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A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is
given using the field equations in the presence of matter. The motion of the particle is governed by
the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor g„„,
as well as by a tensorial piece determined by the skew part of the contracted curvature tensor R„.
Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the
NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equa-
tions of motion describes a new force in nature that acts on the conserved charge in a body. Parti-
cles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do
satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomi-
cal predictions, based on the exact static, spherically symmetric solution of the field equations in a
vacuum and the test-particle equations of motion, are derived in detail. The maximally extended
coordinates that remove the event-horizon singularities in the static, spherically symmetric solution
are presented. It is shown how an inward radially falling test particle can be prevented from form-
ing an event horizon for a value greater than a specified critical value of the source charge. If a test
particle does fall through an event horizon, then it must continue to fall until it reaches the singular-

ity at r =0.

I. THE NONSYMMETRIC FIELD EQUATIONS

The motion of a particle in Einstein's general relativity
(GR) is determined by the nonlinear field equations of the
gravitational field. This was recognized early for the re-
stricted problem of the motion of a test particle represent-
ed by a local concentration of the energy-momentum ten-
sor T" . The electrically neutral particle is pictured as a
narrow tube of timelike direction, T" being nonzero in-
side the tube and zero outside. A test particle is obtained
from the limiting procedure in which the tube shrinks to a
world line, while the mass of the particle, represented by
an integral of T", tends to zero. This world line de-
scribes a test particle. A consequence of the conservation
equations is that the world line of the test particle is not
arbitrary but must be a geodesic of the continuous metric
field. ' In the nonsymmetric gravitation theory
(NCrT), the motion of a test particle can also be deter-
mined by the generalized conservation equations, although
now the definition of a test particle must be extended to
include a new source S", which corresponds to a con-
served current density in a body. ' The particle has a
concentration of the current vector S" in the timelike
tube, and as the tube shrinks to the world line, the charge
described by an integral of S" tends to zero. The ratio of
the charge to the mass of the test particle does not vanish
as the world line is approached, and the test particle does
not follow a geodesic unless the test-particle charge is
identically zero. A photon in the NCxT will have zero
charge and move along a geodesic and satisfy locally the
(weak) principle of equivalence.

The mathematical formulation of the NGT is based on
a nonsymmetric field structure with a nonsymmetric fun-

damental tensor g&, which can be decomposed according
to

g""g..=g""g,=4 . (1.2)

The fundamental geometrical object in the NGT is the
nonsymmetric connection defined by

A 2 A

Wp ——I p
——,6pW

where

IW„= Wl„) ———,(W —W' ) .

From (1.3) it can be shown that

(1.3)

(1.4)

I „—= I )q ]
——0. (1.5)

A curvature tensor can be formed from the connection
Wp ..

W~ ~ W~~ W W~~+ W ~W (1.6)

and a contracted curvature tensor

p p p a p aBp ——Wq p
—Wqp —W Wqp+ W pWq

where we have used the notation X =BX/Bx . By sym-
metrizing B& in the second term, we get

Rpv( W) = Wpv, p 2 ( Wpp, v+ W p, p )
P l P P

p a p a—Wa Wpp+ WapWp„.

g pv g (pv) +I[tv]
1 1where g~„„~

———,(g„„+g„) and g(„)——, (g„gv„)—.A—
contravariant tensor g" satisfies the relationship
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Substitution of (1.3) into (1.8) gives

R„.( w) =R„.(r)+ —,
'

w,„,
where

R„„(r)=r„.~——,
'
(rI„~,.+ r, „~,„)P I P P

P a P a—r..r„~+r,.~,r„..

(1.9)

(1.10)

= —8~g" w„+ W„W" .
8~ (1.12)

By means of the variational principle

6f Wdx=0, (1.13)

varying g& and 8'& as independent field variables, we
get the field equations

The variational principle, based on a Lagrangian densi-

ty, plays a fundamental role in the development of GR.
Likewise, in the NGT the choice of a Lagrangian density
determines the structure of the theory. The principle of
transposition symmetry plays an important role in remov-
ing the arbitrariness in the choice of a Lagrangian densi-
ty. ' A quantity T:::„,. . . (I ) will be called transposi-
tion symmetric in the indices ~ and v if
T:::~ . . . (1 )=T:::~. . . (I ), where l~ ——I ~ defines
the operation of transposition for the affine connection. If
a tensor Az„(1 ) is transposition symmetric, then a field
equation of the form A„,(I ) =0 implies the field equa-
tion A& (I ) =0 and we say that this system of equations
is transposition invariant. The operation of raising the
suffixes a and j3 for a tensor A p, while simultaneously
retaining the transposition symmetry of A ~, can be im-
plemented by using the expression A" =g" g~ A ~,
where the tensor A p satisfies A ~

——Ap .
The property of transposition symmetry replaces the

symmetry in Riemannian geometry; it severely restricts
the arbitrariness of the NGT. We shall require that all
the equations derived from a variational principle be tran-
sposition invariant. Once the principle of transposition
invariance is adopted, then the field equations of the NGT
follow uniquely from the variational principle, using the
Palatini method, up to a normalization of the nonsym-
metric connection, if we assume that the Lagrangian den-
sity is linear in the contracted curvature tensor R& . The
physical interpretation of transposition invariance is that
the same field equations are satisfied by a particle and an
antiparticle. The operation of transposition conjugation
corresponds to passing from a particle to an antiparticle.
All observable quantities, such as the flux of radiation
from a massive body, must be derived in the NGT from a
transposition symmetric formula. The mathematical basis
for the transposition conjugation operation has been
described by a hyperbolic complex tangent space that
leads to the local group GL(4, R) (Ref. 9).

