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15 JUNE 1987

B. Allen* and A. Folacci
Groupe d'Astrophysique Relativiste, Centre National de la Recherche Scientifique,

Observatoire de Paris-Meudon, 92195 Meudon PrincipaI Cedex, France
(Received 2 March 1987)

We quantize the massless minimally coupled scalar field in de Sitter space, and find a one-

complex-parameter family of O(4)-invariant Hadamard Fock vacua which break de Sitter invari-
ance. The different Fock spaces corresponding to the different choices of vacuum are subspaces of a
single space of states. We make some remarks about the existence of E(3)- and O(1,3)-invariant
Fock vacuum states.

I. INTRODUCTION

The quantum theory of the massless, minimally cou-
pled scalar field propagating in de Sitter space is of funda-
mental importance in the cosmological context of the very
early Universe. It plays a central role in the phenomenon
of inflation' and it might imply the instability of de Sitter
space and thus explain why the cosmological constant is
so small today.

It is well known that the Green's functions for a scalar
field in the Euclidean vacuum [which is O(1,4) invariant]
are infrared divergent in the limits (~0 and m ~0
(where g and m are, respectively, the coupling constant
and the mass of the quanta). This infrared divergence
corresponds to the fact that there is no de Sitter-invariant
vacuum for the massless minimally coupled scalar field.
However, it is possible to look for vacua which break de
Sitter invariance but which have as much symmetry as
possible, i.e., vacua which are invariant under the six-
parameter subgroups of the de Sitter group: O(4), E(3),
and O(1,3). [These subgroups are not maximal. There ex-
ists a seven-parameter subgroup DCIE(3) of O(1,4) con-
taining an additional dilation D. However the orbit of
this subgroup (acting on a point of the de Sitter space-
time) is the whole spacetime. Thus it is not as interesting
as the other subgroups, whose orbits are three-dimensional
foliations of the spacetime. ]

In this paper we clarify some aspects of the quantiza-
tion of a massless minimally coupled scalar field. In or-
der to simplify the treatment we choose to work only with
Hadarnard states, i.e., with vacuum states in which the
two-point functions have the Hadamard singularity.
After a description of the de Sitter manifold and some
properties of the O(1,4), O(4), E(3), and O(1,3) groups in
Sec. II, we review some aspects of the quantization of a
massive scalar field propagating in de Sitter space in Sec.
III. In Sec. IV we explain the existence of the infrared
divergence in the Euclidean vacuum and we construct a
two-real-parameter family of O(4)-invariant Hadamard
vacua, which are well-defined Fock states. This family
contains a one-parameter subfamily of states which are
also time-reversal invariant. This construction clarifies
the status of the E(3)-invariant Hadamard "vacuum"
found by Allen and of the O(1,3)-invariant one. In Sec.

II. DE SITTER SPACE

de Sitter space is a maximally symmetric spacetime
having a positive constant curvature R and topology
R ' &S . It is locally characterized by the relation
R,b,d

———„R(g«gbd g,dgb, )—and it can be easily
represented as the four-dimensional hyperboloid

ri,bx'x =H (a, b =0, 1,2, 3,4) (2.1)

embedded in a flat five-dimensional space R with metric

rl, b
——diag( —1, 1, 1, 1, 1) .

The curvature is then

R =12H

(2.2)

(2.3)

The symmetry group O(1,4) of de Sitter space is ten di-
mensional and has three subgroups O(4), E(3), and O(1,3)
which are six dimensional.

Given two points x and x' on the hyperboloid, it is use-
ful to introduce the real quadratic form

Z(x, x')=H g,bx'x'" . (2.4)

Z is invariant under the group O(1,4) and has the proper-
ties

Z(x, x') & 1 if (x,x') are timelike related,

Z(x,x')=1 if (x,x') are null related,

Z(x, x') & 1 if (x,x') are spacelike related .

(2.5)

The relationship between Z and the geodesic distance is
1/2

RZ(x,x') =cos —o(x,x')
6

(2.6)

where cr(x, x') is one-half the square of the geodesic dis-
tance between x and x'.

As is well known, different coordinate systems can be

V we explain why the O(1,3)- and E(3)-invariant "states"
are not vacuum Fock states but only idealizations.

