The knowledge of an exact action for the
Kaluza-Klein gauge field would enable us to construct
spontaneous compactification models with a Kaluza-
Klein field of one subspace having nonzero components
on the other compact subspace (Secs. IV and V). Besides,

it may be useful in studying the stability properties of the
models.

In Sec. III the generalized Kaluza-Klein ansatz is re-
viewed briefly and the Riemann tensor components are
calculated in a noncoordinate basis. These formulas are
used to derive the effective action resulting from integrat-
ing out the "internal" coordinates in the action (1). For
the case where the compact space is a D-dimensional
sphere, an explicit formula is obtained for the gauge cou-
pling constant g; it turns out that if a~ = —4a) in (1) (the
case where one has no spin-2 tachyons, nor ghosts) g is
positive for all D&2; g is infinite for D=2. In Sec. IV
the model of spontaneous compactification
M =M )&S &S' with a purely geometrical Abelian
monopole is also considered.

The case where a4 ——a~ =0 in (1) is studied particularly;
this is the theory without the input Einstein term and the
cosmological term in X dimensions. As shown in Sec. V,
such a theory leads after compactification to an effective
action, which is, in a sense, like the Bose sector of the
field limit in the superstring theory. It is shown that such
a model may provide a low mass scale (m); the corre-
sponding dynamics being a Jordan-Brans-Dicke type
theory with a scalar field potential. For a special compac-
tification this potential is of the order Gm (where G is
Newton's constant), that is compatible with observations
if m is a hadronic mass. Possible cosmological conse-
quence of the theory are discussed in Sec. VI.

In Appendix A formulas for connection coefficients,
Riemann and Ricci tensors' components, and scalar cur-
vature are presented. Appendix B displays terms of the
effective Lagrangian.

II. NOTATIONS AND CONDITIONS

(1) The metric signature is (+ ——.. . );
A C . . 3 a iRgcD ——I sD c —. , R„~=R~c~,' A'=c= 1; X =(x,y )

are the coordinates of the X-dimensional space
M =M"&(C (n )4, C is a compact manifold);
A, B,C, . . . =0, 1, . . . , (N —1); ct, g, y, . . . =0, 1, . . . ,
(n —1); i,j,k, l =1,2, . . . , D; g &,g,j are inner metrics in
M" and C, respectively; C is the compact manifold
with the unit scale ("radius"); and g;~ is its metric.
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(2) In Sec. V for the double-compactification model
M =M"&& C =M ~K" ~ C notations are slightly
changed: coordinates of M" are denoted by carets, i.e.,
x "=(x,y ') =(x,y j',y'), where

a,P, y, . . . =0, 1, . . . , (n —1),
a,P, y=0, 1,2, 3, p, q, r =1,2, . . . , (n —4) .

(3) A comma denotes an ordinary derivative; a sem-
icolon denotes a covariant derivative. For indices A, B,. . .
the total covariant derivatives act in M, for a, P, . . . and
for i,j, . . . the covariant derivatives are in M" and C,
respectively, constructed by g p, g;J, i.e., by the ordinary
Christoffel symbols (A 1 ), (A7) of these spaces.

and Ricci tensors and the scalar curvatures in M" and
C . The d'Alembertian in M" is r =g ~r. &,

+aFaP =FaP;y +fbcFaPA y

F'pFbr FcsF—
a P y

(5) The following dimensional convention is adopted.
Coordinates X have the ordinary dimension of length:
[x ]= [l], whereas y' are dimensionless angle coordinates:
[y']=1. Hence [g p]=1, [gj]=[l ], [g'j]=[l ],
[g; ]=1, [g', ]=1, [A' ]=[A']=[l ']. If a gauge field
has nonzero components in a compact manifold, then its
potential with lower extra-space index is dimensionless:
[A']=1, [F' ]=1,but [A' ]=[l ], [F' ]=[l ].

III. CALCULATION OF THE RIEMANN TENSOR
COMPONENTS AND DERIVATION OF THE

EFFECTIVE ACTION

The first step of generalized Kaluza-Klein theory is to
split the coordinates x of the N-dimensional space into
two groups: X"=(x,y') (x HM", y'HC, jV =n +D)
and to parametrize metric gAB as

gAB

k I kgap+ A aA pfkl A agki
k (2)

It is well known' that all the calculations simplify if
metric (2) is transformed to the noncoordinate (nonholo-
nomic) basis:

v=l g' ' ' d y

is the volume of C normalized to I;

—l DI 'f(
denotes the average over the y coordinates in C .

(4) a, b, c,d, e,f are the indices of the C isometry gen-
erators; f;b are the structure constants of the correspond-
ing group; g,

' are the Killing vectors in CD; A' and F'p
are the gauge potential and the gauge field strength. We
also have

g p 0
gAB —

0 glJ J

a a, a a a
ax ay'' ay' ay'

(3)

In the definition (3) of the gauge-covariant derivative D
the gauge coupling constant is absorbed in A'; the ab-
sence of any dimensional constant before A ' in (2) and (3)
is dictated by the accepted dimensional condition (see Sec.
II, item 5). In the basis (3) the nonzero nonholonomic
symbols CAB, defined by (D„,DB) =CABDM, are

+A A~J. A~A J
—F

CJ, = —C,J.=AJ . .
and connection coefficients are calculated by

M & MNI Aa —,g (DA gaN +Da gAN DN gAa—

E E & M—CANgBE —CBNgAE ) —z CAB

(4a)

(4b)

Results are presented in Appendix A, Eqs. (Al) —(A7).
Parametrization (2) is possible for any N-dimensional

Riemannian space if g &,g,J,A ' are arbitrary functions of
x". It was assumed in Eq. (5) that g p is independent of
y'. As usual, we impose further restrictions on gAB. let
C be a homogeneous manifold with an isometry group
and the Killing vectors g,