The Lagrangian density has the form

W=g" R„(W)+W
where ~""=(—g)'~ g" . The matter Lagrangian density

is given by

G„(W') =8vrT„, ,

~(~ l „=4~m~,

gP —gP AP —gPPA =0 .P P

The tensor G& is defined by
1

Gpv =Rpv 2 g& R

(1.14)

(1.15)

(1.16)

(1.17)

where R„=g„g~R ~ and R =g" R„. The connection
A& is defined by the equation

Apv= I pv+Dpv

where the tensor D& is given by

(1.18)

gP DP~+gPPD~ =—P P 4~
(gpcrgpv gppgcrv

+gpvg[~p) ) . (1.19)

In the NGT the phenomenological sources ~""and W"
are interpreted as the generalized energy-momentum ten-
sor and the conserved NGT current density, respectively.
The conservation equation

W" „=0 (1.20)

follows from the field equation (1.15). This conservation
law is a consequence of the invariance of the Lagrangian
density W with respect to the Abelian transformation

8 p
——8'p+A, p, (1.21)

where A, is an arbitrary scalar field. This invariance fol-
lows immediately from an inspection of Eq. (1.9). The
group of transformations associated with general coordi-
nate transformations in the four-dimensional manifold is
extended in the NGT to include the R + [or U(1)]
transformation (1.21).

The NGT charge of a body is given by the equation

I'= f W'd'x. (1.22)

The energy-momentum tensor T" for a perfect fluid in
the NGT can be derived from a variational principle. '

The rnatter Lagrangian density W now takes the form

W&M++ 16m( g) pa[a(pp, s)—+ 1]+16'( —g)'~ k, (g~„~u "u —1)+16m.kz[( g)' pou") „—
+A 3( g) ' ~ X

&
u" + A.4( g) ' ~ s z u—"—

where po is the rest mass density, e(po, s) is the rest specif-
ic internal energy of the fluid, s is the entropy, and u" is
the four-velocity vector of the fluid element following the

(1.23)

I

world line x"(r). The Lagrange multipliers A, ~, A.2, A3,
and A.4 force the following constraints to be satisfied.

(a) The normalization of the velocity vectors
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gpv& ~ =g(pv)&~& = & ~

(b) Conservation of the rest mass of the system

[(—g)'"pou "],„=o .

(c) Conservation of particle number for the fluid

L„u"=0,

(1.24)

(1.25)

(1.26)

[p G (I )+~ G„(I )] +g" $„„=0. (2.1)

R ( W)—:g" R„(W) =R (I )+ —,g[" ]W[„ (2.2)

If we form the scalar curvature R ( W) from (1.9), we get

where X is a number assigned to each particle element of
the fluid. A variation of W in (1.23) leads to the fol-
lowing form for the energy-momentum tensor of a perfect
fluid".

and using (1.9) and (1.17), we find that

G„(W) =R„,(I )+ —,
'

W[„„)
[aP]——,g„„R(1 ) ——,g„g W[a p)

T" =(p+p)u "u —pg" (1.27) [aP]=G„v(I )+. 3 W[p v] 3gpvg W[a p) (2.3)
where p denotes the total energy density. This energy-
momentum tensor has the same form as in GR.

II. BIANCHI IDENTITIES AND THE CONSERVATION
LAWS

The field equation (1.14) together with (2.3) yields

G„„(I)=8vrT„—,W[„)—+ , g„„g[ —@W[ p) . (2.4)

From the coordinate invariance of the Lagrangian den-
sity (1.11), we can obtain the four Bianchi identities in the

Substituting (2.4) into the Bianchi identities (2.1) results in
the equation

8~(g ~ pv+g ~ vp) a 3 ($ W[p v]+$" W[v p] ),a+ 3 ($ gpvg[crp] W[a p) +g gvpg W[op] ) a+, 8~g,p~ pv

The second term in (2.5) can be calculated to give

g p(
—g)' W[ p)+ 3 ( g)' g""pg—p g W[ pl=0. (2.5)

av va av va i 6+ v 4 [va]
3 ($ aW[p v]+$ aW[v p]+$ W[p v] +$ W[v p] )= — W[p v]~ —

3 $ W[p v] (2.6)

From the field equations (1.16), we can derive the relation

g„g"" =2A(p )

which yields

(g)1/2(g)1 /2Aa

By using (2.6) and (2.8) in (2.5), we get

2 (g ~ vp+g ~ pv), a+ 2 g,p ap+ 3 W[p, v]~ + 3 $ W[p v] + 3 $ [cT p]

The last two terms in (2.9) give

(2.7)

(2.8)

(2.9)

[va]3i$' [p, ] + [, 1 + [,p) (2.10)

We now obtain the result

—,'(g" w„+g w „) + —,g ~~ &+ —, W'[ „)W =0.
(2.11)

I

Carrying out the differentiation in the first term of (2.12),
we obtain the four conservation laws in the NCsT:

,'(g„w"" +gp„w —" )+[pvp]&4 + —, W[p )W =0,

By using the expressions u =g g ~u ~ and
g p

———g g ~g „we can write (2.11) in the form
ip

where [pv, p] is

1

[O'V pl 2 (gyp, v+gpv, p gpv, p) '

(2.13)

(2.14)

(2.12) Equation (2.13) represents the rigorous conservation laws
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of the NGT, which will be used to determine the equa-
tions of motion of particles. '

III. EQUATIONS OF MOTION OF TEST PARTICLES

(0)
gpv gpv +6gpv . (3.1)

To the first-order of approximation, it is sufficient to keep
in the field equations only the terms which are linear in

6gz . The energy-momentum tensor associated with the
test particle is 6T" and the current density belonging to
the particle is 6S". We shall assume that the test particle
is moving outside massive bodies, so that the matter ten-
sor T' '" and the current S' '", associated with the back-
ground metric g& ', vanish inside as well as near the test
particle. Let us adopt the convenient notation

Since we are presently only interested in test-particle
motion, we shall assume that the particle is confined to a
tube. The linear dimensions of the cross section of the
tube X are small compared with the length R characteriz-
ing the gradient of the background metric. Let us
describe the fundamental tensor g& as consisting of two
parts, the piece g&

' corresponding to the continuous field
at points along the world line of the test particle, and the
part 6g„ that describes the correction to the background
g&' field due to the field of the test particle. ' We can
then write

By using these relations in (2.13), it follows that

(O)~~pv +g(0)~~p )+[pV p](o)~~pv

—2' g[ ')5T —25T[ „)+ R[,')(I ) W =0,
4~

(3.5)

where

[vp] (g(vr)g[ap] +g(crp)g[vr] ) (3.6)

Let us denote by Xf' the coordinates of a point on the
world line, which is some smooth curve inside the tube X,
and by xf' the coordinates of a point exterior to the world
line of the test particle. Because g&

' varies very little in-
side the section of the tube, we can expand the symbols
[pv, p]' ' in a Taylor series about the point Xp:

[Vv p]"'(x') =[Vv pl"'(X')

+(x —X )B[pv,p]' '(XP)/BX

(3.7)

We shall assume that the test particle has the simple
structure of a monopole, so that the dipole and higher
moments of u p and Wp vanish:

g)1/25TPv ~~Pv ( g)(/25SP ~P
From (1.9) and (1.14), we obtain the relation

W[p „]= —,[R[p ]( W') —R[p )(1 )]

and

(3.2)

(3.3)

(x —XP)~ "d x =0,
(xP —XP)(x —X )a "d x=O,

f (xP —XP)M"d x=0,
x)' —X)' x —X d x=O.