Our spacetime conventions follow those of Hawking
and Ellis and we work in units A=c = 1.
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used to parametrize de Sitter space. ' In particular, there
are three coordinate systems which correspond to three
different ways of slicing the manifold into space and time.
These correspond to foliations with closed, flat, or open
spatial sections that are, respectively, O(4), E(3), and
0(1,3) invariant. We will frequently use the subscript
+ 1, 0, and —1, respectively, to refer to the time coordi-

nates in these three cases.
The closed coordinates (t&,X, g, y) (see Figs. 1 and 2) are

defined by the following transformation of coordinates:

x =H 'sinh(Ht&),

x ' =H 'cosh(Ht, )cosX, —oo & t, & + ~,
x =H 'cosh(Ht

&
)sinX cosg, 0 & X, g & ~,

x =H 'cosh(Ht
&

)sinX sing cosy, 0 & y & 2n,
x =H 'cosh(Ht~ )sinX sing sin&p .

The line element ds is

(2.7)

ds = —dt~ +H cosh (Ht~)[dX +sin X(dg +sin Ody )]

and the quadratic form Z(x, x') can be written as

Z(x, x ') = —sinh(Ht
& )sinh(Ht '~ ) +cosh(Ht

&
)cosh(Ht ', )cosQ,

where 0 is the angle between the spacelike components of x and x' on S:
cosQ =cosX cosX'+ sinX sinX'[cosg cosg'+ sinO sing'cos(q& —&p') ] .

(2.8)

(2.9)

Ht
I

rI~ ——2arctan(e ), 0&rI& &vr (2.10)

and the coordinate system (t&,X,g, y) for which

The coordinates (t&,X,g, y) cover the whole de Sitter man-
ifold. The spatial sections t&

——const are spheres S of
positive curvature and are Cauchy surfaces. O(4) is the
set of transformations of de Sitter space which leaves in-
variant these hypersurfaces. It is also useful to define the
conformal time

2Htods = dto +H —e [dp +p (dg +sin gd&p )]

(2.12)

with —oo & to & + m and 0 &p & + op. Using the confor-—Hto
mal time go ———H e and allowing go to range over
all real numbers, we can cover the whole manifold with
the system (BIO,p, O, y). In this coordinate system the
metric takes the form

ds =H (sing, ) [—de, +dX

+sin~X(dg +sin gdy )] . (2.1 1)

ds =H r)0 [ drIO +dp +—p (dg +sin Ody )] .

(2.13)

The flat coordinates (g„,p, g, &p) and the open coordi-
nates (t ~,A., O, &p) do not cover all the de Sitter manifold.
In the flat coordinates the line element is given by

The spatial sections r)0 ——const (or to=const) are flat.
E(3) is the set of transformations of de Sitter space which
leave invariant these sections.

In the open coordinates (t, , k, g, y) (with
—oo &t ~ &+ oo and 0(k&+ ao) the metric becomes

X0

X=0

geodesic normals
X = const

=0(xi= ~t&)
t„= const (y, =const )

X= const
I

t&
—const (y& =const)~1

I

I

I

t

X= sr

+ 5 (t, =+tx or y, =n )

I
I

(

I

'
t1=0 (T(, =m/2)

I

X=0 X=+
'3 (t, =-oo or q t

—0 )

FIG. 1. de Sitter space is a hyperboloid embedded in a five-
dimensional flat space (two dimensions are suppressed in the
figure). Coordinates (t I,+,O, y) or (g&,+,O, g) cover the whole
manifold. The spatial sections tl ——const (g&

——const) are spheres
S of positive curvature and are Cauchy surfaces.

FIG. 2. Penrose diagram of de Sitter space. Null lines are at
45 . The left and right edges of this diagram must be identified
along the dashed lines. de Sitter space has a past and future
spacelike infinity, for timelike and null geodesics. The surfaces
t&

——const (gl ——const) are O(4) invariant.
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ds = dt—, +H sinh (Ht 1)[dk +sinh A, (dO +sin Odp )]

or, using the conformal time rl 1
——2arccoth '[exp(Ht 1)],

ds =H (sinhr) 1) [ —dr) 1 +dk +sinh A(dO +sin Ody )] .

(2.14)

(2.15)

The spatial sections ri 1
——const (or t

1
——const) are

O(1,3) invariant. (For more details about the flat and
open coordinate systems see Ref. 7.)