' satisfying

i;ja+k j;a=i0 ~

kaSbj kbkaj =fabric

and let A', g,J have the following representation:

A' (x,y)=A'(x)g(y),

gj.(x,y) =r (x)gj(y),

(7)

—=g,'(y)F'p(x) . (10)

Components of the N-dimensional Riemann tensor in
the noncoordinate basis are given by the general expres-
sion

R gD
——Dgr —D I Bg+r gI B —I I Bg

(N)A A A A M A M

A M—r, C,
In higher-dimensional theories models are considered

frequently which involve several compact subspaces. In
this case expression (2) for g„a is evidently generalized
(nondiagonal components of gAB mixing different com-
pact subspaces are supposed to be zero) and formulas (4)
and (Al) —(A7) are valid for each subspace separately.
Calculations by (11) were performed for this case [see
(A8)]. Expressions for Ricci tensor and the scalar curva-
ture are also given in Appendix A. Expressions for the
Riemann tensor components in Kaluza-Klein theory were
also obtained in a recent paper; the method and notations

where r is a "radius" of the compact space depending in
general on x . Setting (8) into (4a), taking account of (7),
gives the familiar result

F' p=g,'(A'
p
—A p +fbcA A p)
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h b=(( gg—g)) = & P8' (12)

where 6,b is the Kronecker symbol, W is the dimensional-
ity of the isometry group of the C space. If C =S
then 8'=D(D+1)/2, so

h = 5
2

ab D 1
ab

We have

+ab = (gij g ka;kgb;l ) ( ij kalb )

K,b is obtained by integration by parts, since

ka;ij ka;j i ka Rij

for C =S taking account of (12a)

2(D —1) 6,b,D+1
(faSb;Kkcgij ) = Yfab cd

K,b
——

[(14) is obtained by means of (6) and (7)],

ab (cd = (gij kakbgKlkc kd )

a(s)b(s) (c(t)d(t) a(s)b(s)hc(t)d(t)r

(12a)

(13)

(13a)

(14)

(15)

[The second equality in (15) is the average of Killing vec-
tors belonging to different compact subspaces; see nota-
tions in Appendix A.] A general expression may exist for
E,b,d, but the author has not succeeded in finding it.
For a two-dimensional sphere the explicit calculation in

I

used there are different from ours.
To get the effective action in M" we substitute Eqs.

(A8)—(A10) into (1) where the integration with respect to
y must be performed. The following averages of the Kil-
ling vectors are present in the final result [in Eqs.
(12)—(15) indices a, b, c,d are related to the same compact
subspace]:

the orthogonal basis of the SO(3) group (f,b
——g,b, ) gives

2 1

ab (cd s ~ah~Cd+ )s (~aC~bd+lSad~bC) (lsa)

x(~g" ~) (16)

where Li originates from the R' ' Rz~cD term in (1),
etc. It is suitable to split each of these four Lagrangians
into three parts, e.g. ,

=L (g, r)+L (A) +L (A, g, r)
1 1 1 (17)

where L'1 "is the Lagrangian of the scalar-tensor theory;
the L'1 ' is the gauge field Lagrangian; the L'1"' "terms
describe the nonminimal interaction of A with gravity
and its interaction with gradients of the scalar fields.
These 12 terms are presented in Appendix B.

Terms quadratic in F'p in (Blb)—(84b) contribute to
the gauge-coupling constant in Minkowski space (for
n =4). The "nonminimal" terms in (8 lc)—(83c), also
quadratic in F'p, "renormalize" the gauge coupling in the
presence of a nonstationary cosmological background.
Formulas from Appendixes A and B may be useful in dif-
ferent models of spontaneous compactification. They can
be applied to more complicated theories with higher-order
curvature terms in the primordial action. The only non-
technical difficulty would be to find averages of the prod-
ucts of the Killing vectors.

Let us apply the general formulas to the simplest com-
pactification in the D-dimensional sphere of a constant
radius r (C =S ). Summarizing (16), (17), and
(81)—(84), taking account of (12a) and (13a), we get the
following action in M":

Taking account of (12)—(15) one obtains the desired effec-
tive action:

S'"'=l '" ' V a1L1+a2L2+a3L3

+a41 L4+asl )

S( )= 1

ln —4

D
a4 2a3D (D —1)

U(r)+a R( )»sR n +a R(n)apR( )+a R(n)~
l2 2

r a1 aPy5 ~ 2 aP +3

1
2a4r+ (D —1)(6a)+a&—Da3)+ F'pF' p+r P+r Q ( ~g'"'

~

)'~ d"x,D+ 1 2l2
(18)

where

2~(D+ 1)/2
~(D)

I ((D + 1)/2)

is the volume of the D-dimensional unit sphere;

D(D —1) D(D —1)a4 a,
U(r) = — [2ai +(D —1 )a2+D(D —1)a3]+4 l2 2 l4 (19)

is the potential whose extremum gives the vacuum solution; the terms P, Q have dimensions of [l ],[l ], respectively,
they are noncanonical terms in the Yang-Mills Lagrangian for the gauge group SO(D+1) and include also a non-
minimal interaction with gravity:

P = [ —3a,f bO,dF'PFPrFr —2ai(VrF' P)(V&F'P) a2(V&F' ")(VsF' )—
1

R (n)apys(Fa~a Fa Fa 2Fa Fa )+2 R (n)apFa Far + R (n)Fa t, aap]
1 P ya Py 5d 5y Pa +2 ay P 3 aP (20)
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g & E [(6a +a )Fa+caPFb+dyb+a3Fa+baPFc+dyb+4(2a i +a2)p bcd+2a /abed] (21)

For D=2, Eab i,d in (21) is given by (15a); for P' '", see
Sec. II, item 4. For the Abelian reduction
(D= I,E&|

i
» ——1) the expressions (18), (20), and (21) are

the direct generalization of the classical Kaluza-Klein re-
sult to the theory with terms quadratic in the curvature.

