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Cosmic strings coupled with gravitational and electromagnetic waves
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Two families of (time-dependent) cylindrically symmetric solutions of the Einstein-Maxwell elec-
trovacuum equations are obtained. They admit a regular axis, they are free from curvature singular-
ities, and they are asymptotically flat away from the axis. For general values of the parameters the
solutions exhibit an angle deficit in going around the axis and they are interpreted as describing
stable, open, cosmic strings, coupled with gravity and electromagnetism in the manner of general
relativity. For particular values of the parameters the angle deficit is eliminated and the solution de-
scribes the propagation of nonradiating gravitational and electromagnetic waves. The two families
are algebraically special, of Petrov type D.

I. INTRODUCTION

The cosmic strings, produced in the symmetry breaking
of grand unified theories, have been proposed as providing
mechanisms for galaxy formation and for gravitational
lensing. ' The open strings are usually modeled as
cylindrically symmetric perfect-fluid solutions of the Ein-
stein equations (with equation of state "energy density
plus pressure in the axial direction equal to zero")
matched, at some very small radius from the axis, to an
asymptotically flat exterior solution. However, the pres-
ence of the string can be detected, and its mass per unit
length measured, even when we stay entirely in the exteri-
or region, in much the same way as a current is measured
from the induced magnetic flux by Amperes law: The
string results in the appearance of a topological defect, or
an angle deficit, in going around the axis. Equivalently,
we may say for such situations that a wedge has been cut
out of the spacetime or that, although the spacetime is
smooth and the curvature is finite near the axis, a conical
singularity is present.

Leaving aside the matching of an exterior to an interior
solution, to construct a cosmic string would require one to
obtain a cylindrically symmetric solution of the Einstein
equations which (i) admits a regular axis, (ii) is asymptoti-
cally flat away from the axis, and (iii) is free everywhere
from curvature singularities. It is usually difficult for a
solution to combine all three properties and the merit of
the two families of solutions obtained in the present paper
is that they succeed in all three. For any such solution it
is then straightforward to introduce an arbitrary angle de-
ficit: we multiply the (dt) (dco) part of the-metric by a
positive constant; and this is allowed by the field equa-
tions.

Recently, we have obtained a solution for a rotating
cosmic string ' (Ref. 9 will be referred to hereafter as pa-
per I). The solution solves the vacuum Einstein equations,
it satisfies the three requirements mentioned in the previ-
ous paragraph, and it is nonradiating, which implies the
stability of the string. In the present paper we generalize
this solution, by coupling the rotating string with both
gravity and electromagnetism. We obtain two families of

solutions. The first family, studied in Sec. III, is a one-
parameter generalization of the rotating string of paper I.
In addition to the parameters p and q which control the
degrees of freedom of the gravitational field, it also in-
volves the parameters o, and k which determine the mass
per unit length of the string and the relative strength of
the electromagnetic to the gravitational field, respectively;
for k =1 there is no electromagnetic field and the solu-
tion reduces to that of paper I.

The second family, studied in Sec. IV, is a nonstraight-
forward k~O limit of the first family. There are two pa-
rameters controlling the degrees of freedom of the gravi-
tational and electromagnetic field and one for the mass
density of the string. A physical characterization of the
solution is that it cannot support a gravitational field
when there is no electromagnetic field present. Both fam-
ilies are algebraically special, of Petrov type D, with coin-
ciding the repeated principal null directions of the Weyl
and the Maxwell tensors.

For special values of the parameter a the angle deficit
(and the string) disappears and the two families describe
the propagation of cylindrically symmetric gravitational
and electromagnetic waves which are regular everywhere.

Twenty years ago Stachel' raised the question whether
there exist cylindrically symmetric gravitational waves of
Petrov type D. Paper I answered the question affirma-
tively for gravitational waves and the present paper
answers it, again affirmatively, for gravitational and elec-
tromagnetic waves.