III. QUANTIZATION OF THE MASSIVE
SCALAR FIELD

In this section we review the canonical quantization of
a real scalar field P(x) propagating on de Sitter space, pre-
viously studied by Chernikov and Tagirov, Schomblond
and Spindel, Allen, Mottola, and other authors. '

In order to quantize the scalar field obeying the wave
equation

( —m —gR)/=0 (3.1)

we must obtain a complete set of mode solutions of (3.1),
which are orthogonal under the inner product

(1J/1, 1t2) = i f dX—"(P,V„P2) (3.2)

(where X is a Cauchy surface), i.e., satisfying

b, Yk1~ = —k(k +2)Yk1~ (3.9)

and where m = —I, —I+1, . . . , +I; I=0,1, . . . , k and
k=0, 1, . . . . (The properties of the S spherical harmon-
ics can be found in the Appendix of Ref. 7.) It should be
noted that we have the orthogonality relation

d»dOdysin»sinO Yk1m» O, g Yk'1'm'

~kk'~11'~mm ' (3.10)

and that the [ Yk1 ]1 form a basis for the (k+1)-
dimensional representation of SO(4). Substituting (3.8) in
(3.1) we obtain

2

2 + [(k+1) +H sing, [m +(g ——,
' )R])Xk —0

dpi

(3.11)

(u„,u„)=5„„, (u„,u„* ) =0 .

We then expand the field P(x) in the form

P=g(a„u„+a„u„*)

(3.3)

(3.4)

while the relations (3.3) become (taking for X a surface
2I 1

——const)

and we quantize the theory be adopting commutation re-
lations for the operators a„and a„:

[an ~an ]~nn' '~
(3.5)

[a„,a„ ]= [a„,a„ ]=0 .

We then define a vacuum state
~

0) by

Xk Xk Xk Xk 1

7/ ] 91

The general solution of (3.11) can be written

k( /1) =(srn'91) [AkPk+1/2( —cosr/1)

+Bk Qk+ 1/2( —cosr)1)],

(3.12)

a„~ 0) =0 rfn (3 6)
where

1/2

and by operating on
~

0) with the creation operators a„
one can construct a Fock space. A particularly interesting
object which contains all the information about the Fock-
space structure is the vacuum expectation value of the an-
ticommutator function:

G"'(x,x') = (0
~

P(x)P(x')+P(x')P(x)
~

0)

(m +gR)
9 12

and the normalization condition (3.12) reduces to

r(k+ —', —U)
~k+k ~k ~k

r(k+ -,
'

+ U)

(3.14)

(3.15)

=g[u„(x)u„*(x')+u„(x')u„*(x)] . (3.7)

ukjppg (x) =H»n211&k ( ri 1 ) Yk(ppg 0
where the Yk1 are S spherical harmonics obeying

(3.8)

In order to obtain a complete set of orthonorrnal modes
of (3.1) we must specify a coordinate system. In the
closed coordinates (211,X,O, y) the wave equation can be
solved by separation of variables. We look for modes hav-
ing the form

There is an infinity of Ak and Bk satisfying (3.15) and
therefore an infinity of vacua. As is well known, ' ' if we
only require the de Sitter invariance for the vacuum
states, we find there is a one-complex-parameter family of
such states, the Euclidean vacuum being a particular
member of this family. In this paper we choose to work
only with Hadarnard vacua. If we require the vacuum
state to be O(1,4) invariant and of Hadamard type, i.e., the6'" function in this state has the Hadamard form for
small cr (i.e.,

~

oR
~

&&1 and
~

om
~

&&1),
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G"'= —+ —,
'

[m +(g——,
' )R]lno+O(cr )

(2m. )'

(3.16)

G" I(x,x') is given by'

G'"(x,x')=G" (Z(x, x'))

then the Ak and Bk are uniquely determined. We have '
1/2

2
R 4

96~ cos~u
1+Z(x,x')F —, +v, —, —v;2;

~ I (k+ —, —v)
k 4 I (k+ —', +v)

i(m/2)U (3.18)

2l
Bk = ——~k

7T

(3.17)

and the corresponding vacuum is the Euclidean vacuum.
From (3.7), (3.8), (3.13), and (3.17) G"'(x,x') can be

calculated. When x and x ' are spacelike separated

where F is a hypergeometric function. When x and x' are
timelike separated [Z(x,x') ~ 1], G'''(x, x') is obtained
from (3.18) by taking the real part of the function analyti-
cally continued around the branch cut of F from Z = + 1

to + ne. The expectation values (P )„,„and (T& )„„in
the Euclidean vacuum are given by"

1
&ren=

18
+[m +(g ——,

' )R] Q(
—', + )v+g( —,

' —v)+ln
12m

(3.19)

( T„)„„=— " m [m +(g ——, )R] P( —, +v)+g( —', —v)+ln
64m

6 2 2
12m 2

R
(3.20)

IV. THE MASSLESS MINIMALLY COUPLED
SCALAR FIELD: O(4) HADAMARD VACUA

In this section we study the breakdown of de Sitter in-
variance for the vacuum state of a massless minimally
coupled scalar field, and we construct well-defined Ha-
damard Fock vacua which are O(4) invariant.

