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Just as the mere presence of boundaries can create a change in the vacuum expectation value of
the stress tensor (the Casimir effect), so can the rotation of such boundaries. Calculations of the
Casimir effect are made for a massless scalar field confined to an infinitely long square box. A com-
parison is made with the results of other authors for the Casimir effect near flat planes and inside
angles. The change in the vacuum expectation value of the momentum density is calculated for this
same box rotating around its long central axis. An estimate is made of the moment of inertia per
unit length for the rotating box.

I. INTRODUCTION

In 1948 Casimir' made his famous prediction that two
perfectly conducting parallel plates should experience a
mutual attractive force

the vacuum expectation values of the stress-energy tensors
will be identical for these two cases. Some confusion in
the past has resulted because the frequency spectrum is
shifted downward in the rotating case relative to the non-
rotating case, i.e., in the nonrotating case the modes are
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where a is the distance between the plates, measured in
microns. This force comes from the change in the zero-
point energy of the electromagnetic field due to the pres-
ence of the plates. In 1958 this force was measured in the
Philips Research Laboratories by Sparnaay, physical con-
firmation that the idea of vacuum energy must be taken
seriously. Since that time the Casimir effect, a name ap-
plied to changes both in the total energy and in the vacu-
um expectation value of the stress-energy tensor, due to
the presence of surfaces, has been calculated for a number
of different physical situations. (For example, inside an-
gles, inside variously shaped cavities, near arbitrarily
curved surfaces, near dielectrics, and for accelerating
boundaries. )

Moving boundaries are particularly interesting. Of
course due to Lorentz invariance there are no physically
measurable differences between a boundary moving rigid-
ly with constant velocity and the same boundary at rest.
Cases of linear acceleration have been thoroughly investi-
gated. They show changes in the stress-energy tensor far
from the boundary, corresponding to a thermal bath of
particles [with temperature T=(2trg) ', where g

' is the
proper acceleration of the boundary] missing from the
vacuum in the presence of an accelerating boundary, rela-
tive to the vacuum without this boundary.

It is the purpose of this paper to consider the case of ro-
tating boundaries. Letaw and Pfautsch have shown that
an observer orbiting a point in flat, unbounded Min-
kowski space observes a spectrum of vacuum fluctuations
over and above that expected from his acceleration, indi-
cating that a vacuum state might exist tailored to rotating
boundary conditions. The difficulty has been to find
modes appropriate to rotating boundaries. In one simple
case, that of a rotating cylinder of radius R, the modes are
identical to those for a nonrotating cylinder. Therefore

and in the rotating case they are
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0 is the angular velocity of the cylinder, and x „ is the
nth zero of the Bessel function J (z). (The differences
can be shown to be just a change from nonrotating to ro-
tating coordinates. ) It was assumed that some of the
positive-frequency modes co&0 in the nonrotating case
would become negative-frequency modes co —mB&0 in
the rotating case. This could cause differences in the vac-
uum expectation values of operators since some of the
modes which had positive norm corresponding to particle
states would now have negative norm corresponding to
antiparticle states, forcing a change from annihilation
operators to creation operators in the quantization pro-
cedure. However Pfautsch showed that by the condition

Xmi &m

on the zeros of Bessel functions and Eq. (1), one obtains

Pl
&m 0

R

whenever R Q & 1. But this is just the condition that the
boundary rotate at less than the speed of light. Thus we
see that for physically reasonable situations cu is always
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greater than m A. The shift in frequency does not change
any positive-frequency modes to negative-frequency
modes. The anticipated difficulty does not arise. The
case of a rotating cylinder is uninteresting in that the vac-
uum cannot tell that smooth cylindrical walls are rotating.
Hence we are led to consider rotating boundaries of other
shapes with "roughness" to "push" the vacuum around.
Unfortunately the field equations for rotating boundaries
with other shapes have thus far proven insoluble. This
paper avoids the problem by calculating a perturbation ex-
pansion for the appropriate Green's function to first order
in the angular velocity of the boundary.

