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An examination of the functional measure for quantum field theory defined on a general curved
background spacetime is presented. It is shown how to define the measure in field space to be in-

variant under general coordinate transformations based upon the simpler problem of defining an in-

variant inner product. The weight chosen for the variables of integration is seen not to matter in

contrast with the claim of Fujikawa that they are uniquely specified. It is shown how the weight

variables advocated by Fujikawa are equivalent to working in a local orthonormal frame. In

view of this, the interpretation of conformal anomalies as arising from the measure is reexamined.
It is also shown how to define the invariant measure in phase space for a scalar field, which turns
out not to be the naive generalization of the finite-dimensional result. The extension to complex and

anticornmuting fields is discussed. It is also shown how the choice of field variables does not alter
the effective field equations.

I. INTRODUCTION

The use of functional-integral techniques in quantum
field theory is now widespread. It is possible to derive
many results which were established by other methods,
often in a much more elegant way. In addition, function-
al integrals have led to a deeper understanding of many of
the issues in quantum field theory. All of this is despite
the fact that functional integration has not been estab-
lished on as rigorous a footing as integration in finite-
dimensional spaces, at least in the case of interest in quan-
tum field theory. The major problem is that it has not
been found possible to establish with any degree of rigor
the notion of the functional measure. As a consequence,
there has been some controversy in the literature over
what it shou1d be. ' The fact that the nature of the func-
tional measure is not without physical content is evident
from the work of Fujikawa which shows that
anomalies are linked to the noninvariance of the measure,
and also from Polyakov's ' approach to the string in
which the measure plays a key part in calculating the crit-
ical dimension. (A nice review is contained in Ref. 7.)

The purpose of the present paper is to try to elucidate
the nature of the functional measure with the aim of
correcting and clarifying some of the results in the litera-
ture. Because the problems discussed here are not present
in flat Minkowski spacetime (with the exception of certain
nonlinear models, such as the nonlinear cr model) atten-
tion will be focused on quantum fields on a fixed curved
background spacetime. For the case of a scalar field Po(x)
on a background with an arbitrary metric g& (x),
Fujikawa ' has argued that the correct choice of vari-
able is not Po(x) but rather P(x) =[—g(x)]'/ Po(x) which
transforms as a scalar field density' of weight ——,'. In
this event, the functional measure should be Q„dt()(x)
and not ff„dP&&(x). As further evidence for the correct-
ness of this viewpoint, Fujikawa shows that Q„dP(x) is
invariant under an arbitrary change of coordinates,

whereas g„dgo(x) is not. In Ref. 6, it is claimed that
the variables for the functional integral are specified
uniquely by the condition that the measure be anornaly-
free under the Becchi-Rouet-Stora (BRS) transformation
associated with general coordinate invariance. The fact
that there is a preferred choice of variable might seem to
be a bit strange if the variables are thought of as coordi-
nates of points in function space.

In Sec. II it will be shown that the scalar field variables
may be chosen to be densities of arbitrary weight provided
that sufficient care is taken in defining the functional
measure. There is nothing wrong with the choice made
by Fujikawa, but it is no way compulsory. It will be
shown that Fujikawa's choice of variables may be thought
of as the function-space analogue of working in a local
orthonormal frame. Just as in the finite-dimensional case,
the choice of basis should not influence the final answer.
Because the conformal anomaly as derived by Fujikawa '

relied crucially on his choice of variable, this problem will
be analyzed in Sec. III where it will be shown that the
choice of weight made for the variables is irrelevant. It
will also be shown how the conformal anomaly may be
understood as arising from the fact that a conformal
transformation does not preserve the orthonormality and
completeness of the basis functions for the scalar field
(i.e., conformal transformations are nonunitary).