We shall not dwell here on stability properties or impli-
cations of the Maxwell or Yang-Mills theory given by
(18). But a relevant remark may be of some interest. Let
us consider the generalized Maxwell theory with the La-
grangian

L = —4F pF p+p (F pF p) +q (F pFpyFybFb ),
which is equivalent to (18) for constant F p [setting in
(18) D=l, n=4, g p=(+1, —1,—1, —1)). The energy
density of this theory is

l

which guarantees the absence of spin-2 ghosts and ta-
chyons in the four-space. ' Equality (25) is accepted in
the superstring theory, " but in contrast to Ref. 11 we
shall not demand a3 ——a

&
and leave a3 as a free parameter

(cf. Ref. 12). In Ref. 2 restrictions a
& & 0,

4a
& + (D —1)a2 & 0 were also adopted [besides (24)],

which are necessary for stability of the vacuum
M =M XS against nonconformal variations of the
"inner" metric g,j. These latter inequalities are, however,
in the evident contradiction with (24) and (25), so we shall
discard them. This discrepancy means, probably, that (1)
should be supplied with terms of higher order in the cur-
vature.

If az ———4a i then (22) and (23) give

I /16m G =4Va i(2D —3)lr
p= —,(E +H )+2(2p+q)[3(E ) —2E~H2 —(H~)2]

+4q (EH)

8nG (D + 1)(2D —3)
r~ D —2

(26)

E,H are the electric and magnetic field strengths. This
can be positive definite only if 2@+q=O. For the action
of (18) this condition reads 1 la, +3a2+a3 ——0, which is
valid in particular for the Gauss-Bonnet form in (1)
(namely, for a2 ———4a„a3 ——a&).

IV. SOME MODELS OF SPONTANEOUS
COMP ACTIFICATION

(1) C =S . Extremum of the potential (19) gives
Wetterich's vacuum solution with

r = I [2[2a & + (D —1)a2+D (D —1)a3]la4 I
'

Setting in (18) n =4 and comparing (18) with the standard
form of the four-dimensional action

It can be shown that in the more general case of compac-
tification into the product of several spheres, the gauge
coupling constants (for a2 ———4al) are also real and the
"confinement" situation (1/g =0) is realized for two-
dimensional spheres independently of a3.

(2) C =S, a4 ——az ——0 [the case of pure quadratic-
curvature action (1)]. The absence of the original
Einstein-Hilbert term means that the Newtonian constant
is completely induced by the compactification and stems
from the a 3R ' ' term in (1); positivity of G implies

a3 &0. (It would be interesting to find out, if there is a
conceptual relation between this "induced" gravity and,
pioneered by Sakharov, ' pregeometry, where dynamics of
gravitational field is generated by quantum fluctuations).

For a4 ——a& ——0 compactification in S is possible if

S(4)= 1 1R(4) Fa~aap+. . .
16m 6 4g2

x( ~g"'i )' 'd'x,

2a i + (D —1)ap+D (D —1)a 3
——0,

so U —=0 [see (19)], and the radius r is not determined by
the vacuum equations. For a2 ———4a& the existence of
the solution requires a fine tuning:

expressions for the Newtonian and gauge coupling con-
stants are derived:

a&

a3

D(D —1)
2(2D —3)

'
a3

2D (D —1)
2D —3

(27)

1/16~G = —(2V/r )[2a, +(D —1)a2], (22)

1/g = —8 V[(3D —2)a
& + (D —1)a2] l(D + 1), (23)

2a i+(D —1)az &0,
2a i+(D —1)a2+D (D —1)a3 & 0,
a4(0.

(24)

Besides, we will add an equality

a2 ———4a
&

(25)

where V=(r/I) II' ' Equality (.23) is the result of the
present paper. Conditions U&0 for variations of (r —r),
and r )0, G )0 are satisfied if

(ai &0, az &0, a3&0). Equations (26) for G,g are still
valid in this case with the change r~r, where r is a free
quantity, the scalar zero mode.

(3) N=7, M =M )&S )&S' with the Abelian magnetic
monopole on S . This example is given to illustrate the
operation of Eqs. (18), (20), and (21) to the compactifica-
tion. In Ref. 14 the six-dimensional Einstein-Maxwell
theory was compactified into M =M && S with the
Abelian field having the monopole configuration on S .
But the introduction of an external gauge field is alien to
the Kaluza-Klein mentality. It would be natural to take
M =M &S XS' and to consider the Abelian field A~
as the Kaluza-Klein field of S'. In this case, however,
the dynamical equations of the conventional (linear in R)
theory have no solution like that in Ref. 14. The reason is
the appearance of a new dynamical quantity (radius ri of
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S') and an additional equation for it. We shall show that
the theory (1) does have such a solution with a pure
geometrical monopole.

The first step is the Abelian reduction from 7 to 6 di-
mensions which results in the action (18) with D= 1,
n=6, rr&. The second step is to find a vacuum solu-
tion for this rather complicated six-dimensional theory.
Following Ref. 14, we seek the solution M =M )&S
with an S radius r z, as well as r &, being constant, M the
Minkowski space, 2 =0 for a=0, 1,2,3, whereas on S
one has

K=—(cosO+ 1)
2

(28)

a4 a&
+2(3a~+a2+a3)z/zp+ (z] zp)—

lz l4
(29)

U is a quadratic form in variables z] ——2/rz,
zz ——K r ] /8r z . The solution of equations a U/az,
=BU/Bzz ——0 yields vacuum values of r &,rz, the fine tun-
ing of a5 provides U=O at its extremum, that is zero
cosmological term in M .

We will not explore this solution, yet note that if
a2 ———4a~ [see (25)] then (29) takes the form

U=(a& —a&)(z, —z2) +(a4/1 )(z~ —z2) —aq/I (30)

and the vacuum solution defines only (z, —z2), leaving
one of the radii r &, rz to be a free quantity.

