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Linear plane waves in dissipative relativistic fluids
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This paper analyzes the dispersion relations for linear plane waves in the Eckart and the Israel-
Stewart theories of dissipative relativistic hydrodynamics. We show that in the long-wavelength
(compared to a typical mean-free-path-length) limit the complicated dynamical structure of the
Israel-Stewart theory reduces to the familiar dynamics of classical fluids: 9 of the 14 modes of an
Israel-Stewart fluid are strongly damped in this limit, two propagate at the adiabatic sound speed
(with appropriate viscous and thermal damping), two transverse shear modes decay at the classical
viscous damping rate, and the final longitudinal mode is damped at the classical thermal diffusion
rate. The short-wavelength limit of these dispersion relations is also examined. We demonstrate
that the phase and group velocities of these waves must approach the characteristic velocities in the
short-wavelength limit. Finally, we show how some of the perturbations of an Eckart fluid violate
causality.

I. INTRODUCTION

In this paper we investigate the properties of linear
plane waves in the Eckart and the Israel-Stewart theories
of dissipative relativistic hydrodynamics. The purpose of
this investigation is to explore the dynamical structure of
these fluid theories in a context that is appropriate for
making comparisons with experimental studies. We are
interested in determining, for example, whether the com-
plicated dynamical structure of the "second-order"
Israel-Stewart theory (with its 14 dynamical degrees of
freedom) reduces in some appropriate limit to the familiar
dynamical structure of relativistic ideal fluids (with only
sound modes propagating). To accomplish this we derive
expressions for the dispersion relations for the various
types of waves contained in these theories. These disper-
sion relations show that the dynamics of these complicat-
ed theories do reduce in appropriate limits to the dynam-
ics of a relativistic ideal fluid or to the dynamics of a non-
relativistic Navier-Stokes-Fourier fluid. Furthermore,
these dispersion relations could, in principle, be used to
determine the values of the various thermodynamic quan-
tities (e.g., viscosities, thermal conductivity, and second-
order coefficients) directly from experimental data. Such
an analysis should make it possible to distinguish experi-
mentally between the Eckart and the Israel-Stewart
theories.

The simplest covariant generalization of the Navier-
Stokes-Fourier theory of dissipative fluids is the first-
order theory developed by Eckart. ' This theory is referred
to as "first order" because the expression used for the en-
tropy current contains only first-order terms in the devia-
tions away from equilibrium. This theory is known to
have generic instabilities (no stable equilibrium states ex-
ist); also, it is not hyperbolic. In this paper we examine a
number of interesting features of the linear plane-wave
solutions in the Eckart theory. We show that the trans-
verse components of the velocity perturbation satisfy ellip-
tic differential equations in the Eckart theory. The solu-

tions to these equations violate any reasonable definition
of causality. We show, in fact, that for an initial 6-
function perturbation, the solution to the nonrelativistic
diffusion equation is a good approximation everywhere in-
side a future cone whose boundary is defined by the ve-
locity (qc /AT)' . For water at 300 K, this velocity is
about 10 times the speed of light. The Eckart theory, al-
though written in covariant form, is thus not truly a "rel-
ativistic" theory, since information can be transmitted
faster than the speed of light. We also find some interest-
ing features of the short-wavelength limits of the disper-
sion relations for an Eckart fluid. The phase and group
velocities of the propagating longitudinal modes diverge
as k' in the Eckart theory, while in the Navier-Stokes-
Fourier theory they diverge like k. These diverging veloc-
ities probably signal causality violation in these modes as
well, although it is very difficult to analyze the evolution
of a wave packet of finite spatial extent in a dispersive
dissipative theory such as this.

We also consider in this paper the dissipative relativis-
tic fluid theory proposed by Israel and Stewart. This is
referred to as a second-order theory because the expres-
sion used for the entropy current is second order in the
deviations away from an equilibrium state. The first-
order Eckart theory may be viewed as a (singular) limit of
the second-order Israel-Stewart theory. This theory is
known to admit stable equilibrium states, and fluctuations
about equilibrium are known to propagate causally via hy-
perbolic differential equations. The theory is therefore
an attractive alternative to the simpler but pathological
first-order theories.