II. THE EINSTEIN-MAXWELL EQUATIONS

We consider the Einstein-Maxwell equations (without
currents) in spacetimes with two spacelike commuting
Killing fields. In this section we shall keep the presenta-
tion a little more general than needed, giving the equa-
tions for any of the gauge choices

A=g +1, 6=p +1;
these gauges were found useful in Ref. 11 (to be referred
to hereafter as paper II) for the description of inhomo-
geneous cosmological solutions. Eventually, we shall
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adopt the choice of gauge 6=g + 1, 5=p —1, which in
paper I was demonstrated to be suitable for the descrip-
tion of cylindrically symmetric spacetimes and of rotating
cosmic strings. Of course, one has to perform the addi-
tional coordinate transformation (3.19) to write the space-
time metric in a manifestly cylindrically symmetric form.

We adopt the notation of Chandrasekhar and Xantho-
poulos' (to be referred to hereafter as paper III). Equa-
tions (18)—(30) of paper III are the Einstein-Maxwell
equations, in the presence of two spacelike commuting
Killing fields, before the specification of any gauge. Then
imposing, compatibly with Eq. (27) of paper III, the gauge
condition

q2 „— [C) &+2 Im(HH*& )], (2.6a)

qz „—— [4 „+2Im(HH*„)], (2.6b)

while v+p3 is determined by

and the complex potential H measures the electromagnet-
ic field. For any solution of Eqs. (2.3) the metric coeffi-
cient q2 is obtained from

e '=&65, b. =g +1, 5=p +1, (2.2)
1

(v+p3) p+ (v+p3) p= z (X P p+q2 ~qp p)

the Einstein-Maxwell equations eventually reduce to the
two complex Ernst equations

(ReZ —
~

H
~

)[(AZ q) q (5Z „—) „]
= A(Z „) —5(Z „)—2H*(b Z „H „5Z„H „—),

(2.3a)
(ReZ —

~

H )[(bH „)„—(5H „)„)
= AH „Z „5H„Z„——2H*[A(H „) —5(H „) ] .

(2.3b)

2rj(v+p3) „+2p(v+p3) „
3 2 2

(
37) p

)
6

+ (H „H*„+H*~„),

(2.7a)

Note that

Z =0'+HH*+i@, Y = (55)'~'/0,

the line element is

(2.4)
, [a(X „'+q, „')+5(S„'+q2,,')]

I2

(b, /H „/'+5/H „)'. (2.7b)

+@3+~ (dry) (dpds =e
6

(d(t ) —(P(dz —q2d(t ) (2.5)

Quite often we work with (p and @, which are simpler
than p and q2. Then v+ p3 is most easily obtained,
equivalently, by using the equations

M q+ M~ —— [(Il—q4' „+(@q+I(q) )(4& „+I(q))]+ (H qH q+H—*~„), (2.8a)

3 2 2

2qM q+2pM ~: 4 + (hH qHq+5H ~H~)

+ q [b[ P ~ +(C ~+I(~)) ]+5[%p +(@p+I(~)) ]] (2.8b)

where III. THE FIRST FAMILY

M=v+p3+ In
b,5

I( )
——2Im(HH* )

= —i(HH* H*H ), a=rj, p . —

(2.9)

(2.10)

The first family of electromagnetic strings is obtained
by looking for solutions of the complex Ernst equations
(2.3) for which the complex potentials H and Z are linear-
ly dependent. Precisely, we look for solutions of Eqs. (2.3)
satisfying

[Note that, in accordance with paper I, we have changed
N into —N in the definition (2.4) of Z. Changes in signs
are also introduced in Eqs. (2.6) due to passing from the
gauge 6=1—rI, 5=1—p, to A=g2+1, 5=p~+1.]