If az ———4a „a,=a&, the quadratic part of (29) is zero,
because the Gauss-Bonnet combination is identically zero,
in general, on any three-dimensional space. (In three di-
mensions the Riemann tensor can always be expressed in
terms of the Ricci tensor and the scalar curvature' . )

(4) M =M XS XS XS' is a generalization of the
previous model to S with a radius rd. For the special
case a4 ——az ——0, az ———4a &, the potential is now given by
[cf. (30) for a~=a5 ——0]

4d(d —1)a&U=
d +3d —6 rd

the fine tuning,

2 2K ri
(31)

rz 16r

aq ——2(2d —3)a&/(d +3d —6),

(O, qr are the angle coordinates on S; K =+1,+2, . . . ). In
contrast to Ref. 14 no dimensional or dimensionless cou-
pling constants are present as factors in the right-hand
side (RHS) of (28), because of the adopted condition of
dimensionality (Sec. II, item 5) and the normalization of
the gauge field in the gauge-covariant derivative D in (3)
[A is the nondiagonal element of metric (2) coupling the
subspaces S and S, having the unit radii]. Substitution
of this vacuum structure in (18), (20), and (21), taking ac-
count of

F pF =K /2rz, F Fp F~ Fg ——K /8rz',

R~prs(FpsFr~ Fpr Fg~ ——2FsrFp~ ) =3E /r2

etc. , gives the potential [which is defined by analogy to
those introduced in (18)]

U = —(a&+ —,a2+a~)z& —( 1 la&+3a2+aq)z2

and the stability condition a& &0 are necessary. The ex-
tremum of this potential sets an only relation for three ra-
dii r, , r2, rd. This freedom in scalar fields permits us (by
taking r, «r2-rd) to get the desired value (=0.01) for
the fine-structure constant of the Abelian field, together
with a mass scale m independent of the Planck mass
G ' (m «G ' ). It is not difficult to show that in
this model the contribution from the ( F),(F) terms of
the Abelian field in the effective four-dimensional action
is characterized by the length m ', so it is not small. It
appears, however, that the Kaluza-Klein fields of S and
S have superweak coupling (g =Gm ), and it is hardly
reasonable to have a single Abelian field with the normal
coupling. In the next section another model with free-
compactification radii is considered.

V. DOUBLE COMPACTIFICATION AND A MASS
SCALE HIERARCHY

Two basic energy scales of nature, gravity GUT and
electroweak hadronic, differ by many orders of magni-
tude. The reason for such a hierarchy is not known;
hopes to understand it are related as a rule to quantum ra-
diative corrections and dynamical symmetry (supersym-
metry) breaking, ' ' where the low-mass scale m may be
calculated, in principle, by m =G '~ exp( —1/g ), which
is like the expression for the energy gap in superconduc-
tivity. Another way is Dirac's idea' to relate this hierar-
chy to the age of the Universe, implementing thus the
large-numbers hypothesis (see, e.g., Ref. 20). In the
higher-dimensional theory the problem of obtaining the
low-mass scale is not yet solved. It is not difficult to ob-
tain masses for the Kaluza-Klein fields but they are of the
order of the reciprocal compactification radius, which in
turn defines the gauge coupling [see, e.g. , (26)]; an experi-
mentally acceptable value of the latter entails the Plancki-
an mass scale.

However, a direct relation between the coupling con-
stants and masses may be violated if there are two (or
more) scalar zero modes in the vacuum solution. If the
ten-dimensional field limit of the superstring theory is
compactified into the six-dimensional Ricci-flat Calabi-
Yau manifold, these two scalar zero modes are a dilaton
field p(x ) and the scale b(x ) of the Calabi-Yau space.
In the present case, the same situation arises if a double
compactification is assumed in pure curvature-squared
theory. The first step may be the compactification into
S (of radius r) considered in Sec. IV, item 2; the second
step is the same as in the theory of superstrings. Ricci
flatness at the second step (with a scale b) is necessary to
make two scales r and b independent. The physical gauge
coupling constant is a product of certain powers of b and
r, and its observable value of order unity might be compa-
tible with the strong inequality 6 » G '

But this inequality is apparently impossible if (as it is
assumed usually) the Ricci-flat compactification is related
to a breakdown of the grand unification symmetry: the
X-meson mass is then too small and the proton lifetime
too short. ' We adopt a quite different interpretation:
the gauge symmetry breakings which happen at the
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second step of compactification are all related to the low-
energy scale (electroweak, flavor, etc.). In this case the
CPUT symmetry breaking should take place at the first
step of compactification. The result would be sub-
Planckian mass of the X meson. The toy model of com-
pactification in S does not simulate these effects. Our
purpose is rather modest, to elucidate by the simple exam-
ple the appearance of the scalar-tensor gravity with two
scalar fields [low-mass scale m(x ) and vacuum permit-
tivity e(x )—:I/g ] in four dimensions, and to calculate
the interaction constants of this Jordan-Brans-Dicke
(JBD) type theory.