There are, however, at least two fundamental questions
that have yet to be satisfactorily resolved for the second-
order theories: (a) How does the complicated dynamical
structure of the second-order theories (with their 14 de-
grees of freedom) reduce to the familiar dynamics of clas-
sical fluids (with only sound modes propagating)? (b) Are
the second-order theories capable of describing strong
shock waves? In this paper we address the first question
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by evaluating the general dispersion relations for linear
plane waves in the Israel-Stewart theory. We show that,
in the long-wavelength limit, all of the modes are strongly
damped except for those which are the relativistic ana-
logues of the familiar modes of a Navier-Stokes-Fourier
fluid. These remaining modes have dispersion relations
which are (in the long-wavelength limit) equivalent to the
dispersion relations for an Eckart fluid: simple relativistic
generalizations of their Navier-Stokes-Fourier counter-
parts. Thus the Israel-Stewart theory does have an ap-
propriate classical fluid limit. We do not address the
second question in the present work. It has been suggest-
ed that the second-order theories fail to describe ade-
quately the structure of strong shock waves. Those sug-
gestions, however, are based on an analysis of the kinetic
theory limit of the Israel-Stewart theory. It is unclear to
us to what extent this pathology will persist in the general
Israel-Stewart theory.

In Sec. II of this paper we derive the general dispersion
relations for longitudinal and transverse plane waves
which are solutions to the Israel-Stewart fluid equations
linearized about a homogeneous static background equili-
brium state. Kranys' has previously studied the analo-
gous linear wave solutions in the kinetic theory limit of
the Israel-Stewart theory. We work entirely in the context
of the phenomenological fluid theory, however. We do
not appeal to kinetic theory except to offer opinions about
the anticipated magnitudes of some quantities in laborato-
ry fluids. In Sec. III we examine the long-wavelength
(small-wave-number) limit of these dispersion relations.
This is the limit (when the fluid fluctuation length scale is
much longer than the interparticle separation or the mean
free path of the underlying microscopic theory) that we
expect the behavior of the theory to closely mimic the pre-
dictions of the relativistic theory of perfect fluids, with
small dissipative corrections which should be given by the
relativistic generalizations of well-known results in the
Navier-Stokes-Fourier theory. We expand the dispersion
relations for each of the modes in powers of the wave
number k up to the first order in which the second-order
coefficients a; and p; appear. In Sec. IV we examine the
large-wave-number limit of the dispersion relations, now
expanding the expression for each mode in powers of k
up to the first term in which the second-order coefficients
appear. In Sec. V we examine the limiting case of the
dispersion relations for the first-order Eckart theory, and
address the issue of whether the Eckart theory violates
causality by allowing signal propagation outside the light
cone. Finally, in an Appendix, we show that the small-
wavelength limits of the phase and group velocities of
linear plane waves are equal to the characteristic velocities
for systems of differential equations such as those which
determine the evolution of the perturbations to an Israel-
Stewart fluid.

as those used in Ref. 7. We treat the perturbations within
the Eulerian framework in order to avoid the difficulties
associated with gauge ambiguities in the Lagrangian ap-
proach.

The difference between the actual nonequilibrium value
of a field Q at a given point of spacetime and the value
which Q has in the fiducial background equilibrium state
at the same spacetime point will be denoted by 5Q. The
quantities 6p, 6n, 6~, 6u', 6q', and 6P are the fields
which describe the perturbations of an Israel-Stewart fluid
about its equilibrium state. Any fields which do not in-
clude the prefix 5 (e.g., p, n, u') refer to the background
equilibrium configuration, and are assumed to satisfy the
usual equilibrium constraints (see Ref. 7, Sec. II B), in ad-
dition to being homogeneous and isotropic.

The equations of motion for the perturbation fields 5Q
are obtained by linearizing the general equations for an
Israel-Stewart fluid ' about the fiducial homogeneous and
isotropic equilibrium state. The equations then become

0=V, 6T'

O=u'V, 6n+n V, 6u',
O=g '5r+V, 5u'+ pou'V, 5r aoV, 5—q',
0=(~T) '5q'+q' (T 'Vb5T+u'V, 5ub

+P) u 'V, 5qb aoV b 5r—

a)V, 5 —
b ),

0=(2g) '5 + (V'5u +P u2'V, &' —a, V'5q ),
where qab gab+u u

5T' =(p+p)(5u'u +u'5u )+5pu'u

+(5p+5r)q' +5H"+u'5q +u "5q',

and

( gab) & qa b (gcd+gdc cd ref)

(2)

(3)

(4)

The x axis of the Cartesian coordinate system is chosen to
coincide with the direction of spatial variation of the
plane waves, so that the perturbation fields have the form

for any second-rank tensor field 3' . The perturbation
variables also satisfy the constraints

O=u'5q, =u'5u, =5 —(57 ) .