Unz"' has made the claim that the correct measure
for a scalar field Po(x) on a curved background is

I
(goo)1/2[ g (x)] t/4dy (x) I

An unsupported claim in his work is that even though the
measure looks noncovariant due to the presence of the
factor (g )'/, it is actually in fact covariant. Unz's
starting point is the functional integral defined in phase
space, the factor of (g )'/ [—g(x)]'/ in the measure
coming from integration over the momenta. This factor
plays a key role in the analysis of five-dimensional
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Kaluza-Klein theory presented in Ref. 12. The functional
measure in phase space is discussed in Sec. IV where it is
shown that it must be defined with a factor which in-
volves (g )

'~ if it is to be covariant. Integration over
the canonical momenta then leads to a measure in config-
uration space without an explicit g dependence. The
mistake made by Unz is that in quantum field theory in
curved spacetime the phase-space measure is not just the
naive generalization of that found in finite-dimensional
quantum mechanics as given by Faddeev, ' for example. '

Unz starts out with a noncovariant expression in phase
space, and it should therefore not be surprising that he
ends up with a noncovariant expression in configuration
space. Finally, we discuss the extension of our results to
fields other than scalars.

II. CONFIGURATION-SPACE ANALYSIS

P(x)=[g(x)] Po(x) (2.2)

is a scalar field density of weight w. The operator 6 in
(2.1) will be taken to transform like a scalar, although this
is not strictly necessary.

Given the variables P(x), which have been chosen to be
densities of weight w, the inner product in (2.1) may be
defined. It must be generally coordinate invariant so that

(P, g)= f d x[g(x)]' $0(x)$0(x), (2.3)

where Po(x) and $0(x) are scalar fields. From (2.2) it is
observed that the inner product should be taken as

(P,g)= f d x[g(x)] +' P(x)P(x) . (2.4)

Before defining the functional measure, it is helpful to
consider the situation in a finite-dimensional, real vector
space V. Assume that V is equipped with an inner prod-
uct (, ) and a positive-definite symmetric metric E such
that

(u, v)= g u'E;, vj
i j =1

(2.5)

for u, vH V, dim V=n. (The restriction that E,J. be posi-
tive definite is not essential. ) Here u' and u' denote the
components of u and v with respect to some arbitrary
basis in V. The definition of the inner product will be in-

Consider the case of a real scalar field defined on an
N-dimensional compact Riemannian manifold with
metric tensor g& (x). The aim of quantum calculations at
the one-loop level is to compute the generating functional

Z = f dp[y]exp[ —,'(4', ak)l —. (2.1)

Here dp[P] is an as yet unspecified measure in function
space, and (, ) denotes an inner product which also needs
to be specified. 5 represents a differential operator which
is assumed to be self-adjoint with respect to the given
inner product.

The possibility that the field P(x) may be a scalar field
density of arbitrary weight w is considered here. ' [Recall
that g(x)=detg„(x) transforms as a scalar density of
weight —2.] If Po(x) denotes the scalar field (i.e., density
of weight w =0), then

dependent of this choice of basis provided that Ej
transforms like a second-rank, covariant tensor under a
change of basis. The volume element in V which is in-
variant under a general linear change of basis is

dp(u) =(detE 1
)' d "v,

where

(2.6)

d"u= +du'. (2.7)

(2.9)

should be chosen as the invariant measure on ~. Here
detp;J(x) denotes an ordinary determinant over the indices
i and j. The analogy is furthered by thinking of the in-
tegration in (2.8) as a summation over a continuous index,
and noting that the metric is diagonal in its continuous in-
dices. The idea of using the invariant metric in function
space to define the functional measure was suggested by
DeWitt' and used in the context of quantum gravity. He
also has emphasized the need for the measure to be invari-
ant under coordinate transformations. '

In the scalar field case discussed above, the indices i
and j in (2.8) are redundant, and we have

p(x)=[g(x)] +'~ (2.10)

as the metric on a, where ~ is chosen as the space of
scalar field densities of weight w. The functional measure
according to (2.9) should be

dp[O]= /[g( )] "+""'d4( ) . (2.11)

It is straightforward to now see that dp[P] is independent
of w and hence of the choice of scalar field variables. It is
obvious from (2.2) that

dp [(t ]= Q [g (x)]'"d4o(x» (2.12)

since g„(x) is the background metric which is kept fixed
during functional integration. This is seen to be identical
to what is obtained by setting w =0 in (2.11). Thus, if the
ordinary scalar field is chosen as a variable, the functional
measure must be taken to be (2.12) and not simply

If a local, orthonormal basis is chosen in V, then E;J =6;J,
and the invariant measure is dp(u) =d"u, but of course
this result is not true in general.