It has been shown in other examples that the confor-
mally coupled stress-energy tensor for the massless scalar
field shows many of the same qualitative features as the
physically relevant electromagnetic field. Therefore for
simplicity a massless scalar field is used throughout this
paper. Results for both the conformally coupled and the
minimally coupled stress-energy tensor are given. Both
Dirichlet and Neumann boundary conditions are used.

In Sec. II the Casimir effect in an infinitely long box
with square cross section is calculated using Green's-
function techniques and the method of images. The result
is evaluated numerically. A comparison is made with the

results of other authors for the stress-energy tensor near
flat planes and inside angles. In Sec. III Green's-function
techniques are used to calculate the correction, to first or-
der in the angular velocity, for the vacuum expectation
value of the stress-energy tensor when the box is rotating.
Only the momentum density acquires a first-order correc-
tion. The results are evaluated numerically. An estimate
is made of the moment of inertia per unit length for a ro-
tating box.

II. THE NONROTATING BOX

The Feynman Green's function for a massless scalar
field is a solution of

FG(x,x')= —g
' 5 (x,x'),

where F=g ' B~'~ g" B„and g = —det(gz ). The
boundary conditions for G(x,x') used in this paper are
Dirichlet [GD(x,x')=0 for x or x' on the boundary of
the spacetime] and Neumann [the normal derivative of
G~(x,x') =0 for x or x' on the boundary of the space-
time]. In flat, nonrotating space, we use

g„,=q„,=diag( —1, 1, 1, 1). The vacuum expectation
value of the stress-energy tensor is given by
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where g" is the bivector of parallel transport (which transports vectors from the point x to the point x via parallel
propagation along the geodesic joining x with x). g= —, for the conformally coupled scalar field and /=0 for the
minimally coupled scalar field.

For the original Casimir case of two infinitely broad parallel plates separated by a distance a in the x direction, the
Green's function is

t l 1
GD ~(x,x') = g (+1)

4m „„(tt') +[x ——( ——1)"x'+na] +(y —y') +(z z') +—ie
where the top sign corresponds to Dirichlet boundary conditions and the bottom sign to Neumann (a convention which
will be followed throughout the paper). Notice that the term with n =0 is the usual Minkowski Green s function and the
other terms are the contributions from the image of the original source x, formed by multiple reflections in the walls.
See Fig. 1. The Green s function is renormalized by subtracting the ordinary Minkowski term. A straightforward calcu-
lation for the renormalized stress-energy tensor gives'
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for the minimally coupled case. Notice that in the confor-
mally coupled case the components of the stress-energy
tensor are constant between the plates, while in the
minimally coupled case some of the components blow up

as the distance from the plate to the inverse fourth power.
Brown and Maclay" have shown that the electromagnetic
field also gives a stress-energy tensor which is constant be-
tween the plates
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FIG. l. Images for the Green's function between two parallel
plates separated by a distance a.
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FIG. 2. Images for the Green's function inside a right angle.

and Deutsch and Candelas have shown that in general it
has the same qualitative behavior near boundaries as the
conformally coupled scalar field. Therefore the results in
this paper for the conformally coupled scalar field can be
expected to give the best predictions for the behavior of
the electromagnetic field. The results for the minimally
coupled scalar field are presented for completeness.

Deutsch and Candelas have also shown that unbounded
behavior of components of the stress-energy tensor is the
generic situation for all three fields near curved boun-
daries (including moving boundaries as a generalization
with space time cu-rvature), and have calculated the gen-
eral form for the divergences near such a curved boun-
dary. These divergences appear because of the imposition
of perfect-conductor-type boundary conditions. Boun-
daries made of real physical materials would not look like
perfect conductors for arbitrarily high frequencies and a
cutoff depending on the molecular details of the boundary
material should be imposed. This is not however a reason
for throwing out these divergences altogether. The cutoff
would ordinarily be at lengths significantly smaller than
any length scale (such as the plate separation a) imposed
by the problem. In this case the components of the
stress-energy tensor become quite large near the boundary.