In order to simplify the analysis, we consider only ex-
ponential plane-wave perturbations about a homogeneous
and isotropic background equilibrium state in Minkowski
space. These assumptions imply that there exists a set of
orthonormal Cartesian coordinates ( t,x,y, z) such that

(9)

II. LINEAR PLANE-WAVE PERTURBATIONS
5Q=5QO exp(1 t+ikx), (10)

where 5QO is a constant. We have chosen to write Eq.
(10) with a "frequency" I, which is defined so that its real
part gives the growth (or decay) time scale of the mode,
and its imaginary part gives the oscillation frequency of
the mode. We choose this convention because the disper-

In this section we derive the dispersion relations for
linear plane-wave perturbations about a homogeneous and
isotropic background equilibrium state of an Israel-
Stewart fluid. We use the same notation and conventions
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sion relations are simpler when written in terms of I, and
most of the modes will turn out to be strongly damped.
We will hereafter refer to I as the frequency of a mode,
even when the mode is purely damped, and there is no os-
cillation in time. The phase velocity and group velocity of
such a wave will then be defined as iI /k and idI /dk,
respectively.

Under these conditions the perturbation equations be-
come a set of simple algebraic equations:

U', SY'=0

where U "z is a 14& 14 complex-valued matrix, and 5Y
represents the list of the 14 perturbation fields. The index
B runs over these 14 fields, while the index 3 runs over
the 14 equations governing the perturbation variables.
The columns of U are defined by choosing a set of pertur-
bation variables, 6Y . We use the set

5 Y = [5p, 5n, 6r, 5u, 6q",&"",5u, 5q~, 5&,5u', 6q', &,5 ', 5H —5

The matrix U z may then be put into block-diagonal form, as in the case of the first-order theories:

Q 0 0 0
0 R 0 0
0 0 R 0
0 0 0 S

(12)

(13)

where

0
r
0

Q= ik C)P

n

r
0

0

Bp
dn

0
0

g-'+p, r

ik

ink
i (p+p)k

ik

(p+p)r

ik

ik

ik BT ik hT
T Bp T Bn

—1k exp

—ik2

3

(AT) '+ f3, I

2—31k') (2' ) '+ P,I

ik —iko. )

(p+p)r r
r (~r) '+ p,r- ik

—Ik&]

'+ 2p2I

&I 0
S=[(29) +P2r] (16)

There exist exponential plane-wave solutions of Eq. (11)
whenever I and k have values which satisfy the disper-
sion relation

det(U) =0 . (17)

The determinant of U will be zero whenever the deter-
minant of one of its diagonal blocks is zero, since

det(U)=[det(Q)][det(R)] [det(S)] .

The set of all exponential plane-wave solutions is charac-
terized then by the collection of roots obtained by setting
the determinants of Q, R, and S separately equal to zero.

The dispersion relations obtained by setting det(R)=0
or det(S) =0 correspond to the solutions of the perturba-
tion equations which are referred to as transverse modes,
since the matrices R and S operate on the components of

the perturbation variables which are orthogonal to the
direction of spatial variation (x). There are three distinct
sets of transverse modes. First, there are the modes asso-
ciated with the perturbation variables 5H' and & —6W,
which are governed by the matrix S. Second, there are
the modes associated with the variables (6u, 5q~, 5&~),
determined by the matrix R. Third, there is a set of
modes associated with the variables (5u', 5q', &"'), which
are also controlled by the matrix R. Since we have as-
sumed that the background equilibrium state is isotropic,
the second and third sets of transverse modes obey the
same equations of motion, defined by R, and the same
dispersion relation, det(R) =0.

The modes associated with the matrix S (excitations of
or 6 ') are very simple. Their dispersion rela-

tion is given by

0= det(S) = [(2') '+P, I ]' .

These components of the shear stress simply decay ex-
ponentially with the time constant,
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1 T, ———1/(2/32il ), (20)

without propagating spatially. Assuming the kinetic
theory values of the second-order coefficients are at least

approximately correct, these modes will be very strongly
damped in laboratory fluids, and are probably unobserv-
able.

The transverse modes associated with the matrix R are
more interesting. The determinant of R is given by

0=21~Tdet(R) =221~Tp2[13,(p+p) —1]1 + I 2rlp2(p+p)+a T[p, (p+p) 1]j I—
+ Ip+p+r)~T[p&+2ai+(a, ) (p+p)]k j1 +21k (21)

In an Israel-Stewart fluid which possesses stable equilibrium states (i.e., which satisfies the stability conditions given in
Ref. 7, Sec. III 8), the coefficients of all of the terms in Eq. (21) are positive for real wave numbers k. This implies the
existence of at least one nonpositive real root for 1, a nonpropagating decaying mode.