In the functional case, let P'(x) denote a real, bosonic
field whose indices are specified by the index i. Let M

denote the function space of all P'(x). The inner product
between two elements P and P of a may be written as

(P, g) = f d xP'( x)p (~x)P( x), (2.8)

where p;J(x) is interpreted as the metric on ~, which is
completely analogous to Ej in the finite-dimensional case
discussed above. p,j.(x) is chosen to transform in such a
way so as to make (P, g) independent of the choice of
coordinates. [See (2.4) for the special case of scalar field
densities. ] It then follows by direct analogy with the
finite-dimensional case that
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I (A ) = f dp(x)exp[ ——,
' (x, Ax) ], (2.13)

where 3 is a nonsingular n &(n matrix with positive eigen-
values, x is an n-dimensional vector, and (x,Ax)=x Ax
denotes the usual Euclidean inner product. Without loss
of generality A may be taken to be symmetric. If dp(x)
is defined by

+„dgo(x). It is therefore not surprising that Fujikawa
found that Q„dgo(x) was not invariant under general
coordinate transformations. This is no more to be expect-
ed than that d"x would be the invariant volume element
on a curved manifold.

Fujikawa advocated the choice of variable
P(x)=[&(x)]' Po(x) which is a scalar field density of
weight w = ——, . If w = ——, is chosen, then from (2.10)
it is seen that p(x)=1. Thus, Fujikawa s choice of vari-
ables corresponds to choosing a local orthonormal basis in

However, it is seen that we are free to choose whatev-
er variables we like, including the usual scalar field (with
w =0) provided that we include the appropriate metric
factor for the space ~ in the measure as given in (2.9).
The fact that (2.9) [or (2.11)] really is invariant under a
general change of coordinates may be seen following the
analysis of Fujikawa. The simplest way is just to work
out the Jacobian in the functional measure under a general
change of coordinates and show that it is unity.

There is another way of thinking about the functional
measure which is based on defining it so that Gaussian
functional integration makes sense. ' It is also a useful
approach to understand the conformal anomaly which is
discussed in Sec. III. Again, it is helpful to first consider
a finite-dimensional example.

The finite-dimensional analogue of (2.1) is

argument under a general coordinate change. From (2.17)
and (2.18) we have

p(x)= f d x'[g(x')] +'~ 5(x,x')p(x') (2.19)

for P(x) a scalar field density of weight w. 5(x,x') may
be regarded as the matrix element of the identity operator
I in the function space whose elements are the P(x):

(Ip)(x) = f d x'[g(x')] +'~ 5(x,x')p(x') .

Let I X„,f„(x)I be a spectral decomposition of b.:

bf„(x)=A,„f„(x).

(2.20)

(2.21)

(f„,f„)=f d x[g(x)] +' f„*(x)f„(x)
=I 6„„

(2.22)

(2.23)

The constant 1 with dimensions of (length) is introduced
so that the dimensions on both sides agree. The complete-
ness relation reads

g f„*(x)f„(x')=1 5(x',x) . (2.24)

Note that the dimensions on both sides of (2.24) agree,
and that this result is consistent with (2.23).

Because If„(x)I is complete, we may expand P(x) as

Regardless of how f„(x) transforms under a general coor-
dinate transformation (i.e., it can be a scalar density of ar-
bitrary weight), the A,„are invariant. The transformation
properties and dimensions of f„(x) are not fixed by (2.21).
A natural, although not essential choice is to take the
f„(x) to have the same transformation properties and di-
mensions as P(x). Assume that f„(x) forms a complete
orthonormal set:

dp(x) =(2vr) " d "x

it then follows that

(2.14) (2.25)

I(A) =(detA) (2.15)

Comparison of (2.13) with (2.1) leads to the conclusion
that however the functional measure is defined, it should
be such as to give (P, b,P)= g (1 A.„)P„ (2.26)

The expansion coefficients P„will be invariant under gen-
eral coordinate transformations since P(x) and f„(x)
transform in an identical manner. A simple calculation
leads to (for real P„)

Z = [Det(l 6)] (2.16)

$0(x)= f d x'[g(x')]' 5(x,x')$0(x') (2.17)

for scalar field $0(x). For the scalar field density P(x) de-
fined in (2.2), define

where the determinant is now a functional one. It is
necessary to introduce the length scale I for dimensional
reasons since b, has dimensions of (length) . Another ar-
gument for demanding that the functional measure be de-
fined so as to lead to (2.16) is that this result can be ob-
tained without recourse to functional methods. We will
now consider in more detail how the functional measure
may be defined so as to lead to (2.16).