(3.8)

R[p„)(W) = —,g[pv)R(W)+8rrT[pv]

47Tg [pv] T+ 87TT[pv] (3.4)
Separating (3.5) into symmetric and skew-symmetric

parts, we get

g' W "' +g' ' W " +[(Pv) P] a " '+[[(Mv] P]' )W~[P ] 2' g[p)5—T —25T[ )+ R' ' (I ) M =0 (3.9)

Because we are presently interested only in test-particle
motion, we shall neglect all self-coupling terms and set
5T5S=O. The skew part of 5T" is obtained from the
perfect fluid energy-momentum tensor (1.27):

'=0 . (3.13)

which follow from the equations of compatibility

P
vo

6 Z [pv] (0)[pv] (3.10) Also, the inverse tensor y(p ' is defined by the relation

~mP ) + ~ . ~ P y( )( oPP) (R0) (I )~, v rrP
—2r [pv] (3.1 1)

where the NGT Christoffel symbols are defined by

(&P)I
2 ) (g(pp), v+g(pv), p g(pv), p) (3.12)

In the test-particle limit p~O and, therefore, from Eq.
(3.10), it follows that 5T[" ~0. The equations of motion
for the test particle are then given by

'(0)

(Xo) ar g(~.) =6. . (3.14)

When the test particle carries zero charge, e.g., as in the
case of a photon, then the tensorial term on the right-
hand side of (3.11) vanishes, and the test particle moves
along a geodesic of the NGT background metric g(„').
The tensor force in (3.11) corresponds to a new long-range
force (henceforth, we shall call it the NGT force), which
violates the weak equivalence principle. Charge carrying
matter will fall in a gravitational field in a way that de-
pends on the composition of the matter.
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(0)
d W" 'd x+' ' (Xl')t w ~'d x

p
dt ap

[PV]
' ""l')R' ' (I ) f P'"d x (3.15)

As a consequence of (3.11), it follows that
(0)

Let us introduce (3.7) into (3.11) and integrate the re-
sulting expression over the hypersurface t =const. Since
W& ' vanishes outside X, we obtain, using the single-pole
particle conditions (3.8),

line element

ds =g' ')dX"dX" (3.25)

and the four-velocity vector u =dX /d~, where ~ is the
proper time along the world line of the particle. We de-
fine the proper mass of the test particle by the equation

f ~~~d x=u f po( —g)'~d x=m ~d~ ' (3.26)

where pp is the proper mass density and m~ denotes the
test-particle mass. As a consequence of (1.20), we can
write

a~""'=(x"Wt )) +x" ' ' ~ ~' x"H—"W~ (3.16)p ap p

where

5 =(x Wl') p.
Integrating (3.27) and using (3.20) gives

(3.27)

Integration of (3.16) results in the equation

f w~)"")d'x = x"~ d'xd
dt

(0)

(3.17) f W d'x= —"f x W'd'x=" f W'd'x=1 '"
dt dt dt

(3.28)

where l& denotes the l value for the:est particle. The
equation of motion now takes the form

(0)

pO'
(X ) f x"w~)' 'd'x

The first term in (3.29) gives

(3.29)

H&(X ) f—x"W~d x .

In view of (3.8) we get

x~w~ 'd'x =X~ t w~ 'd'x,
x"a~l' 'd x =Xl'(t) f w~~ 'd x,

(3.18)

(3.19)

d „du" dms

d7 ~ d~ d~

From the condition

g(p )u~u = 1,
where u P =y' ""P'u„, we obtain

(3.30)

(3.31)

f x"W'd x=X"(t)f W d x . (3.20)
and

1 P V V PT(g(~~)u u ) (~=g(p~)u u (~=urdu (~=0 (3.32)

and

w~" 'd x= dX" ~~vp)d'x
dt

(3.21)

Substituting (3.19) and (3.20) into (3.18) and taking into
account (3.15), we obtain

(0)
du

ap u u =urdu cpu =0 . (3.33)

Here the vertical bar denotes the covariant derivative de-
fined in (3.13). Multiplying (3.29) by u& and using the re-
sult

dX" ~~d'x .
dt

Substituting (3.22) into (3.21) gives

d x= dX~ dX dx.
dt dt

Introducing (3.22) and (3.23) into (3.15) yields

(3.22)

(3.23)

(0)(pp)g (0) v g (0) v p 0[pv]u up [pv]u u 7

we obtain

dms =0.
d7.

Equation (3.29) reduces to
(0)

(3.34)

(3.35)

(0)
d dX ~~p 3,~ dX dX pp

=H"v d'x . (3.24)

We are now in a position to derive the final form of the
equations of motion for the test particle. Let us adopt the

du", ~ lp
u u~= H"u (3.36)dr aP m~

We observe that for particles with 1 =0, Eq. (3.36)
reduces to the geodesic equation for the motion of a
single-pole test particle as in CiR, although the orbits of
these test particles will, of course, be quantitatively dif-
ferent from those of GR, because of the use of the NGT
Christoffel symbols (3.12).
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IV. MOTION OF TEST PARTICLES IN THE NGT IN
A STATIC SPHERICALLY SYMMETRIC FIELD

A static, spherically symmetric solution of the NGT
field equations in a vacuum, obtained by using the spheri-
cal polar coordinates x ' = r, x =B, x =P, x = t, yields
the nonvanishing components of the tensor g& (Ref. 16)
(see the Appendix):

g~~ = —a= —(1 —2m/r) —1

d'O 2 dO+
dr " ' dr

dP 2 dP
r dr

+—

d2t y dt
dr +

dr
d7 (4.8)

dr +2 cotO dP
d7 d7

=0, (4.9)
d7

dr 2A+d7 yr
dr
d7

(4.10)

2

—sinO cosO dP =0,
d7

and

2 2 2
g22 = —r g33 ——r Sln O,

goo ——y =(1+I Ir )(1—2m Ir),

N =gf ]p] = + l /r2 2

(4.1)

(4.2)

where A =m, l, l~ / m&. The orbit of a test particle can be
shown to lie in a plane and by an appropriate choice of
axes, we can make B=m /2. Then integration of Eq. (4.9)
gives

(4.11)
All the other components of g& are zero, and the solution
satisfies the boundary conditions that g(„~~g„and
gf& ~

—+0 as r~ oo, where gz is the Minkowski flat-space
metric: g„,=diag(1, —1, —1, —1).