The perturbations which are governed by the matrix Q are referred to as longitudinal modes, since the perturbation
variables controlled by Q are either scalars or the components of tensors in the direction of spatial variation (x) of the
exponential plane waves. The frequencies of the longitudinal modes are given by the roots of the dispersion relation,
det(Q) =0. The determinant of Q may be put into the form

0= —f 21~ Tdet( Q)=AI +BI +(C+Dk )I +(F. +Fk )I" +(Gk +Hk )I +(Ik +Jk")I +Kk

where A, B,C, . . . are the following functions of the thermodynamic variables:

~ =13OP2[Pi(p+p') 1]kn T-

~of 2 (P +p )P 9 + Y (~00+21 2 l )Ã1 (P +p )

C=
2 (POP+2132m)(p+p')+ 2 [13i(p+p) 1]&T—

(22)

(23)

(24)

(25)

$2lir T
p+p

POP2(P+P)
~

+ 3 Po+P2+POP2(P+P)
ae ap
as a.P

[Pi(p+p») 1]—
+ 3 no[a l(p+p)+ 1] +02[ao(p+p)+ 1] (26)

E= —,(p+p),

F= ——,'(Pog+2P2n) + " IPOPP+p»)+[ai(p+p)+1]'j
Bs 3(p+p)

(27)

+ [Pi(p+p) 1] —,
' (pop+2—p221 ) + ( —,21+ —,g)ap, p+p

+ I 2P2 l(p+p)+ [ao(p+p)+ 1] I +f oP '9PP+p)
2(p+p) ap
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(29)
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(31)

(32)
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and

Bp Be
(33)

We first consider the transverse modes and then discuss
the longitudinal modes in this limit.

A. Transverse modes

For a stable Israel-Stewart fluid all of these coefficients,
3, . . . , K, are non-negative.

The dispersion relations [Eqs. (19), (21), and (22)] give
the relationships between the frequency I and the wave
number k for plane-wave perturbations. These relation-
ships can be used in two different ways. In the first way
the wave number k is taken to be a given real number and
the dispersion relation is then used to determine the fre-
quency with which such a spatially sinusoidal perturba-
tion evolves in time. This way of using the dispersion re-
lations could be used to evolve arbitrary initial data for
the perturbation fields by Fourier transforming the initial
data and evolving each Fourier component with the fre-
quency determined from the dispersion relation. When
looked at in this way the dispersion relation [Eq. (17)] has
14 roots (not all distinct) for I for each value of k. These
correspond to the 14 modes of the fluid. The dispersion
relation det(R)=0 is a cubic polynomial in I, which
could, in principle, be solved explicitly. We have not
found it enlightening to do so. The dispersion relation
det(Q) =0 is a sixth-order polynomial in I . We have not
been successful in factoring it, and it may not be possible
to do so explicitly for general fluids.

The second way of using the dispersion relation takes
the frequencies I to be given imaginary numbers. This
might correspond to an experimental situation in which
perturbations in the fluid are driven at a given frequency
by some external agent. The dispersion relations could
then be used to determine the wave numbers k and the re-
sulting spatial variation of the fluid perturbations. In this
case one can "solve" the dispersion relations explicitly in
general. Equation (21) is a simple linear equation for k
while Eq. (22) is a quadratic equation for k in terms of
I . Note that there exist only eight roots (not all distinct)
of these equations for k in terms of I . It is not possible
to excite all of the dynamical degrees of freedom of these
fluids by driving them externally at a given frequency.
Some of the modes (e.g., those associated with S) cannot
be made to oscillate at a given frequency.

Expanding the dispersion relation for the transverse
modes, Eq. (21), about k =0 in a Taylor series in k, we
find the three transverse-mode frequencies in this limit
have the values

r„=— +O(k ),1 2

2pz7)
(34)

+O(k'),
~T[Pi(p+p») 11—

I T4 ——— k7l 2

p+p

(3&)

7l

p+p

2

213,g — [1+a,(p+p)]' k'
p+p

+O(k') . (36)

The two transverse modes with frequencies I T2 and I T3
are very strongly damped (if kinetic theory is even ap-
proximately correct), and are probably not observable in
laboratory fluids. The third mode with frequency I T4
represents, at order k, the well-known viscous damping
of transverse stresses; we also calculated the k term in
this expansion to show the first second-order corrections
to the dispersion relation for this mode. Higher-order ef-
fects of this type should be observable, e.g. , in drag mea-
surements on Couette flow between rotating cylinders. '

These limiting forms of the dispersion relations [Eqs.
(20) and (34)—(36)] show that the 8 transverse degrees of
freedom of the Israel-Stewart fluid dynamics do reduce to
the appropriate classical behavior in this limit. The six
modes having frequencies I T &, I Tz, and I T3 are all
severely damped in this limit and are probably unobserv-
able. The remaining two modes with frequencies I T4
have the same diffusive dispersion relation in this limit as
the transverse modes in an Eckart fluid. These expres-
sions are simply the relativistic generalizations of those
for the transverse modes of a Navier-Stokes-Fourier fluid.