The biscalar Dirac distribution 5(x,x ) is defined by

If a functional measure dp[P] is defined by

it then follows that

Z= gf, exp[ ——,
' (l A.„)P„](2')'

~ (12g )
—1/2

= [Det(l b )]

(2.27)

(2.28)

(2.29)

(2.30)

5(x,x')=[g(x)] ~ [g(x')] ~ 5(x,x') (2.18)

which transforms like a scalar density of weight w in each

which is the required result. Note that (2.27) is directly
analogous to the measure (2.14) which was used in the
finite-dimensional case.
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The above procedure is basically that used by Hawk-
ing. ' One viewpoint which could be taken is that the
functional measure could be defined by (2.27). This ap-
proach has the advantage that the functional measure is
naturally coordinate invariant, is independent of the
choice of weight made for the variables, and leads to an
elegant way' of regularizing the infinite determinant in
(2.30). It is easy to check that the definition (2.27) is in-
dependent of the choice of basis, since transformations be-
tween complete orthonormal sets of basis functions are
unitary.

The formal equivalence between the measure defined in
(2.27) and that defined in (2.11) may be established as fol-
lows. (Fujikawa has given a similar analysis for his
weight ——, variables, but again it must be emphasized
that the functional measure is independent of weight. ) In-
troduce Dirac notation by writing

Let

1
X X 4

N —2

N —1
R (x) (3.1)

g„(x)~g„(x)=Q (x)gp (x) . (3.2)

The scalar field action which involves (P, b.P) will be in-
variant' under (3.2) provided that

y(x) y(x) =[n( x)]'-"'+' /2'y( x) . (3.3)

Note that the biscalar density Dirac distribution 5(x,x')
defined in (2.18) transforms like

5(x,x') ~5(x,x')

be the conformally invariant wave operator for a scalar
field in X dimensions. A conformal transformation of
the metric is given by

P(x) = (x
~
P),

f„(x)=(x ~n) .

Then (2.25) may be written as

i~&=X~. i
&

(2.31)

(2.32)

(2.33)

J =Det(x
i

n ) .

Now

(2.34)

~

J
~

=J J=(Det(n
i
x ) )(Det(x'

~

n') )

=Det f d x[g(x)] +' f„*(x)f„(x) (2.36)

(2.35)

In this form it may be recognized that what is happening
in (2.25) is just a change of basis in Hilbert space from

i P ) to
~

n ) . Associated with this change of basis will be
a Jacobian, which formally is

[~( )]
—1 N(m+1/—2)[II( i)]1—x(w+1/2)

X5(x,x') (3.4)

P(x) = g P„f„(x), (3.S)

under (3.2).
Consider the partition function (2.1). Because the sca-

lar field action is invariant under (3.2) and (3.3), if Z
changes at all, any change must come from the functional
measure. We also know that if the functional measure is
written in the form (2.27) it will be invariant under a uni-
tary transformation. Thus, any conformal anomaly must
correspond to a nonunitary change of basis. This will
now be demonstrated explicitly, and it will also be shown
how the weight chosen for the variables is irrelevant.

The functions f„(x) have been chosen to transform like
P(x). Therefore, in the conformally related spacetime [cf.
(2.25)],

=Det(l 5„„) . (2.37)
where

The result in (2.36) follows from (2.35) by combining the
two determinants and using the metric (2.10) in the space
of functions when multiplying (n

~

x ) [ =f„*(x)] by
(x'

~

n') [=f„(x')]. Equation (2.37) shows that up to an
irrelevant infinite constant factor, we have

~

J
i
= 1, and

therefore the measure defined in (2.27) is formally
equivalent to that defined by (2.11).

f (x)=[A(x)]' ' +' 'f (x) (3.6)

(3.8)

(The P„do not transform under the conformal transfor-
mation. ) If [f„(x)] is a complete orthonormal set, then
the conformally related basis [f„(x)j is neither complete
nor orthonormal in general. It is easy to see that

(f„,f„)=f d x[g(x)] +' f „*(x)f„(x) (3.7)