A. First step of compactification

The result is the action (18) (for a4 ——a~=0,
az ———4ar), where the kinetic energy terms of the field
r (x ) should be included. (Now the n-dimensional
space-time indices are circumflexed, Sec. II, item 2.)
These terms are calculated by formulas (8 la), (82a),
(83a), and (84a). Below only the leading terms, quadratic
in r -, are retained. After a scale transformation of g-&,
leading to an r independence of the gravitational constant
in S'"', and taking account of (27) the effective action will
become

e

4I n —4
Fa ~aap D + 1

R (n)a py5R(n) 4R (n)apR (n) 2(2D —3) R (n)2

2(D —2) aPy6 P D(D —1)

+„,+„,+. .(~g" ~) d"x,e + (D+1) (2D —3) P e + (D+1) (2D —3) Q („) )&z

fn —6 4D(D —1)(D —2) a3 I n —() 4D(D —1)(D —2) a3
(32)

where

e ~=const/r '"+D

(n —2)(D —2)(2D —Dn —5D + 6n —6)
8(n +D —4) (2D —3)

(33)

(34)

F' =fP, A Az. [Here we took into consideration that
&

——Az ——0, A& with subscript are dimensionless cal-
culable numbers, cf. Sec. II, item 5 and Eq. (28).] In fact,
averaging (F) over K" one has

( Fa
paa p) Fa~aap+ A aA ca

P, Q—see (20) and (21) with a,p, . . .~a, p, . . . ; an arbi-

trary length l in (1) transmutated to the arbitrary length I
in (32). Parametrization (33) of the scalar field is selected
for better comparison of (32) with the field action in
superstring theory, where n = 10, 6= 1, and instead of the
P, Q terms in (32) the Lagrangian e 2~H prH--- of theaPy
third-rank totally antisymmetric tensor is present. The
constant in (33) is a function of D, r, aQ3' ', I but its value
is irrelevant.

The action in (32) describes dynamics of zero modes at
the first step of compactification; one can neglect higher
modes (which are technically obtained by averaging over
the S coordinates) if all scales of M" are much larger
than the radius of S, which will be supposed below.

B. Second step of compactification

M"=M &E",where E" is a Ricci-flat compact
manifold; its coordinates are y~, i.e., x =(x,y~). We
follow Ref. 6 and assume that its scale b and the scalar
field y are independent of y~, but A'- has nonzero com-
ponents on K" for certain a. Now the vacuum expec-
tation value of (F) (and R R), P, Q terms in (32) are pro-
portional to b,b,b, respectively. (In superstring
theory it may be nonzero H "Hz&„-b . )

In the physical action the mass terms of the physical
gauge fields A' arise from the mixed components of F'-&..

(gPPg9qF F, , )b4 (35)

r b

r '
b b r (36)

Collecting all said above one gets the desired four-
dimensional action

where p„=f bf„(A~ A~g ~~)» are dimensionless mass
matrix elements. There are also corrections to the mass
matrix from the P, Q terms of the action in (32), yet as
those corrections are proportional to b,b, respective-
ly, they are negligible as compared with the b term in
(35), since b ~~r.

In the following we discard the Kaluza-Klein fields ofK': it is not difficult to show that their gauge coupling
is superweak [proportional to (Gm )'~ ]. Thus to get the
physical action in four dimensions from (32) one has to
use only Eqs. (8 la) —(84a). Certain cosmological conse-
quences of the Calabi-Yau compactification have been
studied in Ref. 24 taking account of all the b(x ) gra-
dient terms. %'e shall retain only the canonical kinetic en-
ergy term, quadratic in b . One can discard higher de-
grees of r in (32) and b in (37) if the scale of M is
larger than r, b. Thus the results of this section are valid
provided that one has
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n —4

s"'= — n( '

I

1 (4) (n —4)(n —5) b' b, a b,R
2l
-z -2 b2 -z

2l l

—e ~ —l e
b b

+ (~g()~)''d x.
b8 (37)

Only the canonical Lagrangian of gravitational, Yang-
Mills, and scalar fields are written down in (37); 0' ' is
the volume of the Ricci-flat space K" of the unit scale;

3 are calculable dimensionless constants. In the
method of compactification of Ref. 6, A. ] is equal to zero,
since the vacuum values of terms in (32) quadratic in
R '-"p-

~ and F'-~ cancel.(n)
aPy5 aP
Formally the action in (37) (if qr=const and A'=0)

leads to the scalar-tensor gravitation with the Brans-Dicke
field proportional to b', and the standard constant of
the JBD theory co= —(n —5)/(n —4). For superstrings
(n=10) one gets co= ——, (Ref. 24). But this result of
Ref. 24 is wrong for two reasons. First, the gauge cou-
pling in (37) is proportional to b" e +, not e +, and it
is constant if e+-b"; hence y' y in (37) contributes
to the kinetic energy of the Brans-Dicke field. Second, it
is rather senseless to deal with value of co before masses of

(1677Gfl' 'b" ) (38)

and setting

1 K, =n( )e-~
g

b
n —4

—:E,
b

—=m, (39)

one obtains finally

I

elementary particles (constituents of observable heavy bo-
dies) are defined. In the action (37) the coefficient at R ' '

and the gauge field mass (which is responsible for the
low-energy scale) are both depending on the scalar field
and to compare (37) with JBD theory the scale transfor-
mation to scale gauges m=const or G=const must be
performed. Fixing the latter, i.e., performing in (37) the
scale transformation ga~~g gap, with

s(4) 1
R (4)+ 1

16~G 16m.G
2(n —4) 4(n —4)h m' m, a 8(n —4)b, m' &,a ~' ~,a1+,' + ' +22

n —2 n —2 m n —2 me E

+e( —, F'+' ~ =,—m p„A'A' ) —A(m, e) .( ~g' '~ )'~ d x, (40)

where

A( ,m)e=A, , me+l2e 8~Gm +A3e (8irG) m (41)

is the scalar fields' potential, i.e., the physical cosmologi-
cal term. If e=const and 3' =0, then (40) is the JBD ac-
tion with the potential of (41), and the standard interac-
tion constant is

2(n —4) n —1

(n —2)~ n —2
(42)

[In the JBD theory, written in the scale gauge G=const,
the scalar field kinetic term is (4co+6)m' m /16mGm . ]
For superstrings (b, = 1, n = 10) (42) gives co =0. If the
JBD theory is applied to the modern stage of the history
of the Universe it may be compatible with observations
only if

~

co
~

is very large [ co
~

) 500 (Ref. 25)]. The
present model admits any co. In fact, Eqs. (34) and (42)
yield

A=(n —2)/8, co=(n —10)/4 for D»n,
b, = —( D —2)(D —6) /8(2D —3 ),
co= —D /4(2D —3) for n»D .