The divergences in (0
~

T"
~

0) near boundaries arise
because G(x,x') is infinite as x' approaches x. The
overall divergence as x approaches the original source
term is just the usual divergence from the Minkowski
Green's function and is thrown away in the renormaliza-
tion procedure, but divergent terms on the boundaries
remain. If the problem is solved by the method of images,
the physical meaning of these terms is clear; a divergence
can be expected from the image formed by a single refiec-
tion in the boundary in the limit as the point x and the
image both approach that boundary. In the parallel-plate
calculation above, for the conformally coupled scalar
field, the images formed from an odd number of reflec-
tions in the plates, henceforth called odd-numbered im-
ages, do not contribute to (0

~
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FIG. 3. Images for the Green's function inside an infinitely
long nonrotating box with side of length a.

cancellations due to the symmetries in the problem, and
hence the components are finite as the boundary is ap-
proached. These cancellations do not occur if there is
even a slight curvature in the boundary or in the minimal-
ly coupled case; nor do they occur for (E ) or (H ), and
hence the Lamb shift is modified even near flat boun-
daries.

The only difference between the Green's functions for
Dirichlet and Neumann boundary conditions is an overall
sign change in terms from the odd-numbered images.
Since these terms do not contribute in the conformally
coupled case above, there is no difference between
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FIG. 4. (a) The vacuum expectation value of the energy density (0
~

T"
~

0) for the conformally coupled massless scalar field, satis-
fying Dirichlet boundary conditions, confined inside an infinitely long nonrotating box with side of length a, centered at the origin.
Actually graphed is a contour plot of the fourth root of the vacuum expectation value in units of 1/4~ a for the upper right-hand
quadrant of a cross section of the box (0&x &a/2, 0&y &a/2, z =0). The entire cross section can be obtained by reflection in the x
and/or y axes. (b) As in (a) but with the divergent edge and corner contributions subtracted.

(0~ T""~0)D and (0~ T"'~0)z. In the minimally cou-
pled case, the divergence near the boundary is caused by
the images from a single reflection. Thus the divergent
term differs by an overall sign for the two boundary con-

ditions.
The Green's function for a right angle with edges along

the x and y axes has four terms: the original Minkowski
term and three image terms (see Fig. 2)
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FIG. 5. As in Fig. 4, but for (0
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0) for the minimally coupled field satisfying Dirichlet boundary conditions.
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FICx. 6. As in Fig. 4, but for (0
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0) for the conformally coupled field satisfying Neumann boundary conditions.

leading to

—1

( 2+y2)2

0

0

0

x —3y2 2

(x'+y')'
4'

(X2+y2)3

0

4xy

( 2+F2)3
—3x +y2 2

(X 2+F2)3

0

0

0

0 0 0
(X 2+F 2)2

in the conformally coupled case and

(a)
IIII IIIII I II IIII IIIIII I IIIII III III IIIIII IIIIII III (b)

III IIIII I IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII III

111111111111111111111111111111111111111111J1111 I 111111II I I I I 111111III 111 ill li I Ill J1 I I II ~ II

FIG. 7. As in Fig. 4, but for (0
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T" 0) for the minimally coupled field satisfying Neumann boundary conditions.
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FIG. 13. As in Fig. 4, but for (0
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0) for the minimally coupled field satisfying either Dirichlet or Neumann boundary condi-
tions.

where the sums are over the images shown in Fig. 3. The
sums in (0

~

T"
~
0)D~ cannot be done in closed form,

however they are computed numerically to four figures of
accuracy (n and m running from —50 to 50). The results
are graphed in Figs. 4—13. Tables of numerical results
may be obtained from the author. As expected we see
corner divergences for the conformally coupled case and
both edge and corner divergences for the minimally cou-
pled case. In order to display the behavior of the stress
tensor near the center of the box, these divergences have
been subtracted (i.e., the contribution from the nine terms
with n =0, +1 while m =0, +1). This subtracted result
is plotted in Figs. 4(b) —13(b) next to the complete result.

where by definition

6G(x,x') =G(x,x') —Go(x,x') (5)

6F"=F"—Fo .