Let us take /=0 and m ~0 in the formulas (3.18),
(3.19), and (3.20). One finds

RG'"(x,x') = + —ln(1 —Z)
192~ m 48~ 1 —Z

+O(m ), (4.1)

R(y')„„=, , +O(m'),
384m m

(4.2)

(The arbitrary renormalization mass has been removed by
requiring that (P )„„and (T~„)„,„va ishnin the flat-
space limit R ~0).

In this section we have described the quantization of
the massive scalar field using the closed coordinates. In
fact it is also possible to work with the flat or open coor-
dinates and to construct in these systems the modes giving
rise to the Euclidean vacuum.

61R
& Tpv ) ren g„+O(m' R) .

138 240m
(4.3)

(In the previous relations we have dropped the constant
terms which do not depend on m and on the coordinates
of x and x'.) The infrared divergence which appears for
G'"(x,x') and (P )„„defined in the O(1,4)-invariant Ha-
damard vacuum is well known and corresponds to the
breakdown of de Sitter invariance for the vacuum states
of the massless minimally coupled scalar field: Allen has
shown that no de Sitter-invariant vacuum state exists for
this field while other authors" ' have shown that the
vacuum expectation value of P, for the massless minimal-
ly coupled field, must be time dependent. The time
dependence of (P ) necessarily breaks O(1,4) invariance
because if the vacuum state was de Sitter invariant, it
would require (P ) =const [note that for m =0,/=0,
(Tz )„„remains O(1,4) invariant].

The origin of the infrared divergence for the O(1,4)-
invariant Hadamard vacuum can be easily understood.
For m =0,/=0 the modes uk~~(x), uq~~(x) given by
(3.8), (3.13), and (3.17) are well defined if k&0 while the
"zero modes" u000(x) and u000(x) diverge as m '. More
explicitly, using relations between the Legendre functions
P&&2, Q&&z and the hypergeometric functions, ' we find
after a tedious calculation that, for )=0 and m ~0, the
zero-mode term in the two-point function is
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(x')tl~(x)= + [ln(2sing&)+in(2sing'l)+sin gl+sin g'l]+O(m ) .
192m m 48m.

(4.4)

Here again we have dropped the constant term. It will be useful to consider the mode sum, identical in form to the sum
(3.7) which defines the two-point function, but without the zero modes. We denote this by GNzM (the subscript means
"no zero modes" ):

G NZM (X~X ) = g [+klm ( )uklm (X ) + uklm (X )uklm (X ) l
k, l, m
k~o

—ln(l —Z) —In(2sing&) —in(2singl) —sin gl —sin g~
1 —Z

(4.5)

Uooo H[A(g,———2 sin2g& n /2)+—8]Yooo(X, O, y) .

The constants A and 8 are normalized by the relation

(4.6)

8 —AB*=—
2

(4.7)

Let us now consider the complete set of modes
tukl (x)]kl which are solutions of the wave equation
Clg =0, and are defined by

It should be noted that GNzM(x, x') is not the expectation
value of the anticommutator function in some vacuum
state because the modes [ukl (x) I k~o do not form a com-
plete set of modes solutions of the wave equation.

However the wave equation (3.11) with k =0, m =0,
and /=0 allows us to obtain nondivergent zero-mode
solutions of the form

Uooo(x) =H[A(gl ——,
'

sin2gl —rr/2)+8]

X Yooo(X, O,@),

Ukl (x)= lim ukl (x) if k&0.
/=0

(4.8)

Because this set now forms a complete set of orthonormal
modes, one can expand the field P as

4(x)=g[ukl Ukl (x)+~kl Ukl (x)] (4.9)
klm

and define a vacuum state
~

0)z ll by

~kl (4.10)

Thus, we find that there is.a family of Hadamard vacua,
depending on the parameters A, B. The vacuum expecta-
tion value of P(x)P(x')+P(x')P(x) in these vacua is

G„"ll(X,X )=Q[uklm(X)Uklm(x )+Uklm(X )Uklm(X)1
klm

=GNzM(x x )+Uooo(x)uooo(x )+Uooo(x )Uooo(x) (4.11)

or more explicitly
I'

G„'" (x,x')= —ln(1 —Z) —ln(2 singl) —ln(2 sing', ) —sin g, —sin g',
48~

+ [2AA "(g&——,sin2g& vr/2)(g'& ——,sin2g—'& 7r/2)—
24~

+(AB*+BA*)(g&——,sin2gl+g& ——,
'

sin2g'& —m)+2'*)+const . (4.12)

A = —i',
8 =a '( —,+i P) .