The nonvanishing components of the Christoffel sym-
bols that we need are obtained using (3.12) and (3.14):

1 d t dy dt—y +
dT d1 dr

1 d A

dr 2r
=0 . (4.12)

d7

We can now write (4.12) as

Equation (4.10) can be expressed in the form

a'
11 2a

1

22
d dt

d7 d7
d A

d7 2r
(4.13)

1

33
r sin O

00
=r'

2a
which integrates to

2
12

3

31 r

' =y'
01 2y

2

33
—sinO cosO

3

32
' ——cotO,

(4.3) dt 1 1+
2r

By substituting (4.11) and (4.14) into (4.7), we get
2 '2

y ~ dy J r+ + 1+dr a dr ar 2a y2 2r~

(4.14)

Rf)p) =

where we use the notation f'=df /dr. A calculation of
R(~01 gives (see the Appendix)

4l, m,
(4.4)

r

2A

cxr
=0 . (4.15)

2r4

Multiplying this last equation by 2a dr/d7, we obtain
where l, denotes the l value of the point-particle source.
By using the inverse relations y"= —1/a and y =1/y,
it follows that

d dya
d7 d7

J 1+ 2 1+
r r 2r

2

=0 (4.16)

22l, m,
—,y Rf&p]

———
ar' (4.5)

(4.6)

2
cx dr

dr 2a dv'
+

sin O

2
r dO

cx d7

dP
d7 + y dt

20 d7

2

2A+
cxr

dt
d7

=0, (4.7)

2l, m,
2 y Rfp]]- rr'

Substituting the Christoffel symbols (4.3) and the re-
sults (4.5) and (4.6) into the equations of motion (3.36), we
obtain

and integrating this expression gives
2 2

a + ——1+ = —E,dr J 1 A

r y 2r
(4.17)

where E is a constant of integration. If we write the line
element as

ds =ddt adr rdB rsin Bd—g— —(4.18)

set O=~/2, divide the resulting expression by d7, and
use Eq. (4.14), we obtain (4.17) as we might have antici-
pated. We can then show that ds =Edr, so that ds /dr
is a constant. For material particles E ~0 and for pho-
tons E=O.

If we substitute dr/dr=drldgdgld7 into (4.17), use
(4.11), and integrate, we get the exact solution to the orbi-
tal problem:
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r (1+A/2r ) E/—J ll—r1

J2y

1/2

(4.19)

Let us now calculate the acceleration experienced by a
test particle starting from rest in the static, spherically
symmetric field given by (4.1) and (4.2). We choose
8=m /2, J=0, and dr/d7 =0 and obtain from
(4.7)—(4. 10), to leading orders in 1/r,

d2r ms

dt2 »2

2m

r

2l, 2l I, m,
r' m r' (4.20)

The difference in the acceleration of two test particles
falling in a gravitational field can be obtained from (4.20):

2m, l, c Iha= (4.21)
mp

where we write Lx =x~ —x2 and we choose a to be posi-
tive. Note that the repulsive NGT term in (4.20) does not
appear in this formula. The NGT gradient above the sur-
face of a body is given to leading order by (g & 0)

dg 10m, l, c I, I

dh R 6 m mp
(4.22)

22+ P
r

For the case of the motion of two massive point parti-
cles, the equations of motion can be derived using a post-
Newtonian expansion of the field equations and the con-
servation laws in terms of U/c. The lowest order yields
the Newtonian equations of motion, while in the post-
Newtonian order, we get, in relative coordinates, '

mr mr 4m 3@U 3pa + + vr
r r r m 2mr

V. THE PERIHELION PRECESSION OF A TEST
PARTICLE AND THE DEFLECTION OF LIGHT

We can obtain astronomical predictions in the NGT in
a direct way by using perturbation theory to solve the
equations of motion instead of using (4.19). Let us set
u = 1/r and by using (4.11), we obtain dr /d r
= —Jdu /dP. Substituting this relation into (4.17) gives,
after some manipulations of terms, the equation

d u2
2 3

d 2 +u =N+3m, u —2Cu (5.1)

where N=m, E/J and C=(l, —A)/J . We solve (5.1)
by successive approximations with

u =up+U

where up is a solution to the first-order equation

(5.2)

up

p2
+up ——N

given by

uo N+B cosP, ——

(5.3)

(5.4)

where B is a constant. Substituting the first approxima-
tion into the right-hand side of (5.1) and solving for U in
terms of the nonlinear contributions, we get

u =N+B cosP+DP sing+(periodic terms), (5.5)

equal k's, k, =kz ——k. When k, /m» k2/m2 and
k»k2 or k2/m2& k&/m~ and k2 &k&, then K&0 and
we will obtain a retrograde periastron shift contribution in
the NGT for a double star, as we shall find in the next
section. The velocity-dependent NGT contributions are
expected to occur first in the post-post-Newtonian order
of approximation.