Thus we can obtain G(x,x') from Eqs. (4) and (5). Let

g& be the metric appropriate to a Cartesian coordinate
system rotating clockwise in the (x,y) plane about the ori-
gin, to first order in the angular velocity 0, i.e.,

III. THE ROTATING BOX

Consider the same manifold as was used in the previous
section for the nonrotating box (see Fig. 3); but now with
two different metrics, q„and g„,where g„„differs from

by terms which are small. Then the Green's functions
for the two spacetimes satisfy the equations

FG(x,x') = —g
' 5 (x,x'),

FoGo(x, x') = —rI
' 5 (x,x'),

6G(x,x') = f d~x "Go(x,x")5F"Go(x",x'), (4)

where the subscript zero refers to quantities in the space-
time with metric g„and the unsubscripted symbols refer
to quantities in the spacetime with metric g„. Assume
the Careen's functions obey the same boundary conditions
(either Dirichlet or Neumann). Left multiply the first
equation by Go, the second equation by G, and integrate
over the spacetime manifold. Subtract, integrate by parts,
and use the boundary conditions to obtain

yQ
—xA

0

yQ —xB 0
1 0 0
0 1 0
0 0 1

Now using the Green's function obtained in the previous
section for the nonrotating box as Go(x,x') and using

SF"=2n(y "a„.a, . —x "a,-a, -)

we obtain an approximation, to first order in the angular
velocity Q, for the Green's function of a rotating box.
The resulting expression for 6G(x,x ) has four infinite
sums and an integral over the entire spacetime region of
the manifold and is not expressible in closed form. As we
are ultimately interested in (0

~

T"
~
0)D& and not in

G(x,x') we go ahead and apply the differential operator
of Eq. (2) to Go(x,x')+6G(x, x'). The only components
which contain a first-order correction to the results for
the nonrotating box are (0

~

T'"
~
0)D ~ and

(0
~

T+
~
0)D ~. We obtain
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+ I
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as measured by an observer in the rotating frame.
( (0

I

T+
I
0)D & can be obtained from ( 01 T'"

I
0)D ~ by

symmetry arguments and hence is not computed here.
By transforming the tensor (0

I

T" 10) to the nonro-
tating system, we obtain

We split points in the z direction so that cr= —,'(z —z')
glvlng

(01 T""10)„=2~' (z —z )'

(0
I

T'"10)...,.i= (0
I

T'"10)—yn(0
I

T 10)

as the momentum density measured by an observer in the
nonrotating frame. The difference between the momenta
measured by the two observers is just what one would ob-
tain by looking at the nonrotating energy in the rotating
frame.

The stress-energy tensor in Eq. (6) is not as easy to reg-
ularize as the cases of Sec. II. Christensen' has calculat-
ed the general form for the infinities in the stress-energy
tensor for any metric by the method of geodesic point
splitting. Only the quartic divergence in his general ex-
pression appears in flat spacetimes, i.e.,

1/2 p v

(01 T""10)„= g""—4
2m. (&crt) (Ho~)

where o(x,x') is the geodesic interval between x and x'.

yQ
X —xQ

yfL —xQ
1 0
0 1

0 0

0
0
0

(b)
J t J [

FIG. 14. The vacuum expectation value of the momentum
density ((01T 10) and (01T+10) plotted as a vector) in units
of 0/4+a, for the conformally coupled massless scalar field
satisfying Dirichlet boundary conditions, confined inside an in-
finitely long rotating box with side of length a, centered at the
origin, as measured by an observer in the nonrotating frame.
The box is rotating clockwise. Plotted are the results for the
upper right quadrant of a cross section of the box (0 (x & a /2,
0 (y (a/2, z =0). Results for other quadrants can be obtained
by successive rotations of m/2 about the origin.

FIG. 15. (a) As in Fig. 14, but the lengths of the vectors have
been scaled by taking eighth roots in order to show the direction
of flow near the origin. (b) As in (a), but for just the nonrotating
energy density (01 T"10) as observed in the rotating frame.
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The term with n =m =0 in Go(x,x') makes a contribu-
tion of

yQ
~ (z —z')

to the divergence in (0
~

T'
~

0), twice the expected re-
sult. This means that part of the divergence must come
from 5G(x,x'). In fact the extra part of the divergence
comes from the n =n'=m =m'=0 term in 5G(x,x').
To see this we evaluate this term, using the method
described in the Appendix for the general terms, with the
exception of a change in the ranges of the x" and y" in-
tegrals. Since the expected divergence is a part of the usu-
al Minkowski divergence (i.e., from the entire Minkowski
spacetime) we extend the x" and y" integrals from minus
infinity to infinity and then subtract the integral outside
the spacetime manifold to obtain the original integral over
the inside of the spacetime manifold. The extended in-
tegral gives precisely the missing piece of the divergence
and is thrown away in the renormalization procedure.