(4.13)

Here the real numbers a and P lie in the range

Obviously, the vacua
~
0)z ll break O(1,4) invariance but

are O(4) invariant. Because a change of phase
A,B~e' A, e' 8 is unobservable, there exists a two-real-
parameter set of vacua, for A and 8 given by

T $(gl, Q)T=P(m. —gl, Q), (4.14)

where Q = (X,9,y) denotes the angular coordinates on S .

a H (0, + oo ), /3H ( —oo, + oo ).
Now consider the effects of time reversal on the state

~

0) z ll. The antiunitary operator of time reversal will be
denoted by T, and changes the time coordinate of a space-
time point from g& to ~—g&.
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AB*+BA*=0 . (4.16)

Together with the normalization condition (4.7) this gives
a one-real-parameter family of time-reversal- and O(4)-
invariant vacuum states:

If the state
j
0)z ~ is invariant under the transformation

T then its two-point function G'" transforms in the fol-
lowing way:

G" I(vr —g, , Q;~ —g'„0') =G"I(g), Q;g'), 0') . (4.15)

Condition (4.15) implies that time-reversal-invariant states
obey

H
(4 &~,a-—

ren 4~
(4.21)

The quantization of the massless minimally coupled
scalar field done previously and the existence of an infini-
ty of vacua linked to an infinity of possible choices for the
zero modes can be understood in another way. We follow
DeWitt's treatment of a massless field in a compact and
stationary universe. ' Although de Sitter space is not sta-
tionary a construction similar to that developed in Ref. 16
can be done here. We define the Hermitian operators P
and Qby

A = ia, 8—=(4a) (4.17)

where a is a real number a &0. In fact it can be easily
shown that this is because the time reversal of the vacuum
state

j
0)„~ is

P=Aao+A*ao,

Q =2(Bao+8 *a
o ),

and we write the field operator (4.9) as

(4.22)

(4.23)

119R
(4.18)

( T& )~ z (1) is de Sitter invariant, (2) does not depend on
ren

A and 8 and (3) is different than the value given by con-
sidering the limit $~0, m ~0 of (3.20), which is given
in (4.3). Thus one can see that the stress tensor in a
O(1,4)-invariant Hadamard vacuum state does not see the
infrared divergence but the breakdown of O(1,4) invari-
ance changes the value of the stress tensor.

The vacuum expectation value of P can also be easily
found:

T jO&~,a= jo& „*,.
Thus in the two-parameter family of O(4)-invariant va-

cua labeled by (a, /3) it is only those states with /3=0
which are time-reversal invariant.

In summary, we see that although there is no de Sitter-
invariant Hadamard vacuum for the massless minimally
coupled scalar field, there does exist an infinity of O(4)-
invariant Hadamard vacua, which are well defined and
whose correlation functions are free of infrared diver-
gences.

A calculation of the renormalized vacuum expectation
value of the stress tensor in the vacuum state 0) z z can
be easily done using the Hadamard formalism. We find
that

[akl Ukl (+)+akl Ukl (x)]
klm
k~O

H HQ+ P(g, ——,sin2g) —m/2)
2 2m ~27r

(4.24)

[ kl k'1' ' ] ~kk'~11''5

[Q,P]=i .

(4.25)

All reference to the constants A and 8 [introduced in the
zero modes (4.8)] has now disappeared but the construc-
tion of the space of states does not proceed as usual. The
operators of the theory are represented in a space spanned
by the akt (k&0) and e'~~ acting on an unnormalizable
"ground state" denoted

j p =0) and defined by

akt~ jp=O) =0 'r/k, /, m, k~O,
P jp=0) =0 .