4m(r v)v+ 3r

where

I'(2 =I'= I) —I'2,

2p(r v)v 2Kr+
r r

V=V) —V2,

(4.23) where D is the constant

D =3m, BX—3CBN —
4 CB

We can use the trigonometric identity

cos(P eP }= c—os/+ eP sing

(5.6)

V)=
m2

V, V2=— V, (4.24) in which e=D/B can be treated as a small quantity.
Thus for the solution of u, we obtain

a=a] —a2, m =m/+m2 .
u =N+B cos(P —eP)+(periodic terms) . (5.7)

Moreover, we have used the notation k; =I; for i =1,2,
p=m]m2/m, and Perihelion occurs when u =1/» is a maximum which

gives, for one revolution,
m2 m)K=(ki —k2) + (k, —k)kp)+ (kq —k)kq) .
m~ m2

/=2~(1+eP) . (5.8)

(4.25)

In the test-particle limit, m&~0, k&~0, and k&/m»0,
we get for the NCyT part of (4.23) the same result as in
(4.20). The force law for two point particles obtained
from Eq. (4.23) satisfies Newton's third law F&z ———F2&
when the center-of-mass coordinates are redefined in the
post-Newtonian approximation. We obtain E =0 for

Denoting by 6cu the change in the angle of perihelion co,
we get

(5.9)

and using J=(pm, )'~, E= 1 gives N=m, /J =1/p and
B=e/p, where p is the semilatus rectum of the Keplerian
orbit p=a(1 —e ) with a denoting the semimajor axis
and e the eccentricity. Then (5.9) yields the result for the
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perihelion precession of a planet orbiting the Sun:

6~GMo
Aco =

ca(1—e )

where A, is given by

L~ c (1+e /4)
A. =—1—

G2M 2 2(1 2)2

(5.10)

(5.11)

Let us denote by 5~ the small angle between the
asymptote near /=0 and the x axis. We approximate
sing by 5( and cos2$ by 1 and set u =0 in (5.18) to give

' —l

(5.19)
3rp 32 rp

For the second asymptote, we take P =sr "o and—following
the same procedure the result is obtained:

Here the constant Lo is

LO = (lO2MOd )
i i4

where

(5.12)

2a 3~b+
3rp 8rp

9b

32rp
(5.20)

d =lo'/Mo —I '/m (5.13)

3G 2/3 2/3

(P/2~) c (1—e )
kb (5.14)

We regain the standard result for the perihelion precession
of a test particle in GR when L~=O in (5.11), giving
X= 1. The predictions of the NGT for the perihelion pre-
cession of Mercury are consistent with observations for
L~ (3000 km (Ref. 8).

For a double star system, the periastron shift is given
b 17

The small angle between the asymptotes, yielding the total
light deflection, is given by

4GMo 9lo41—
c Ro 16Ro

3~lo4c2

16Ro'GMo
(5.21)

AN~I ———1.9 X 10 arc psec, (5.22)

a result obtained previously.
By using light deflection data obtained from quasars,

we obtain the bound lo (6 X 10 km. The second-order
bending of light effect in the NGT is, for lo ——3 X 10 km,
given by

where

Kc (1+e /4)
(Gttt )«'(P/2~)4~'(1 e')' ' (5.15)

AGR ——4 arcpsec . (5.23)

while for GR with lo ——0 and with a quadrupole moment
coefficient for the Sun: J2 ——0, we obtain

P is the period of the double star, m =m~+m2 e is the
eccentricity, and K is given by the formula (4.25). For
equal-mass and equal-l stars in a binary system, the con-
stant K=O. When %~0 the NGT periastron shift con-
tribution is negative.

Let us now calculate the deflection of light grazing the
limb of the Sun. For a massless photon E=N=O and
(5.1) becomes

Choosing J2 ——6X 10,we also find that

AJ, ——10 arc @sec . (5.24)

An accurate second-order observation of the bending of
light by the Sun could produce useful bounds on lo and
J2.

2

d 2
+u =3m, u —2Cu (5.16)

VI. THE RED-SHIFT AND RADAR SIGNAL TIME
DELAY EFFECTS

where now C=l, /J, since lz is zero for a photon. We
can solve (5.16) by successive approximations as before us-
ing (5.2). The first-order solution is now of the form

1
uo —— sing

rp
(5.17)

which is the straight-line solution for a light ray passing
at a distance rp from the Sun's center. Substituting the
first-order solution uo into the right-hand side of (5.16)
and solving for v gives

From Eq. (3.32) we find that

d1 =g(~~)dx~dx (6.1)

GM
c2R

where R is the radius of the star. For the Sun this yields
the bound

is a constant of the motion. For a clock at rest the mea-
sure of proper time is dr=(goo)'~ dt and the red-shift of
a spectral line emitted from the surface of a star is

Av l4
(6.2)

V 2R4 '

u =
rp

1 ~ asing+ 2 (1+—, cos2$)
2rp lo &2X10 km . (6.3)

+ 3 ( —3'2 sin3$ ——,p cosp),
ro

(5.18)

where a=3m, and b= —2l, /J .
The asymptotes of the trajectory will correspond to

those values of the angle P for which u =1/r becomes
zero. These asymptotes occur when P is close to zero or

The NGT force cannot in general be screened away like
the electromagnetic force and may affect the composition
of a clock. However, for ordinary cesium or maser
clocks, the new forces will not affect the difference be-
tween one energy level and another, and any Stark-type ef-
fects can be shown to be very small and undetectable. For
a particle moving in a circular orbit of radius R, we have
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drldt =0 and (4.17) gives

J2
R

1 1+, +E=0 .
A

yR 2R' (6.4)

For a system in equilibrium, the differential of (6.4) van-
ishes and yields

dP
2R

1+ y'(R) A

2R
'+

2R

2

Substituting (6.5) into Eq. (4.11) and using (4.14) gives
the rate of revolution as

and

R y'(R) A A A1+ 4 + , 2+
2y(R ) 2R y(R )R R

(6.5) y(R)A A+ 6 2+ 4R R

1/2

(6 7)

J 1 A

R2 y(R) 2R4+ 1+ (6.6)
By using the result that ds =Ed', (6.5) and (6.6), we
get, for the proper time,

d~=y(R)'/2 1+
2R4

A1+
2R4

2 2
Ry'(R) A A A

2y(R) 2R R R
1+ + 2+

1/2

dt . (6.8)

For A =0 this expression reduces correctly to the GR result for the proper time. ' We see that when we transform from
the rest frame in the NGT to another frame, such as the one associated with a particle moving in a circular orbit, the
NGT force affects the proper time of the clock.