The subtracted integral over the outside of the box is then
a contribution to the finite part of the stress-energy tensor
and must be included in our calculation.

The first term in Eq. (6a) was evaluated numerically to
four figures of accuracy by summing n and m from —50
to 50. The numerical evaluation of the second term in Eq.
(6b) is discussed in the Appendix. Tables of numerical re-
sults may be obtained from the author. Figures 14—18
show (0~ T'"~0) and (0~ T@~0) plotted as vectors to
show both the magnitude and direction of the momentum
density as seen by an observer in the nonrotating frame.
Below these are plotted the results for the zeroth-order en-
ergy density as seen by an observer in the rotating frame.
(Recall that to get the momentum density as seen by an
observer in the rotating frame, these two graphs should be
added. ) Notice that the momentum density is always
much larger than just the zeroth-order energy density as
seen by the rotating observer. Also notice that the
momentum density blows up near the edges of the box
even in the conformally coupled case. This is because the
boundaries are curved in a spacetime sense.

I

(b)

FICx. 16. As in Fig. 15, but for the conformally coupled field
satisfying Neumann boundary conditions.

FIG. 17. As in Fig. 15, but for the minimally coupled field
satisfying Dirichlet boundary conditions.
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have no results on the edge of the box, this results in an
effective cutoff at wavelengths on the order of one-
hundredth the size of the box. Dividing the total angular
momentum by the angular velocity, we obtain for the mo-
ment of inertia per unit length

8000 i6

4~ c

(b)

Notice that the answer is proportional to A'/c (very small)
and independent of the cross-sectional size of the box.
Obviously our rough estimate is physically unrealistic in
that the cutoff scales with the size of the box. A physical-
ly realistic box would have a cutoff depending on the
molecular details of the boundary material introducing
another length scale into the problem. Assume that the
momentum diverges inversely as the distance from the
edge or corner of the box to the inverse fourth power. We
use the numerical data near the edge of the box to fit the
overall proportionality constants and integrate over the
edges and corners of the box where we have no numerical
data. The corner contributions are the largest giving a
constant piece which approximately cancels the first esti-
mate and an additional term

50 A 1I=
4~a & p

2

t
fL

Tf

where p = the interatomic spacing/the size of the box.
Even with p=10 ', and a =1m, we obtain I=10
kg m, still extremely small.

FIG. 18. As in Fig. 15, but for the minimally coupled field
satisfying Neumann boundary conditions.

It is possible to obtain a rough estimate of the moment
of inertia per unit length for a box. Using our results for
the momentum density, we make a Riemann sum type es-
timate for the total angular momentum density. Since we
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APPENDIX

In this appendix we give an outline of how to evaluate the second term Eq. (6b) where

5G(x,x')= f d x "G (x,x")(20)(y"a„-a,. —x "a,-a,-)G (x,x')

with

oo 00

Go(x,x') = g g (+1)"+
4m „—(t —t') +[x —( —1)"x'+na] +[y —( —1) y'+ma) +(z —z') +ie

First take the derivatives indicated in Eq. (6). (Judicious
use of integration by parts at this stage will make succeed-
ing equations look simpler and more symmetric. ) Com-
bine the factors in the denominators using the Feynrnan
integral

1 ' u(1 —u)
dQ

a b [a(1—u)+bu]

The t" and z" integrals are straightforward using stan-
dard techniques, leaving four infinite sums (over n, n', m,
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m') and three finite integrals (over x", y", and u) to be
evaluated. For simplicity rescale the x" and y" integrals
to factor the length of the box out of the integrand. Reg-
ularize the result as indicated in Sec. III and renormalize
by throwing away the Minkowski divergence. Take the
limit x ~x in the finite remainder.