Clearly, arbitrary large
~

co
~

can be obtained for suffi-
ciently large D, n, but this is a rather artificial way of get-
ting on with experiment. Perhaps some other model of
compactification will be more natural, but perhaps a
theory of the type (40) should be applied only to initial
stages of cosmological scenario (see Sec. VI).

What is the mass of the external fields in the double-
compactification approach? Unlike the toy C =S
model presented here, a realistic theory should provide
chiral fermions on C . The Fermi field which is the zero
mode of the first step of compactification, but not that for
the second Ricci-flat step, respects the Dirac equation
(y D p/b)/=0 [in th—e same scale gauge as in (37)],
where D is given in (3) and p is a calculable constant.
After the scale transformation (38) the fermion mass is
pal/b, i.e., has the order of the low-mass scale m [see
(39)]; the gauge coupling of the fermion field is g =e
where e is the scalar field in (40).

The cost of achieving the independent energy scales in
the Kaluza-Klein theory is rather heavy: two main
characteristics of elementary particles, gauge coupling
constant, and mass, turn out to be dynamical fields. If
the fine-structure constant were a field of this kind the
equivalence principle would be violated. It is not yet
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clear how to fix the desired value of the gauge coupling
constant in "no-scale" theories, and in particular in (40);
in superstring theory this problem is connected with the
problem of fixation of the dilaton field vacuum conden-
sate. ' In discussing the possible cosmological conse-
quences of the theory we just set a=const in the action
(40).

VI. DISCUSSION

As was mentioned above, for the Ricci-flat cornpactifi-
cation of Ref. 6, k&

——0 in the action (37), and the vacuum
energy (41) is of the order Gm or less. In Ref. 29 the
JBD theory with potential Gm was studied and the
Dirac cosmological theory' was shown to be one of its
solutions (this is not the case for classical general relativi-

ty and for the classical JBD theory). In Ref. 29 the scale
gauge m=const, G(t) was employed. In the alternative
scale gauge of the present paper [G=const, m (t)] Dirac's

cosmology with dust matter gives

m=(H/G)'~ -t '~, a-t ~, p-t (43)

—constXmt ( ~g' '~ )' d x (44)

was considered in quite a different context to get the
power-law inflation (PLI). In fact, this theory has a
vacuum cosmological regime

a-t '~+ '~ m-t (45)

(for the four-dimensional metric ds =dt adx ), which-
for sufficiently big co & 0 provides the solution of flatness,
horizon, and other problems. But in the papers of PLI
the inflaton scalar field has nothing to do with the ele-
mentary particle mass scale. If, as it is proposed in the
present paper, these two are identified, then for q=6, (45)
leads to a time period of 10' yr for m to attain the ob-
served hadronic level [m (t) is the same as in nonvacuum

where H is Hubble's "constant, " a is the scale factor of
the Universe, p is the energy density, and t the proper
cosmological time. The substitution of H =0.5 X 10

yr into (43) yields m =1 GeV, the hadronic mass. The
possibility of a cosmological origin of the hierarchy was

discussed also in context of supersymmetric theories with

flat directions (valleys) of potential at its minimum. '

The serious drawback of all this approach is that Dirac's
theory is hardly compatible with observations. '

A widespread opinion should be accepted that at
present the fundamental constants do not vary with time,
the low-mass scale is fixed by some quantum radiative
corrections, while the coincidence of large numbers in mi-

crophysics and cosmology may be explained by a "weak
anthropological principle" (Ref. 20, Chap. 5). Meanwhile,
the hierarchy problem is by no means reduced to the
large-numbers problem. The scalar-tensor theory of the

type (40) may be applied to the initial stages of the
Universe. Recently theory with the action

(2'+ 3) m m, a
R

16~G 8+6 m2

Dirac theory (43)], whereas for q=4 this time period is
10 sec.

Let us assume that q=4 in (44), i.e., A, ~&0 in (37) and
(41). Then the following big bang scenario may be sup-
posed. All the symmetries (GUT, super, electroweak,
discrete, etc.) are broken at the very start with approxi-
mately equal strength; this breakdown is correlated with

(or is provoked by) the compactification of %-dimensional
space at once to four dimensions: M ~M && K"
X C . The initial value of the physical cosmological term
is Planckian [m =G ' in (41)]. In the following, three
scales (of our four-dimensional Universe, low-mass scale
of elementary particles, and Planckian mass) smoothly
diverge. This divergence may be caused by the different
inner geometry of the respective subspaces. When in-

equalities (36) become valid cosmological evolution is
described by the theory of the type (44) and includes the
PLI stage. [Presence of matter surely changes the vacu-
um regime of expansion (45); we do not touch here the en-

tropy production, generation of the baryon, asymmetry,
and other problems. ] Eventually m will reach its low-

energy value m 0, predicted by some as-yet unknown
mechanism, and is fixed there. To get the ordinary Fried-
mann expansion, this fixation of m should be correlated
with the final reducing to zero (or to small magnitude per-
mitted by observations) of the A term, which during the
previous period gradually decreased from Planckian to ha-
dronic density. It is not difficult to realize such a correla-
tion "by hand, " e.g. , by changing potential A=A, m to the
Coleman-Weinberg one

A=Am ln(m /mo ) ——(m —mo ) .4 2 2 ~ 4 4

2

The most characteristic feature of this scenario is,
perhaps, the absence of phase transitions and all accom-
panying problems. In the conventional approach strongly
inhomogeneous domain structure of the Universe is inev-
itably formed and the only way to explain why we do not
observe it is the "new inflationary model" of Ref. 34,
where the observable Universe is placed inside the single
bubble whose walls are far beyond the horizon. In our
case the breakdown of all symmetries took place at the
moment when the size of the Universe was about 10
cm and there was no place for two domains.