For completeness, we will give the result in NGT for the time delay of travel time of radar signals. Let us adopt the
line element in isotropic coordinates, obtained by introducing the new radius variable

r =p(1+m, /2p)

Using r in place of the notation p, we have

(1+m, /2r) +I, !r (1—m, /2r)
ds dt (1+m, /2r—) do

(1+m, /2r) (1+m, /2r)

(6.9)

(6.10)

where

der =dr +r d8 +r sin 8dg (6.11)

We now expand the metric coefficients in powers of m, /r
and l, /r. In Cartesian coordinates x, y, and z, we get ds =gppdt +g»dx =0 . (6.14)

The Sun is taken to be at the origin of coordinates and the
transmitter (Earth) and the reflector (planet) lie in the
z =0 plane and the transmittor-reflector line lies along the
x direction. For a null ray

2m, l, m,
ds = 1 — + +2

r r4 r

2

dt2
The delay of the coordinate time t between transmission
and reflection is

where

2ms1+ (dx +dy +dz ), (6.12)

r
6t= f ( —g&I/goo) dx

2ms l,1+ — dx,—r
( 2+ 2)1/2 2( 2+ 2)2

( 2+ 2+ 2) 1/2

8=arctan[z /(x +y )
'/ ],

P =arctan(y /x ) .

(6.13)

(6.15)

where r and r~ are the distances of the Sun from Earth
and the planet, respectively, and rp ——y =const. Integra-
tion yields

[r +(r 2+r 2)I/2][r +(r 2+r 2)1/2]
At=r +rz+2m, ln

ro

4I, rp

4rp rp +rp2 2 2+
r@ rp+ arctan + arctan

r +rp rp rp ro rp
(6.16)
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The excess time delay is a maximum when the planet is
at superior conjunction and the radar signal just grazes
the limb of the Sun. In this case»o —Ro and the max-
imum round-trip delay is

where

dQ =d8 + sin gdg

By means of the transformation law

(7.2)

4GMo(5r),„= ln
C3

lo
2cRo2

4»&»

Ro2

1 1 1 »p
arctan»»~ Ro o

ax* ax*~
gpv =

~ p~ gap

we find that

dr' =+(1—2m, /r)(1+1, /r )'/4 4 1/2~t
at B»

(7.3)

(7.4)

1+ arctan
Ro 0

By using the Viking data for Mars, ' we obtain

~o &10 km

(6.17)

(6.18)

at' =+(1—Zm, /r)(1+1, /r )'/24 i/2 ~»

at Br

The solutions for»' and t' are given by

r'= exp(br*) coshbt, t'= exp(br*) sinhbt,

(7.5)

(7.6)

From these results we see that NGT is consistent with all
the solar system relativity tests that have been performed
to date provided that Lo & 3000 km.

VII. MAXIMALLY EXTENDED COORDINATES
AND BLACK-HOLE RADIATION

where

d»

dT

and

1

(1+1, Ir )' (1—2m, /r)
(7.7)

ds =f (r', t')(dt' dr' ) r(r', t—')dQ— (7.1)

One way to avoid coordinate singularities in GR at the
horizon is to use Kruskal coordinates. ' ' In the NGT
we can also find a set of maximally extended coordinates
by using methods analogous to those used in GR (Refs. 22
and 23). We seek a coordinate system in which light rays
everywhere have the slope d»'/dt'=+1, and the line ele-
ment has the form

1b=
4m,

1+
2ms

and f (r', t') remains finite at =2m, .
The integration of (7.7) for r * gives

f'(r', t')= (1+1,'I» ) exp( —2br*) .
b2

Here b is a constant given by
'4 1/2

(7.8)

(7.9)

3 2+ ( 4+ 1 4)1/2
r (r)=, +m, ln +H(r, 2m„l, )

(r +1, )'' 2

where

(2m, )
+ ln

2[(2m, ) +1 ]'
F (2m, )F+ (r) F+ (2m, )F —(r)
F (2m, )F+ (r)+F+ (2m, )F (r)

(2m, —1, )(r + 1, )F+ (2m, )F (r) —(2m, +1, )(r —I, )F (2m, )F+ (r)
X

(2m, —l, )(r+l, )F+(2m, )F (r)+(2m, +l, )(r —l, )F (2m, )F+(r)
(7.10)

F+(r)=[(r —1, ) +(3+22'/ )(r+1, ) ]'/ (7.1 1)

and H(r, 2m„l, ) is a linear combination of elliptical integrals of the first, second, and third kinds, which is well behaved
everywhere. The result (7.10) is obtained in the following way. We have

3
~( )

r dr
(r —2m, )(r +1 )'/

d»

( 4+1 4)1/2 ~
( 4+1 4)1/2 ~

( 4+1 4)1/2 ~
( 2 )( 4+1 4)1/2

+2m, +(2m, ) +(2m, ) (7.12)

where

» d»» ~s 1 1

( 4+1 4)1/2
( 4+1 4)1/2 2 ' 21/2 ' 21/2IK, —2E~, (7.13)

Here I and E are elliptic integrals of the first and second kinds, respectively, and sintc=(r 1, )/(r +1, ). Moreover, —
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rdr 1 r +(r +1, )'
= —ln

( 4+ I 4)1/2 2 (7.14)

r s

~~

~

I K7

dr 1 1

( 4+I 4) 2I ' 21/2

where g =2 + 1 g —42 /a

dr
(r —2m, )(r +l, )'

21/2
I(e,A. ),

al,

and e=(2 (r +l, )/[(r —l, ) +a (r +I, ) ]'/ . The last integral in (7.12) is

2' [(2m, —I, ) —(2 (2m, +l, )) 22'/ l, (l, —2m, )
I(e, A, )+ II(e,n, l(, )

aF+ (2m, ) aF+ (2m, )(l, +2m, )

1 F (2m, )F+ (r) F+ (—2m, )F (r)

2[(2m, ) + l,4] '/2 F (2m, )F+ (r)+F+ (2m, )F (r)

(7.15)

(7.16)

where n = I+(1,—2m, )/a (I, +2m, ) and II is an elliptic integral of the third kind. II is only well defined for n ( I, so
it is necessary to use

II(e,n, A, ) = —II(e,X,A, )+I(e,A. )

(2(I, +2m, )F+ (2m, ) (1, + 2m, )(r —I, )F+ (2m, )F (r) —(I, 2m,—)(r+ I, )F (2m, )F+ (r)

2(l, —2m, )F (2m, ) (I, +2m, )(r —l, )F+(2m, )F (r) —(I, —2m, )(r+l, )F (2m, )F+(r)
(7.17)

where %=42'/ (l, +2m, ) /F+ (2m, ). Collecting together these contributions, we obtain the result (7.10). Expanding
(7.10) in small values of r 2m, and su—bstituting into (7.8), we get

1 —(2b(2m, ) /[(2m, ) +I, l jr', t' = r —2m, (7.18)

which leads to the result (7.9). In the GR limit
b~l/4m, as l, ~0.