= f d x [g (x) ] +'/ I), (x)f„*(x)f„(x),
III. THE FUNCTIONAL MEASURE

AND THE CONFORMAL ANOMALY g f „*(x)f„(x')=Q(x)Q(x')I 5(x', x) .
n

(3.9)

As was discussed in the preceding section, the function-
al measure is independent of the weight chosen for the
scalar field variables in the functional integral. The
choice made by Fujikawa is allowed, but is not compulso-
ry. Because the conformal anomaly may be understood as
arising from the functional measure, it follows that it too
must be independent of the weight chosen for the vari-
ables. Since Fujikawa's derivation relied on the choice
m = ——,, it is instructive to see how the analysis proceeds
for arbitrary m.

f„(x)=A(x)g„(x) (3.10)

to a new basis [g„(x)]. It is clear from (3.7)—(3.10) that

(g„,g„)= f d x[g(x)] +'/ g„*(x)g„(x)

=1 6„„

(3.11)

(3.12)

However, the derivation of (2.30) relied on a complete
orthonormal set of basis functions which diagonalized A.
It is therefore necessary to perform a further transforma-
tion
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and

gg„*(x)g„(x')=15(x',x) .
n

(3.13)

momenta p;(t). The partition function is then

Z= dppqexp i dt pq' —H qp (4. 1)

P(x) = g P„g„(x) (3.14)

for some expansion coefficients P„. The original func-
tional measure was Q„dP„/(2vr)' and the transformed
one must involve Q„dP„/(2m)'~ . Therefore we have

(3.1 5)

where J is the Jacobian of the transformation from P„ to
However, by comparing (3.5) with (3.14) it may be

seen that

4n g Cnn'4n' ~

n'

where

(3.16)

C„„=l f d x[g(x)] +' II '(x)g„*(x)g„(x)

=l f d x[g(x)] +'~ Il '(x)f„*(x)f„(x). (3.18)

The Jacobian appearing in (3.15) is therefore

The basis [g„(x)] is now complete and orthonormal in the
conformally related spacetime.

As mentioned above, the transformation (3.10) from the
basis [f„(x)] to [g„(x)j will not be unitary, and hence a
nontrivial Jacobian will arise. Write the scalar field densi-
ty P(x) in the conformally related spacetime as

where H(q, p) is the Hamiltonian. The measure is just the
usual one' '

dp(p, q) = / / dp;(r) g dq'(r) (4.2)

S[y,]= f d xW(y„a„y,,x), (4.3)

where

As mentioned in the Introduction, this result is usually
just transcribed directly without modification to quantum
field theory. While this does not lead to any problems in
flat Minkowski spacetime, it turns out not to be the
correct procedure in curved spacetime.

Consider a scalar field theory on an N-dimensional
curved manifold with a metric signature ( —++ +).
A careful discussion of canonical quantization in curved
spacetime ' is given by Fulling. The canonical formal-
ism requires that one of the coordinates, say x, be chosen
as the time coordinate, and that for each t, the hypersur-
face x =t be a Cauchy surface for the spacetime region
covered by the coordinates. The behavior of quantities
under a change of coordinates which involve only those
on the Cauchy hypersurface or else a transformation of
the local time scale with the coordinates on the Cauchy
hypersurface held fixed may be considered.

The action for a scalar field QQ(x) is

J=DetC„„ (3.19) L (y„a„yQ,x) = ——,
'
[ —g (x)]'"g~ (x)a„yQ(x)ayQ(x)

From (3.17) and (3.18) it is clear that the Jacobian may be
evaluated either in the original or conformally related
spacetime. It is also clear that C„„and hence J is in-
dependent of the choice of weight made for the field vari-
ables. A particular choice of w = ——,

'
may be made if

desired, but it is again worth emphasizing that this is
completely arbitrary and is not essential. The Jacobian
(3.19) may be evaluated as described by Fujikawa' where
the usual scalar field conformal anomaly will be obtained.