Thus in this paper the hypothesis is suggested that the
low-mass scale has the geometrical origin and so some of
the "extra" dimensions should have a size substantially
larger than Planckian one and approach the experimental-
ly achievable limit. Perhaps it provides more questions
than answers, but the theoretical possibility to consider
from a single point of view dilaton, inflaton, Higgs bo-
son, and Brans-Dicke —is interesting.
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APPENDIX A

Connection coefficients calculated in the noncoordinate
basis (3) by formula (5) [in (Al) —(A7) g ~ depends only
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PP g Pgg FJ

K ~ kj~ai 2 g [gij a (~ai;j +~aj;i )] t

(A3)

(A4)

(A5)

I ij
=

2 g lgij, y (~yi;j +~yj;t)] ~

k & k1
ij

=
2 g (gii,j +gjiig, ij,!)

(A6)

(A7)

on x, ~hereas 3',g;J are arbitrary functions of x,y; F'
P

is given by (4a)] are
a & ap~py= g "(gyt, p+gpt ) gpy t )

Expressions (AS)—(A10) for Riemann and Ricci tensors
and the scalar curvature were calculated by the general
formula (11) taking account of (4) and (Al) —(A7) in the
case when C is the product of several compact homo-
geneous subspaces ( D =D ) +D2+. . . ). These subspaces
are enumerated by indices s, t, u, their dimensions are D„
"radii" r„ inner metrics g. { )1{,), and the respective
Kaluza-Klein fields Aa",F'p are given by (8)—(A10).
Here i (s),a (s) mean that indices t, a belong to the com-
pact subspace number s. The auxiliary symbol [
means that all the quantities in curly brackets are related
to the subspace number s. In (A8)—(A10) F p; =g jg,F'p.
The following notations are also used in (A9), (A10), and
(&1)—(&4):

—= gD, ', X p=+D,
r,

'
,

' r,

rs, ars PY p= XD—
s r,

Rapys=Rapys+ gl sgij(FpsFya Fpy sa 2F'syFp (A8a)

(x) & j r
Q sP Q

r
R apyi(s) 2 gij ktt ~yFap+2 Fap+ Fay

r 'a Fg
Py

(s)

(A8b)

(Ã) I & pv (s)R api (s)j (s) l 2 (Fapi;j Fapj t )4 g ('FattiFpvj FattjFpvi )] (A8c)

api(s)j {t) (Fa)si (s) pvj (t) Fattj (t)Fpvi(s) )
4

(x) 1 1 pv', apr.
ai {s)Pj (s) 2 FaPi;j+ 4 g Fapj FPvi giJ r

' (s)

(ASd)

(A8e)

Rai (s)pj (t) 4 g Fattj {t)Fpvi(s)
pv

(X) 1@v tvr
R ai(s)j (s)k(s) g (gij Fatsk gik atsj )

2

(s)

(A8f)

(A8g)

(X) 1 pv Sspr
+ ai (sj)(s)k (t) 2 gi (sj)(s8 Favk(t)

rs

(N) (&)
Rai(s)j {t)k(t) 0~ Rai(s)j(t)k(U)

(s)
r "r

(N) (s) (D) P
(Rijk! ) = Rijk! + 2 (giigjk gikgj! )

(A8h)

(ASi)

(ASj)

~ {X)
~~i (s)j (t)k(s)1(t)

sPrs rt p
gi (s}k(s}gj{t)1( t) ~

rsrt
(ASk)

~ (X)
~~i (s)j (s)k(t)l(t)

R'.p' =R'."p —g ( ,
'

g,,F'.„FjI)'" X.-p, —
(A81)

(A9a)

Fau
(s)

(&) & aP (D}+i (s)j (t) 4 Fapi(s)+j (t) +~st ~ij gij 2 + ~pr r2 r

R R{ + Yv 2Xv HvH + ~(R 'g.F'giv )4 tJ P

(s)

(A9c)

(A10)
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APPENDIX B

Components of the effective Lagrangian in M defined by (16) and (17), taking account of (12)—(15), i.e., as

1 1

IX —4 (
~

g' '
~

)'r d x = y'(L 'g "'+L'" +L '" & "')(
i

g'"'
~

)'r d "xABCD In —4 1 j

and analogously L2 for R' '" Rzz', L3 for R' ', Lq for R( ' terms of the action (1) (see notations in Sec. II and Ap-
pendix A) are

L' '"'=R'"' P R'"' +2Y PY + g (R' '"'R' ') 4(R—' ') ' +4D ' 2D—
r r a r' r. r' r

1 apy5 ap ij kl 2 2 2r r r

2 (s)

(8 la)

L (A) g [3K Fa~atsP 3 2fd
h FaPFbyFca 2h (VyFaaP)( V Fb )](s)

2 2Q1 [3(Fa(s)Fc(t)ap)(Fb(s)Fd(t)ys) +4ya(s)b(s)c(t)d(t)+pa(s)c(t)b(s)d(t)]
8

rs rt a(s)b(s)
i
c(t)d(t) ap

s, t
(8 lb)

r' r ;apL' 'g'= m r'h —) R'a'apyb(Fa ~ Fa F —2Fa F—) —6 y Fa ~ ap+2Fa F y
pb ya py 5a 6y pa 2 ap' ay pr

r rp—2 ap
r2

r a r r ayF P) ap + ay pyr r

(s)

(8 lc)

r' rL' '"'=(R'"' P Xp)(R'"——X )+ ~ (R' 'R' ') —2(R' ')2 ap ap r r
Ha

r+D
r

H
r r

2 (s)

(82a)

2
L2"'= g , K,bF'PF" —P h,b(V —Fa )(VsF )

2 b y

' (s)

s, t

t(Fa(s)Fc(t)ap)(Fb(s)Fd(t)yb)+ 4~a(s)b(s)c(t)d(t)q
16 rs rt a(s)b(s)

j
c(t)d(t)t. ap y6 (82b)