As in GR, r*(r) goes to —oo at r =2m„becomes + oo

as r~~, and is well behaved everywhere in between.
When 1,~0 these results for the maximally extended
coordinates reduce to those of GR.

Except for the constant b and the functional form of
r*(r) the results of the NGT are the same as GR. In the
NGT a black hole with no charge or angular momentum
will emit massless, scalar particles thermally with an ef-
fective temperature

where

(7.24)

Let us make the transformation

q=(1+I,4/r4) "4R . -
Then (7.23) becomes

(7.25)

U(r*) =(1—2m, /r) + (1+(),4/r4)
r r

b 1T=
2mk 8' km,

1+
2ms

(7.19) +[k —V(r*)]R =0, (7.26)

From the Lagrangian for a massless scalar field in the
NGT,

where

(g)1/2gpvp

we obtain the Klein-Gordon equation

The expansion

P = g f dk e '"'Y„(8,$) t/i„k(r*), —
n, m

(7.20)

(7.21)

(7.22)

n n+1 2m'V(R*)=(1—2m, ) +
r 2 r 3

1
+(1—2m, /r)(1+1, /r ) . (7.27)

The power output of gravitational synchrotron radia-
tion in mode n, rn is given by

where Y„(8,$) is a spherical harmonic, leads to the
equation

H R( ~
) (2

87r ( I+I4/ 4)1/2

where u =dt/d~ and

(7.28)

+ [k —U(r*)]/=0, (7.23)
H:—H„ Y„(77/2,0) .

rou
(7.29)
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By using Eqs. (A2) and (1.2), we get

g +P— —
g P +g I +g PP 0 (7.30)

black-hole event horizons, i.e., test particles will be
"bounced" away from r =r, . We have A =0 when l&

——0
and G'(r) =0 and G "(r) & 0 for

With the help of this equation, the Klein-Gordon equa-
tion (7.21) can be written in covariant form as

(7.41)

(g"+
p,„) (7.31)

corresponding to a minimum in the potential. Also
G(r)=0 for

and

—ApI P (7.32)

where a semicolon denotes covariant differentiation with
respect to the I „„connection and the + and —notation
stands for

2mr +21, m, =l, r. (7.42)

Substituting (7.41) into (7.42) shows that G (r) (0 for
l, )8/3 m, . For m, =GMo/c test particles are
bounced away from the black-hole event horizon when

1, )5. 16 km. For photon l& ——E=O and they will fall to
r =0 in finite proper time.

A„. =A„—A I (7.33)
VIII. CONCLUSIONS

A solution of (7.31) for P can be written in the form

P= Re[e' ~'(a+be+ . )],
where e is a small expansion parameter, and we have

(7.34)

= Re —9 (a+be+ . . )e'
~p ~p

+(a „+b„e+ . . )e' (7.35)

It can easily be shown that (7.34) and (7.35) yield the same
geometrical optics equation

g'""'k„k =0
to order O(1/e ), as the Klein-Gordon equation

(g (Pv)g ) 0

(7.36)

(7.37)

2 1/2E1+
2r4 a

(7.38)

Integrating this equation gives
1/2

r4+l, 4

r= f"dr
G(r)

+const,

where

(7.39)

G(r)= +2m, r +1, —1 +A .
A2

3 4 2ms

4r4
(7.40)

We see that G(r) & 0 for r &2m, so that a test particle
that falls through the event horizon at r =2m, must con-
tinue to fall toward r =0 as in GR, thus avoiding any
violation of causality. Also G(r) (0 and G "(r) &0 for
r) 2m, which means that for some value r=r, for which
G(r, ) =0, test particles will be prevented from forming

where k&
——0& and the subscript vertical bar denotes the

covariant derivative with respect to the Christoffel symbol

p
aP

Let us now consider radially inward falling test parti-
cles corresponding to the gravitational collapse of the en-
velope of a star. We choose J=0 in (4.17) and obtain the
equation

From the conservation laws of the NGT, we have de-
rived the equations of motion of a test particle using the
field equations in the presence of matter, described by a
perfect fluid with the two sources T" and S"correspond-
ing to the conserved energy-momentum tensor and the
current of the fluid, respectively. The field equations of
non-Riemannian space-time are nonlinear and, as in GR,
they determine the motion of the particles. Given the
form of the perfect-fluid energy-momentum tensor, as
determined by a variational principle, the vector-current
source S" and the definition of a test particle, the equa-
tions of motion follow uniquely from the conservation
laws of the NGT. The problem of the motion of two
massive bodies such as are found in a binary system can
be solved in a similar way using the post-Newtonian
method of expansion for the NGT. '

Only particles with lz
——0, such as photons, obey geo-

desic equations of motion in the NGT, and only for these
particles is the equivalence principle satisfied; particles
with lz&0 do not follow geodesic paths in space-time be-
cause of the existence of a force that behaves like 1/r .
This consequence of the NGT is in accord with the results
obtained by Coleman and Korte, who used a conformal
causal structure of space-time. Matter with S"&0 is re-
sponsible for producing a non-Riemannian geometry that
is characterized by the nonsymmetric affine displacement
field I &, which replaces, in the most general manner con-
sistent with our notions of the space-time continuum, the
inertial frame of special relativity. The use of a non-
symmetrical g&, leads to a complete dynamical theory of
non-Riemannian space-time, a possibility that is lost if
one insists on adhering to a Riemannian symmetric metric
and a nonsymmetric affine connection. This non-
Riemannian geometry also points to a fundamental differ-
ence between matter and antimatter; according to the pre-
dictions of the NGT, a particle falls at a faster rate in a
gravitational field than an antiparticle.