III. THE SMALL-WA VE-NUMBER LIMIT

Since the dispersion relations are so complicated, it is
informative to examine their limiting forms in order to
obtain some insight into these modes. We first consider
the k~0 limit of the dispersion relations. In this limit
the perturbations are assumed to vary slowly in space (i.e.,
they must have large wavelengths compared to the
characteristic length scales of the fluid such as the inter-
particle separation or the mean free path). This limit cor-
responds to the regime in which classical fluid mechanics
is known to represent real fluids well. This is the ap-
propriate context, therefore, in which to look for a
correspondence between the Israel-Stewart theories, with
their 14 dynamical degrees of freedom, and the much
simpler dynamical structure of classical fluid dynamics.

B. Longitudinal modes

I L) ——— +O(k ), (37)

and

I L2=- c+a +O(k ),2

~T[13)(p+p) 1]—
IL3 ——— +O(k ) .

1 2

2 2'

(38)

(39)

Expanding the dispersion relation for the longitudinal
modes in powers of k about k =0, we find that there are
three longitudinal modes whose frequencies do not go to
zero as k goes to zero:
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+O(k'), (40)

up to order k . To lowest order in k these two longitudi-
nal modes propagate with phase and group velocities
equal to (Bp/Bp), '~, the adiabatic sound speed. The
next-order ( k ) contribution to the frequency of these
modes is purely real and determines the damping rate of
these sound waves. The Israel-Stewart theory predicts ex-
actly the same velocities and damping coefficient (to
lowest orders in k) as the . first-order Eckart theory.
Furthermore, these expressions are simply the relativistic
generalizations of the usual results for the velocities and
damping of nonrelativistic sound waves in the Navier-
Stokes-Fourier theory. ' The second-order coefficients o.;
and P; enter the dispersion relation for this mode in the
k term. Even though it is straightforward to evaluate,
we were unable to find a simple expression for the k
term in the dispersion relation for this mode; consequently
we chose not to reproduce our lengthy expression here.
There exists' a great deal of experimental data on the
velocity and damping of extremely high-frequency sound
waves. These data could be used to determine empirically
the values of the second-order coefficients that appear in
this dispersion relation. We are not aware that these data
have ever been analyzed in this way, however.

Finally, the sixth longitudinal mode has the dispersion
relation

These modes are all nonpropagating (up to order k ) and
are probably very strongly damped in laboratory fluids.

The next two longitudinal modes vary linearly with k
in the small-k limit. Their dispersion relation is given by

1/2

Bp
4 —+

Bp
- 2

k 4 (n'T) —'Bp Bp

2(p+p) dp Bs

phase velocities identical to perfect-fluid adiabatic sound
waves through order k, and have damping coefficients
which are the simple relativistic generalizations of the
classic Navier-Stokes-Fourier results' at order k . And
the final longitudinal mode is identical to classic thermal
diffusion to lowest order. Thus we conclude that the
dynamics of the second-order theories do indeed reduce to
the simpler dynamics of classical fluid dynamics for nor-
mal laboratory fluids, and (to lowest orders) to the
dynamics of the simpler adiabatic relativistic fluids where
appropriate.

Note that none of the phase velocities or the group ve-
locities of these modes in this limit are equal to any of the
characteristic velocities for these equations. The charac-
teristic velocities determine the rate at which discontinui-
ties in the perturbations propagate in the fluid. Any
discontinuity in the initial data will necessarily involve
contributions (in the Fourier transform of the perturba-
tion) from the large-k (short-wavelength) structure of the
theory. Consequently it is not surprising that the long-
wavelength velocities derived in this section have little re-
lation to the characteristic velocities.

IV. THE LARGE-WAVE-NUMBER LIMIT

Next, we consider the short-wavelength (k~m ) limit
of the dispersion relations. One could argue that this lim-
it is not physically relevant for a fluid theory because the
derivations of the fluid equations from microphysics are
generally not valid when the characteristic length scales
become smaller than a typical mean-free-path length in
the underlying microscopic theory. However, we do not
believe that this argument limits the range of applicability
of a phenomenological fluid theory a priori. Experience
with nonrelativistic fluids has demonstrated that a
phenomenological fluid theory (e.g. , Navier-Stokes-
Fourier) may be quite useful in situations where the
derivation of the theory from microphysics is inadequate.