IV. THE FUNCTIONAL MEASURE IN PHASE SPACE

Phase space for a finite-dimensional system is described
by a set of coordinates q'(t) and their associated canonical

(4.4)

L[y„jQ,r]= f d 'xW(y„a„y„-x), (4.5)

where the integration is over the (N —1)-dimensional
Cauchy hypersurface. Instead of using the scalar field
QQ(x), the choice of a scalar field density of weight w de-
fined in (2.2) may be made. For this choice, the Lagrang-
ian is

is the Lagrangian density. (Only the simplest case of a
free massless, minimally coupled scalar field is considered
in this section. ) The Lagrangian L [QQ, QQ, t] is defined by

L [yj,r]= ——,
' f d —'x[ —g(x)]'"g& (x)a„[(—g) "y]a.[(—g) "y] . (4.6)

[Setting w =0 recovers the scalar field result in (4.5).]
The momentum which is canonically conjugate to P is de-
fined as usual by

~(x) = —[—g (x)]"+'~ g (x)VQ(x) . (4.8)

The momentum which is canonically conjugate to the sca-
lar field PQ(x) is

m(x)= BL

aj(x)
It follows from (4.6) that

(4.7) 7TQ(x) = —[ —g(x)]' g (x)VPQ(x) . (4.9)

Thus the canonical momentum for the scalar field density
of weight w is related to that for the scalar field by
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n(x)=[ —g(x)] / mO(x) .

The Hamiltonian density is defined in general by

from which it follows that for the scalar field
I (g00) —I( )

—w —I /2 2 (g00) —I Or

W——[koln( —g) ]m.P2

(g00) —I( g)w+ I/2 Oi Ojp yg y

+ I
( g)w+ I/2 ijp yp

(4.10)

(4.11)

(4.12)

finite-dimensional case. When (4.20) is combined with the
configuration space measure (2.11) it gives

dp[vr, P] = + [ [ g—(x)] ' dm(x)drtr(x) J (4.21)

as the invariant phase-space measure. It is easy to verify
that this measure is invariant under arbitrary changes in
the local time scale, as well as under changes in the coor-
dinates on the spacelike Cauchy hypersurface. The in-
variant inner product in momentum space is easily read
off from the Hamiltonian (4.12) to be

(m, vr)= .f d x[ —g (x)] '[ —g(x)] '/ ~ (x) .

(4.22)

L = , E,/q 'q ~ ——V(q), (4.13)

where E,z is a nonsingular matrix. The canonical momen-
tum is

BL
pr

—— ——Esjq
Bq

and the Hamiltonian is

(4.14)

As in Sec. II, focus first on the n-dimensional case of a
system with a Lagrangian

Integration over the momentum variables in the func-
tional integral will lead directly to the configuration-space
functional integral of Sec. II. Without the factor of
( —g )

' present in (4.21) this will not be true, as in-
tegration over the momentum will lead to explicit factors
of ( —g ) appearing in the configuration-space functional
measure. This is the situation encountered by the Unz"'
who starts off with a noninvariant measure in phase space
and ends up with a noninvariant measure in configuration
space.

H = —,(E ')'Jp;p~+ V(q),

where

(4.15)
V. DISCUSSION AND CONCLUSIONS

(E ')'"Eg~ =5J . . (4.16)

The invariant volume element in momentum space is then

dp(p) =(detE ')'/ d "p =(detE) '/ d "p . (4.17)

The invariant volume element in configuration space is

dp(q)=(detE)'/ d"q . (4.18)

Thus the invariant volume element in phase space is sim-
ply

dp(p, q) =d "p d "q, (4.19)

(4.20)

The factor of

[ 00( )]
—I/2[ ( )]

—w/2 —( I/4)

is seen to be just the analogue of (detE ')'/ in the

since the factors of (detE)'/ cancel between (4.17) and
(4.18). This justifies the choice (4.2) for quantum-
mechanical examples based on this finite-dimensional sys-
tem. Note, however, that there is no analogue of the g
factor in this finite-dimensional example. Thus, caution
must be used in translation of this result to the field
theory case.

Based upon (4.15) and (4.12) and the discussion of Sec.
II, it is clear that the momentum-space measure for the
scalar field should be

The above discussion has focused on the nature of the
functional measure in quantum field theory in curved
spacetime, particularly in relation to Fujikawa's work.
It has been shown that contrary to the claims of
Fujikawa, the variables for the functional integral are not
uniquely specified by the demand that the functional mea-
sure (and hence the partition function) be invariant under
general coordinate transformations. For example, scalar
field densities of weight ——, are not any more unique
than densities of any other weight, provided that the ap-
propriate factors of [ —g(x)]' occur in the functional
measure to give one which is invariant in function space.
It was seen how this problem was related to the simpler
one of defining an invariant Hilbert space inner product
for the field under consideration. The resulting modifica-
tion of Fujikawa's interpretation of conformal anomalies
as arising from the behavior of the functional measure
under conformal transformations was considered. Lastly,
the passage from the functional integral defined in phase
space to one defined in configuration space was described.
The invariant measure in phase space was given for a sca-
lar field, and we discussed why the results of Unz"'
were incorrect. The reason for this can be traced to a
naive transcription of results valid for finite-dimensional
systems to quantum field theory.