In analogy with the early developments of thermo-
dynamics, we must attempt to provide a microscopic in-
terpretation of the NGT. As a classical theory, it de-
scribes a structure with a high degree of mathematical
and logical consistency, but a microscopic particle inter-
pretation of the current density S" is needed to complete
the theory. Any such interpretation depends on having a
fundamental unified theory of particles and their interac-
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tions and since such a theory is at present not available,
we must resort to models of the charge density S . One
possibility is that S corresponds to conserved fermion
number. ' The fermion number could be a linear com-
bination of baryon number and lepton number as con-
sidered in Ref. 25. Another possibility is that for neutral
macroscopic matter S is proportional to proton number
Z, which would distinguish between a neutron star and
the Sun, since a neutron star consists predominantly of
neutrons.

In the linear approximation of the NGT, ' we can
write

y 2'ay —w

1

r sin 0

22—
r 2

ay —w 2

(A 1)

The field equations in vacuum are obtained from
( 1.14)—( 1.16) and (1.18) and (1.19) by setting
S"=T"=0. We obtain

gp gp I p gyp I 0P (A2)

real nonsymmetric tensor g„are displayed in (4.1) and
(4.2). By using the relation (1.2), we find that

[Pv] 0 (A3)

where the h„are small quantities of the first order. An
analysis of the linear approximation reveals that the
current S" occurs in the Lagrangian with the coupling

h(„,)S "'", and because of (1.20) the current S" does not
couple to the massless spin-0+ particle associated with

h[&„] in first order. A calculation of the propagator also
shows that the massless spin-1 auxiliary vector field W&
does not propagate in lowest order; 8'& is a contact field.
There are no ghost poles in the real (or hyperbolic com-
plex) version of the theory. The h(z )

can couple to in-
trinsic spin through the matter tensor T[" . In this case,
we have

R(„„)(r)=0,
R(„„) (I )+R( l„(l )+R( „l (I )=0.

(A4)

(A5)

2r„=, r„=csc Or„= ——,
2a ' a

2wI 10= —I 0

The 64 linear, homogeneous equations (A2) have been
solved by Papapetrou, ' Wyman, and Bonnor for the
static case. For the components of g„ in (4.1) and (4.2),
we have

T[~ ]=«.P J,. (8.2)

where J„ is the intrinsic spin pseudovector and ~ is a con-
stant. However, this coupling is expected to be very small
for macroscopic systems.

In the linear approximation, we obtain Newton's force
law for a static system of masses except for possible in-
trinsic spin effects. The new NGT force arises in the
higher nonlinear orders with a range of 1/r, due to mul-
tiple particle exchanges. A similar situation occurs in
GR, since there we obtain the Newtonian force law for
static systems in the linear approximation, but the relativ-
istic effects are produced by multiple graviton exchanges
in the higher nonlinear orders. This absence of an interac-
tion between the S" currents of two bodies in the linear
order of approximation, explains why there is no llr
force between S charges in the NGT.

It is hoped that future experiments can test the idea
that space-time is a dynamical non-Riemannian structure
and confirm that matter carrying S charge plays a spe-
cial role in determining the geometry of space-time.

I i2
——I z&

——1/r, I 33——sin& cos8,
wr„=—r„= ra

I", =I,=1jr, I 23 —I 32 —cotO,3 = 3— 3 3

3 3 W 0 0
~03 ~30 ~10 ~01 +ra '

2y

2w

ray

(A6)

I

w—2
ray

2

(A7)
2a ray

R (I )=csc OR (I )

r y'
2a

a' 2w

ay
(AS)

The prime denotes differentiation with respect to r Sub-.
stituting (A6) into (1.10), we find the expressions

I

1 y' y' y' a' a'
Rii(I )= ——

2 y 4y y a ra

2w

ray
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R (r)=—1 y'
2 a

W 3y
ra

y' y'
4a y

2a

a'

14 8w2+r ray

4 W+4
r ra

(A9)

APPENDIX

For completeness, we shall give some details on the
derivation of the static, spherically symmetric solution of
the vacuum field equations and the derivation of Eqs.
(4.4)—(4.6). We shall follow the method of solution
given by Papapetrou in Ref. 16. The components of the

R»(r) = —R„(r)=2
ra

6w+
r a

(A 10)

[pg] —0 o (A 1 1)

By contracting (A2), it can be shown that (A3) is
equivalent to
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A calculation gives

( g—)'r =r sin0(ay —w )'

and the only nonvanishing component of g" is

2mr sinO

( y 2)t/2

Equation (A3) then yields

d mr sinO

dr (
2)ti2

Integrating this equation leads to the solution

(A12)

(A13)

(A14)

1 2p 1 2 p+v
r r2 r2 2r r2

We shall now subtract (A22) from (A23) to give

P +v 4
C

4 C2 P +v
r r2 r2 r

or, equivalently,

"+ C=o
r r2

since 1 —C &0. By using this equation in (A24),

(A24)

(A25)

(A26)

2 4
I4

ay —m
(A15) 1

e P
r

1 =0.
2

(A27)

where I is a constant of integration. The solution for m is

m =cxyC, (A16)
This is the same equation as in GR, and leads to the same
solution for o.'

where

(4C=
I4+r4

Let us consider the scalar quantity

a=(1—2m /r)

(A17) We can write (A26) in the form

d r4
p+v+ ln

r 4+ l'4
=0

(A28)

(A29)

S=—R &&+ 2 R22 ——R00

and the linear combinations

—R )i+ —,S=O,
CX

(A18)

(A19)

Integration of this equation gives

r4
2ay

r +l (A30)

1 1R22+ —,S=0,
r2

1—R ——S=O.
y

00

(A20)

(A21)

where 2 is a constant of integration. Using (A22) and
(A24), we can immediately verify that (A23) is satisfied.
Substituting (A30) into (A16) and using (A17), gives the
solution for m:

We shall set a=e" and y=e and from (A19)—(A21), we
get the set of equations

j' 2

m=+3
2r

(A31)

v' 1 4 2 2 p'+ v' 1

r r2 r2 r2 2r r2

(A22)

We adopt the boundary conditions that as r ~~, m~0,
and g~& ) ~gz . These boundary conditions require that
A =1 and y and w reduce to the solutions in (4.1) and
(4.2). Equation (A12) now becomes

II

e
p'v' v' v' —p' 3(v' —p')

4 4 2 2

8 2

C — C =0, (A23)+,2

( —g )' =r sinO, (A32)

which is the same expression obtained in flat Minkowski
space and GR. By substituting the solutions for cz and m

into (A10), we get the result quoted in Eq. (4.4).
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