1,= — k +O(k ),nT Bs .P

(41)

through order k . This mode is another nonpropagating
decaying mode; it is, however, not as strongly damped in
laboratory fluids as the modes with frequencies I I &, I Lz,
and 1 L3. The first term (order k ) in this dispersion rela-
tion [Eq. (41)] represents the classic thermal diffusion of
temperature fluctuations. This term is the same in the
first-order (Eckart) and second-order (Israel-Stewart)
theories. The second-order coefficients first appear in the
k term in this dispersion relation. We do not include
that expression here because it is unenlightening and
somewhat lengthy.

We note that the dynamical behavior of the longitudi-
nal modes in a second-order (Israel-Stewart) fluid reduce
to the familiar behavior of a classic fluid in the long-
wavelength limit considered here. Three of the six longi-
tudinal modes (with frequencies 11 ~, I L2, and 1 L 3) are
severely damped in this limit and are probably unobserv-
able in laboratory fluids. Two of the longitudinal modes
have dispersion relations [Eq. (40)] which yield group and

A. General results

I = —ivk+O((k ') ), (42)

where U is one of the characteristic velocities. These
modes will consequently be propagating modes at lowest
order (in an expansion in powers of k ') if the charac-
teristic velocities are real (as they must be in a hyperbolic
system of equations) and if v~0.

B. Transverse modes

The transverse modes have two characteristic velocities
given by

In the Appendix we show that the short-wavelength
(large-k) limits of the phase and group velocities for linear
plane waves are necessarily equal, and that these limits are
also equal to the characteristic velocities of the associated
system of differential equations. This result, which ap-
plies to a very general class of first-order linear differen-
tial equations, guarantees that the leading term in the
dispersion relation for these waves will have the form
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(UT) =[(p+p)(a&) +2a~+13~]I213q[P~(p+p) —1]I

(43)

Stewart fluid, so that the modes are damped at highest or-
der in k in this case.

and one characteristic velocity which vanishes. We have
shown that these characteristic velocities [Eq. (43)] are
real and bounded above by the speed of light for stable
Israel-Stewart fluids. The leading term in the dispersion
relations for these two modes are consequently given by
Eq. (42) with U=UT. The leading term in the expansion
of the dispersion relation for the third transverse mode is
given by

I = —[AT[(a~) (p+p)+2a~+P~]} '+O(k ') .

This mode is strongly damped in this large-k limit.

(44)

C. Longitudinal modes

The longitudinal modes have two characteristic veloci-
ties which vanish and four characteristic velocities which
are the roots of the quartic polynomial:

A(uL) —D(vt ) +H=O, (45)

I = [J+(J' 4H—K)'"]/(—2H)+O(k —'), (46)

where H, J, and K are given by Eqs. (30), (32), and (33).
These coefficients are all positive for a stable Israel-

where A, D, and H are given by Eqs. (23), (26), and (30).
The roots of this equation are known to be real and
bounded above by the speed of light for stable Israel-
Stewart fluids. The leading terms in the dispersion rela-
tions for these four modes are consequently given by Eq.
(42) with U =Ut . The remaining two longitudinal modes
have vanishing characteristic velocities. The leading
terms in the expansion of the dispersion relations for these
two modes are given by

V. THE ECKART LIMIT

The second-order Israel-Stewart fluid equations become
the first-order Eckart equations" ' in the limit that the
coefficients a; and P; are set equal to zero. The disper-
sion relations for this limiting theory have been studied
previously in the context of determining the stability of
the equilibrium states of an Eckart fluid. In this final
section we describe a few interesting, previously unno-
ticed, features of the linear plane-wave solutions of an
Eckart fluid. We focus principally on the question of
whether or not linear perturbations in the Eckart theory
violate causality. There have been frequent assertions in
the literature that the Eckart theory does violate causality,
and hence cannot be an acceptable relativistic theory, but
to the best of our knowledge no proof of the supposed
noncausal behavior has previously appeared.