(4.26)

The "state" jp=0) can be considered as carrying "zero
momentum" and an eigenstate

j p ) of "momentum" p is
defined by

(4.27)

with the operators akt, akt (k&0) and Q,P which satisfy

[akl ak'!' '] [akl Q] [akl ]

( P ) ~ ~ ——const — ( ln2 sing
& +sin g &

)
2 R

ren 48m

+
j
A(g) ——,sin2g) —m. l2)+8

j

R 1 2

24m

and satisfies

P jp&=p jp&,

akim j p) =0 'r/k, l, m, k&0, (4.28)

(4.19)

In the early and late-time limits
j
t,

j
~0,+ oo we find

that this is asymptotic to

A basis of the space of states is given by the vectors

(ak! m ) ' ' (ak I m ) "e"~jp=O&1I I
m I n nmn

(4.29)

H H
(P )~ ~—const+

j
8

j + (AB"+BA*)t,
ren 27T2

4

, (3+16
j

A
j
')t, '+O(t, '),

j Ht,
j
«1,

8n

(4.20)
jo&, ,= exp i Q jp=0) .4B* (4.30)

The connection between the two different ways of con-
structing the space of states can be easily made by re-
marking that up to a phase

1/4
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10&~,a = 1

8mB'

1/4

f iq&exp i „q dq (4.31)

and

l0&~,a= 1

2mAA

]/4

(4.32)

Using the states I i q & I ~ which satisfy Q i q & =q
i q &,

(q'
i q & =6(q —q'), and (q ip& =(2m. )

' e't'q, one can
also express the Fock vacuum state in the form

introducing new normalized zero modes, as we have done
in Sec. IV. In fact, Ford and Vilenkin' have shown that
Allen's E(3) "vacuum" can be considered as the unrealiz-
able limit of a continuous family of Fock vacuum states.
Thus the E(3)-invariant "vacua" of Allen are an idealiza-
tion.

Similar considerations apply to the open coordinates
(t) &, A. ,O, y) and the corresponding O(1,3) vacua. In the
same way one should be able to show that there exists an
O(1,3)-invariant Hadamard "vacuum" which is not a
physical vacuum state but is also an idealization and
whose symmetric function is given by

Note that these integrals converge because the normaliza-
tion condition (4.7) implies that Re(iA /8') & 0 and
hence that the integrals (4.31) and (4.32) contain a Gauss-
ian damping factor.

Obviously the new space of states contains an infinity
of Fock spaces constructed from the vacua

i
0&„tt. It

may be that these different Fock spaces are related to the
invariance of the Lagrangian under the global transforma-
tions P~P + const.

V. MASSLESS MINIMALLY COUPLED SCALAR
FIELD: E(3) AND O(1,3) HADAMARD

"VACUA"

Here we make some remarks about the E(3)-invariant
"vacuum" found by Allen and about the analogous
O(1,3)-invariant "vacuum. "

Working in the flat coordinates (go,p, 9,@), Allen has
found a family of E(3)-invariant "vacua. " Let us consider
the Hadamard "vacuum" of this family. In flat coordi-
nates the Green's functions are defined by continuous
sums of the type f dk f(k), where m is an infrared cut-
off, or regulator. These integrals are not finite as m ~0.
The expectation value of the anticommutator in the Ha-
damard "vacuum" is

G"'(x,x') = —ln(1 —Z) —ln(2r)ohio)
48m 1 —Z

R m+ ln +const .
48m R

(5.1)

In light of Sec. IV we can understand the regularization
process of Allen as follows: the introduction of a regula-
tor m drops the contribution of the zero modes, i.e., it ex-
cludes the range k E [O,m] from the mode sum.

But this means that one does not have a complete set of
modes. Thus the "state" giving rise to (5.1) is not in fact
a Fock vacuum state. Here, because the spatial sections
are not compact, it is impossible to save the situation by

6' "(x,x') =
2

—ln(1 —Z) —ln(2 sinht) t )48~'

—ln(2 sinhri' ()+ sinh t)

+sinh g'
& + ln +const .2, R m

48~2 R

(5.2)

VI. CONCLUSION

The quantization of the massless minimally coupled
scalar field in de Sitter space necessarily breaks de Sitter
invariance. For this reason, it is interesting to look for
vacua which break de Sitter invariance as little as possible.

We have constructed a two-real-parameter family of
Fock vacuum states which are invariant under the O(4)
subgroup of the de Sitter group. This family contains a
one-parameter subfamily which is also invariant under the
time-symmetry reflection T. It is noteworthy that the
stress tensor in these states is independent of the state, and
that it is not equal to the naive $~0,m ~0 limit of the
massive de Sitter-invariant one. There are no infrared
"problems": the two-point functions of these vacua ap-
proach zero at large spacelike separations. We have given
a construction of the complete Fock space of states, for
each choice of a vacuum, and have shown that they are
embedded in a larger "overcomplete" space of states.

Finally we have shown that the E(3)-invariant states
constructed by Allen are not Fock vacuum states because
they correspond to a regularization procedure which
leaves out the zero modes.
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