As this stage the problem breaks into several pieces. In
the terms where n = n' and m =m' all of the integrals can
be evaluated in closed form leaving just a double sum to

be evaluated numerically. Take the sums from
n, m = —50 to 50 to obtain four figures of accuracy. The
term with n =n'=m =m'=0 is similar but the x" and
y" integrals extend over the outside of the box instead of
the inside as discussed in the regularization procedure of
Sec. III.

The terms with n&n' and m&m' are the most compli-
cated. The u integral can be evaluated in closed form
leaving

1/2 1/21)n+n'+m+m' f d f3 3 —1/2 —1/2
n+t1

mmmm

1 4 2(D+A)+ 4 + ln—
3AD (D —2) (D —A) (D —A)

&&(y "[(—1)"+( —1) ][x"—( —1)"x +n )(x"—( —1)"x +n']

—x"[(—1)"[x"—( —1)"x +n'][y" —( —1) y +m]

+( —1)"[x"—( —1)"x+n][y"—( —1) y+m']I ), (Al)

where

3 =[x"—( —1)"x +n] +[y"—( —1) y+m], D =[x"—( —1)"x+n'] +[y"—( —1) y+m']

At this point we are left with four nested sums and two
integrals to evaluate numerically. If each sum or integral
requires a mere ten terms to converge sufficiently, we
have to make 10 evaluations of the integrand for each
spacetime point at which we wish to evaluate the stress-
energy tensor. Clearly computational speed is more im-
portant than elegance if an answer is desired in finite
computer time.

An eleventh-degree two-dimensional Gaussian routine
with minimal (28) points' (not a simple product rule) is
used to evaluate the x" and y" integrals. Successive itera-
tions can be obtained by dividing the box up into smaller
squares and using the Gaussian rule on each of the small-
er squares. The number of squares is increased until the
convergence necessary to ensure three-figure accuracy in
the sums is assured. Then the sums over n, n', m, and m'
are done symmetrically out from zero until three-figure
accuracy is attained. Near the edges of the square, con-
vergence of the integrals is very slow, but fortunately the
convergence of the sums is extremely rapid, only the first
few terms contributing to the desired accuracy. Near the
center of the square convergence of the integrals is ex-
tremely rapid with one to three iterations giving ten-
figure accuracy, but the sums converge slowly and need to
be extended to much higher values. (Convergence was
checked only for representative terms in the various areas
in order to obtain necessary speed in the routine. ) Special
care is necessary in two special cases where the integrand
in Eq. (Al) might diverge, i.e., when A or D equals zero,

and when 3 equals D.
Case 1: 3 or D =0. This can only happen if n and m

are both zero or if n' and m' are both zero. In these cases
the possible singularity occurs at the single point x"=x,
y"=y. To examine the behavior of the integrand at this
point, change variables to x"=x+r cosO, y"=y+r sinO,
and expand the integrand for small r. Find that while it
is true that the integrand diverges at the point r =0, the
integral in a small circle around that point is finite. To
handle this situation during the numerical integration it is
important to choose points at which the integrand is
evaluated symmetrically about this singularity and of
course not on the singularity. (For this reason it was de-
cided to evaluate the stress-energy tensor at intervals of
0.05a inside the box. The number of iterations of the nu-
merical integration routine was then carefully chosen to
ensure that the points at which the integrand was evaluat-
ed were symmetric about the singularity. It was also veri-
fied by explicit calculation in some representative cases
that the answers from the numerical routine were not sig-
nificantly at odds with the results from an analytic calcu-
lation in a small region around the singularity. )

Case 2: 3 =D. 2 equals D along a straight line in the
(x",y") plane which may or may not cross through the
region of integration, depending on the values of n, n', m,
and m'. To examine the behavior of the integrand along
this line, make a change of variables, to u which lies along
the line and v which is perpendicular to it. An expansion
of the integrand for small values of v shows that in fact
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the integrand is finite along this line although the indivi-
dual terms in the integrand are not. (During the numeri-
cal integration, the zeroth-order value of the expansion
was used to evaluate the integrand whenever one of the

points at which the integrand was to be evaluated fell on
third line. Checks were made that points near but not on
the line did not introduce significant error. )
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