We first reexamine the transverse perturbations of an
Eckart fluid. The differential equations for the perturba-
tions in the transverse variables (5u', 5q', and 5r"', where
i =y or z) can be decoupled into a single second-order
equation for the transverse components of the perturbed
velocity:

a. TB, 5u' —(p+p)3, 5u'+gB„5u'=0 . (47)

This is an elliptic equation for the 5u'. Clearly the solu-
tions to this equation violate any reasonable definition of
causality. To illustrate this noncausal behavior, we have
integrated this equation to determine the "evolution" of a
perturbation which at time t=0 is a simple 6 function:
5u'(x, O) =5(x). The evolution of these "initial data" can
be determined by the usual Fourier transform techniques.
The solution of Eq. (47) with this initial condition is given

by

5u'(x, t)= t +x(+)t
2wvt vT

—1/2
p+p

2v'(vTrt) wT

1/2 T

(p+p)t
P (48)

where K&(z) is a modified Bessel function. This equation
reduces to the standard classical expression for the dif-
fusion of shear stresses:

1/2

5u'(x, t) =
4mqt

x (p+p)
4gt

(49)

in the limit that t »(a T/g)x and t »x T/(p+p).
Thus the classical expression is valid inside the future
cone determined by the velocity (gc /~T)'~ . For a nor-
mal laboratory fluid this velocity is very large; for water
at T =300 K, for example, the velocity is about 10 times
the speed of light [simple kinetic theory indicates that this
velocity should generally be of order (mc /kT)'~ times
the speed of light]. The characteristic time

xT/[(pc +p)c ] is very short for normal fluids (about
10 sec for water at 300 K). Therefore the classical ex-
pression for the diffusion of shear stresses is valid in a re-
gion which includes and extends outside the future light
cone of the plane (x, t) =(0,0) where the initial distur-
bance in 5u' occurs. Consequently, Eq. (48), the Green's
function for the evolution of transverse perturbations in
the fully relativistic Eckart theory, violates causality just
as badly as the analogous expression for the perturbations
of a Navier-Stokes-Fourier fluid. The Eckart theory thus
cannot be considered to be an acceptable relativistic
theory, even if one were willing to overlook its other seri-
ous problems (e.g. , lack of stable equilibria).

The longitudinal modes of an Eckart fluid also have
some interesting properties. In the long-wavelength limit
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the dispersion relations for these modes are the obvious
limits of the expressions for the dispersion relations for
the modes L2, L4 +—

, and L 5 given in Eqs. (38), (40), and
(41). In the short-wavelength limit, however, the disper-
sion relations for the modes of an Eckart fluid behave
rather differently than their Israel-Stewart counterparts.
In particular, three of the modes have the dispersion rela-
tion

(51)

r=l k'"+O(k'"), (50)

where p is any one of the three cube roots of

P'=( —', il+g) T Bp

Assuming that the fiuid has positive specific heats, the
quantity p, defined in Eq. (51), is a postitive real number.
Its cube roots, which give the frequencies of these modes,
consist of a positive real number (which corresponds to a
growing nonpropagating mode), and a pair of complex

conjugate values for p (which represent two decaying
propagating modes). The interesting feature of these
dispersion relations is their dependence on fractional
powers of the wave number, a behavior which is substan-
tially different than in the nonrelativistic Navier-Stokes-
Fourier theory. The relativistic modifications of the fluid
equations (to render them covariant) have changed the
small-length-scale behavior of the theory somewhat. The
phase velocity and group velocity of these propagating
waves still diverge (as k' ) in the Eckart theory, but not
as rapidly as in the nonrelativistic Navier-Stokes-Fourier
theory where they are proportional to k.

Finally, it is interesting to examine one more special
case: the first-order Eckart theory in the limit when the
viscosity coefficients are set to zero (a first-order relativis-
tic version of the Fourier theory of heat flow). The result-
ing dispersion relations in this theory have a quite dif-
ferent behavior than the Newtonian theory in the large-k
limit:

r=—2 ap
2 Bp

ae ap ++ 8, Bp--
ae ap1+
Bs Bp

2
ae ap
Bs Bp

1/2

+O(k") . (52)

The two modes corresponding to the minus sign in Eq.
(52) are nonpropagating (one growing and one decaying),
the other two modes (with the + sign) are propagating
nondecaying modes. These modes are the large-wave-
number limit of sound waves; the coefficient of the k
term in Eq. (52) is the square of the phase and group ve-
locity of these waves. Note that it is not simply (Bp/Bp), ;
the nonzero thermal conductivity changes the dynamics
of these waves in this limit in a way which does not de-
pend on the value of the thermal conductivity [except that
it must be nonzero for Eq. (52) to hold]. It is also in-
teresting to note that the only propagating modes in this
case have finite phase and group velocities; there is no
mode in this limited theory (Eckart with viscosities set to
zero) which satisfies a parabolic-type dispersion relation
in the large-k limit. The large-k behavior of this relativ-
istic Fourier theory thus seems distinctly improved rela-
tive to the nonrelativistic Fourier theory of heat flow, in
which thermal perturbations obey a parabolic dispersion
relation. Unfortunately, this theory possesses no stable
equilibrium states, unlike its nonrelativistic counterpart.
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APPENDIX

In this appendix we prove the following proposition
which establishes the equality between the values of the

lim(dcv/dk) = lim(caulk) =v;
and v satisfies

det( v A+ B)=0,

(A2)

(A3)

the characteristic equation for the associated system of dif
ferential equations

Proof. It follows that v satisfies Eq. (A3) by dividing
Eq. (Al) by k" and taking the limit as k ~ ao.