T
(

l. ' ' '"'= ~ r h —F F 2R'"' P—2X P — 2 +H2 ~ r ab Z ay P r
2 "+HP

r
1(s)

r r' r r'a
b rp+ —,'F'.pF" —,'+ H, (V,F-y)F.'P 2 '+—H, (82c)

2

L3 '" —— R'"' —2X + Y HHa+ g(R' ')"—a
s

(83a)

' r 2F a~bet p( (
—

gt gj ) y (R (D) )( t) )
s t

(s)

+ g [—)6r, r, Ea(s)b(s))c(t)d(t)(F p F )(Fy& F )],2 2 a (s) b(s)ap c(t j d(t)y5

s, t

(s)

(83b)

(83c)

2Xa+ Ytt HtsH + y (R(&))(s)
s

L(~) —M (
' r&h Fa bctp)(s)

4 ~ &r ab a

(84a)

(84b)

L (A, g, r) 04 (84c)



3814 BORIS L. ALTSHULER 35

Th. Kaluza, Sitzungsber. Preuss Akad. Wiss. Phys. Mat. K1,
966 (1921); O. Klein, Z. Phys. 37, 895 (1926); B. DeWitt,
Dynamical Theories of Groups and Fields (Csordon and
Breach, New York, 1965), p. 139; N. P. Konoplyova and V.
N. Popov, Gauge Fields (Atomizdat, Moscow, 1972); Y. M.
Cho and P. G. O. Freund, Phys. Rev. D 12, 1711 (1975); A.
Salam and J. Strathdee, Ann. Phys. (N.Y.) 141, 316 (1982).

C. Wetterich, Phys. Lett. 113B,377 (1982).
sQ. Shafi and C. Wetterich, Phys. Lett. 129B, 387 (1983); 152B,

51 (1985); N. Hashimoto, ibid. 143B, 407 (1984); C. Wetter-
ich, Nucl. Phys. B252, 309 (1985).

~M. B. Green and J. H. Schwarz, Phys. Lett. 1498, 117 (1984);
151B,21 (1985).

5E. S. Fradkin and A. A. Tseytlin, Nucl. Phys. B261, 1 (1985).
6P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten,

Nucl ~ Phys. B258, 46 (1985).
7D. Bailin, A. Love, and D. Wong, Phys. Lett. 165B, 270 (1985);

I. Ya. Aref'eva and I. V. Volovich, ibid. 164B, 287 (1985); K.
Maeda and M. D. Pollock, ibid. 173B, 251 (1986); D. G.
Boulware and S. Deser, ibid. 175B, 409 (1986).

SC. W. Misner, K. S. Thorne, and J. A. Wheeler, GraUitation

(Freeman, San Francisco, 1973).
C.-C. Chiang, S.-C. Lee, G. Marmo, and S.-L. Lou, Phys. Rev.

D 32, 1364 (1985).
K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).

'B. Zweibach, Phys. Lett. 156B, 315 (1985).
' M. J. Duff, B. E. W. Nilsson, and C. N. Pope, Phys. Lett.

173B, 69 (1986).
tsA. D. Sakharov, Dok. Akad. Nauk SSSR 177, 70 (1967) [Sov.

Phys. Dokl. 12, 1040 (1968)].
~~S. Randjbar-Daemi, A. Salam, and J. Strathdee, Nucl. Phys.

B214, 491 (1983).
~sL. D. Landau and E. M. Lifshitz, Classical Theory of Fields

(Nauka, Moscow, 1967), p. 340.
~ S. Weinberg, Phys. Rev. D 13, 974 (1976); 19, 1277 (1978).

E. Witten, Nucl. Phys. B188, 513 (1981); Phys. Lett. 105B,
267 (1981).

' H. Sailer, Nuovo Cimento 90A, 233 (1985).
' P. A. M. Dirac, Proc. R. Soc. London A165, 199 (1938);

A333 403 (1973).
P. C. W. Davies, The Accidental Universe (Cambridge Univer-

sity, Cambridge, 1982).
V. S. Kaplunovsky, Phys. Rev. Lett. 55, 1036 (1985).

22M. Dine and N. Seiberg, Phys. Rev. Lett. 55, 366 (1985).
zsP. Jordan, Schwerkraft and Weltall (Vieweg, Branschweig,

1955); Z. Phys. 157, 112 (1959); C. Brans and R. H. Dicke,
Phys. Rev. 124, 925 (1961); 125, 2163 (1962).

~K. Maeda, Phys. Lett. 166B, 59 (1986).
R. D. Reasenberg, I. I. Shapiro, P. E. Mac Niel, P. B. Gold-
stein, J. C. Breidenthal, J. P. Brenkle, D. L. Cain, T. M.
Kaufman, T. A. Komarek, and A. I. Zygielbaum, Astrophys.
J. Lett. 234, L219 (1979).

26J D Bekenstejn Phys Rev D 25 1527 (1982)
M. Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Lett.
156B, 55 (1985).

M. Dine and N. Seiberg, Phys. Lett. 162B, 299 (1985).
B. L. Altshuler, Int. J. Theor. Phys. 24, 109 (1985); Dok.
Akad. Nauk SSSR 274, 1076 (1984) [Sov. Phys. Dokl. 29, 119
(1984)].
S. Weinberg, Gravitation and Cosmology (Wiley, New York,
1972).

Ya. B. Zeldovich and I. D. Novikov, Structure and Euolution
of the Uniuerse (Nauka, Moscow, 1975).
P. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985); R.
Fabri, F. Lucchin, and S. Matarrese, Phys. Lett. 1668, 49
(1986).
S. Coleman and S. Weinberg, Phys. Rev. D 7, 1888 (1973).

~A. D. Linde, Phys. Lett. 108B, 389 (1982); A. Albrecht and P.
J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).