Although the preceding analysis has been restricted to
real boson fields, there is no impediment to extending it to
either complex or fermion fields. If rtr'(x) represents a set
of complete boson fields with an invariant inner product

(P, itr)= f d xp;~(x)P'*(x)+(x), (5.1)

then in place of (2.11) we have
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dp[P*, P J = + [detp; (x)]+dP'*(x) Q 1th'(x) . (5.2)

In fact this may be seen to simply be a consequence of
(2.11) by splitting up the complex fields into real and
imaginary parts. If P'(x) is a set of real anticommuting
fields, describing Majorana spinors for example, then the
configuration space measure will be

de[4']= II[d tp, ( )] (5.3)

assuming that the invariant inner product is still given by
(5.1). The reason why detp, j(x) occurs to a negative
power in this case is because of the rules for integrating
over anticommuting fields.

Because the choice of variables in the functional in-
tegral has been shown to be arbitrary, it is interesting to
examine how the vacuum expectation value of the stress-
energy tensor and the semiclassical Einstein equations are
affected. In order to compute the vacuum expectation
value of the stress-energy tensor, we vary the effective ac-

I

1[0 „.]=1 [Co, „.] (5.4)

where P and who denote the background scalar fields which
are related by (2.2). If we now vary I [P,g„]with respect
to g„(x) while holding P(x) fixed, it is clear that Po(x)
cannot remain fixed. However, from (5.4) we see that

5r[y,g„.]
5g„ (x) 5g„„(x)

(5.5)

The right-hand side may now be evaluated to give

tion I with respect to the background metric g&„(x) while
holding the basic scalar field variables fixed. It is clear
that for different choices of field variables, different ex-
pressions will result and we must examine how they are
related.

It has been demonstrated above that the partition func-
tion, and hence the effective action, is independent of the
weight chosen for the scalar field variables. We therefore
have

5r[y, g„,]
5g„(x)

51 [4o,.]
5g„(x) 5$o(x')

5(hp(x')

5g„(x)
(5.6)

From (2.2) we have

5go(x ) =—Po(x )g" (x )5g„(x) (5.7)

if P(x) is held fixed. Thus, (5.6) becomes

5r[y,g„.]
5g„(x)

5r[y„g„.]
5g„„(x)

iLU

~ ( ) &&( )
[Wo~gpv l

5$o(x)
(5.8)

The other effective field equation is obtained by varying
I [P,g] with respect to the basic field variable P(x) while
holding g„(x) fixed. It leads to

51 [d,g„.l .„5I[ko,g„.]
5$(x) 5$o(x)

(5.9)
&pv

It is seen clearly from (5.8) and (5.9) that the dynamics
is the same regardless of which field variables are chosen.
The difference between the expectation values of the two
stress tensors vanishes when the effective field equations
hold. It should be pointed out that the situation regarding
different choices of field variables is different from that
described by Duff which relies on redefining the back-
ground metric in a way which involves the quantum
fields.

Finally, I wish to make some comments concerning the
relationship of this approach to Vilkovisky's formula-
tion of the effective action. Fields should be viewed as
coordinates in function space. In Sec. II it was also as-
sumed that they were sections of some vector bundle so
that expressions such as (2.8) made sense. This will not be
true in general; however, it still makes sense to define an
inner product in function space between vectors. (It was
done in the case of quantum gravity by DeWitt. ) Speci-
fying an inner product gives a metric in function space.
As Vilkovisky has discussed, this metric can be used to
construct a connection and give a formulation of the ef-
fective action which is invariant under arbitrary field
redefinitions. All of this supposes that the functional
measure is also invariant under field redefinitions. This is
guaranteed to be the case if it is defined as described in
Sec. II above. This gives the whole approach to quantiza-
tion by the background-field method a very geometrical
flavor.
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