The proof of the equality of the phase and group veloci-
ties is more straightforward when there are no asymptoti-
cally degenerate roots of the dispersion relation, Eq. (Al).
We proceed to give the proof in some detail in this case
and then outline the proof in the more general degenerate
case. First define the matrices

E b =COA b+kB b+C b ~ (A4)

+1 2 n g 2 . . . F n
b ~ ~aa . a b bn1 2 n 2 n

(A5)

where e' ' " and e,b, . . . „are the totally antisymmetric
tensors and summation over repeated indices is implied.

phase and group velocities and the characteristic velocity
for general linear plane waves in the large-wave-number
limit (k~ oo ).

Proposition Consi. der a dispersion relation of the form

det[co(k) A+ k B+C]=0,
~here A, 8, and C are constant n)&n matrices with
det(A)&0. Assume that v=—lim(co/k) is finite as kazoo.
Then the short wavelength ( k-~ oo ) limits of the phase and
group velocities are equal for this system:
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0= det(E) =k" 'E'bM, . (A6)

The dispersion relation, Eq. (A 1), for these waves is
equivalent to det(E)=0, which may be written in the
form

The final step is to take the limit of this expression as
k~ ao. We note that k 'E'b and consequently M'b are
well behaved in this limit since lim(co/k) was assumed to
be well behaved. It follows that

Equation (A6) holds for all values of k, therefore the
derivative of this expression also vanishes for all k. This
derivative may be written in the form

0= lim —— lim 2'bM ~ .
CO . b

dk k
(A9)

O=d[det(E)]/dk =nk" 'M, dE'b/dk . (A7)

a b l a b

dk k
A'bM,

k
C'bM (A8)

We combine Eqs. (A6) and (A7) to obtain the desired rela-
tion between the phase and group velocities:

0=(dE', /dk E', /—k )M'.

The desired equality between the group and phase veloci-
ties follows unless lim 3 bM, =0. This coefficient will
unfortunately always vanish when the dispersion relation
admits roots that are asymptotically degenerate.

To extend this proof to the asymptotically degenerate
case we will differentiate the dispersion relation, Eq. (A 1),
m times [where m is the degeneracy of the root of Eq.
(Al) in question] to remove the degeneracy. To accom-
plish this it is helpful to define the quantities

Q;J= lim (k'+J "e
kazoo

~ . a &
bl ' * b)'b)'+1 b)'+jbi +j +] ' b~

i i+1 i+j i +j+1 n

A ' A ' B '+' . . . B '+' E '+'+' . E "
)

1 I i+1 i+j i+j+1 n
(A10)

If the system is degenerate then some of the quantities Q;o will vanish. In particular assume that Q;o ——0 for
1&i &m —1 but that Q 0&0 for some m. [Since Q„o=n!det(A) and since det(A) is assumed to be nonzero, we know
that there will always be some m for which Q o&0.] These Q;~ satisfy the recursion relation

Q;,, =&Q +i,, +Q,, +i

from which it follows by induction that Q; ~
=0 for 1 &i +j & m —1.

We next compute the mth derivative of det(E). This quantity vanishes for all k, so in the limit k~ oo we have

(A 1 1)

0= lim [k "d [det(E)]/dk ] = lim k "e, . . . , , . . . , e ' +'1 bI bmbm+ ~

kazoo

b„

(dE/dk) 'b (dE/dk) b E +'b, . E "b (A12)

The terms involving higher derivatives of co vanish in this limit because they always multiply some vanishing Q;J. Fi-
nally, Eq. (A12) can be brought into the following form by adding to it appropriate linear combinations of the vanishing

0= lim
kazoo

al

a~ amam+1 . an dk k
dE
dk

E
g E +'b . E "b . (A13)

dc'O=Q 0 lim
kazoo

(A14)

When the explicit forms for the dE'b /dk and E'b /k are
used in this expression we find

m

Since Q 0&0 by assumption, the desired equality be-
tween the group and phase velocities follows. Note that
the assumption, det(A)&0, was made only to assure the
inequality Q o&0 for some m. This assumption can
clearly be considerably weakened.
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