H =Q(Z+1), (3.1)

where Q is generally a complex constant. Note that the
ansatz (3.1) is used, in the framework of stationary space-
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times, for the construction of the Kerr-Newman from the
Kerr family of black-hole solutions. Similarly, the same
ansatz has been used in paper III for the construction of a
spacetime describing the collision of gravitational and
electromagnetic waves. The aim now is to use the same
procedure to "electrify" the rotating cosmic string ob-
tained in paper I.

Having imposed the ansatz (3.1) we readily conclude, as
in paper III, that whenever E is the Ernst potential corre-
sponding to a vacuum solution

we readily find that

(1 —k)'((P'+4 ')+2(1 —k')0 +(1+k)'= 4rr
X

(v+@3)()Qe k'vs' ' ll
2kqp

(e)

where

(3.10)

(3.1 1)

(3.2)

then

2E*(A—E „6E„—) (3.3)

1+E
1 —E

and satisfying the vacuum Ernst equation

(1 EE*)[(bEq) q (5E q) q]

2~2 +q 2p2 +k 2 (3.12)

To complete the metric we need to evaluate q2(, ) as well,
from Eqs. (2.6) where, of course, as )P and 4 we should
use the corresponding electromagnetic scalars 4(, ) and

Proceeding as in paper III, Sec. 5(a) we find that

(1+k) (1—k) (,)

q2( )
= q2( )+ q2

4k 4k
(3.13)

k (1 EE*) — ik(E* E)—
/

I kE
/

—
/

I kE
/

'—
H=, Z(, )

—— , k =(1—4QQ*)'i
1 —kE' '

1 —kE'
+&3 (e) [( 1 k)2(q)2 @2)

4k

+2(1 —k')(P+ (1+k)']e

(3.4)

where

q,"„=,[(4'—4')4 „+24 ee „]

[(I+pe) qS ]-,2q5 2 2 2

Y2

q2'„' —— [(N —(Ii )4 „+24&ql)II „]
4pq)L(, h( 1+p g )

Y2

(3.14a)

(3.14b)

represent a solution of the Einstein-Maxwell equations
(2.3) and (2.8).

From now on we shall adopt the choice of gauge (as in
paper I)

Integration gives

(,) 2q6(1+pg)
q2 Yp

(3.15)

b=g +1, 5=p —1; (3.5)

and we shall choose as a vacuum solution of Eq. (3.3) the
solution

where the constant of integration is suitably chosen so
that q2e) vanishes for p=1; as we shall see in Sec. IIIA,
p= 1 will describe the azimuthal axis. From Eqs. (3.7),
(3.13), and (3.15) we obtain that

pg+iqp
p 2q 2 +q 2p 2

(3.6)
q2(, )

—
2

(1+k —2kpq) .
q6

k pY
(3.16)

which leads to the (vacuum) rotating string of paper I.
For the vacuum solution (3.6) we have (paper I, Sec. IV)

that

Y 2qp
X' X

r

a II (dq) (d)(L )

6

In conclusion, the line element reads

2q5(1 —pg) (~+@,)(„) a X
q2(v) pY v'~ '

(3.7)
k Y (3.17)

where

X=(1—pg) +q p,

Yp2g2+q2p21p2++q2Pe
(3.8)

Y +4q )u =X(X+4pg) (3.9)

the constants p and q specify the degrees of freedom of
the gravitational field while the constant a is a measure of
the "strength (or mass) per unit length" of the string.

Next we determine the metric coefficients of the elec-
tromagnetic string. Using the identity

rrX and q2 ——q2(, ) q2(, ) .
k

(3.18)

It should be emphasized, however, that this similarity is
not a general characteristic of the ansatz (3.1); instead, the

where II and q2(, ) are given by Eqs. (3.12) and (3.16).
The remarkable similarity between the line element

(3.17), which solves the Einstein-Maxwell equations, with
that of Eq. (52) of paper I which solves the Einstein vacu-
um equations, should be noted: The former is obtained
from the latter by the changes
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similarity depends crucially on the particular E chosen
for the vacuum solution and it is not expected to prevail
in other electromagnetic solutions obtained from different
vacuum solutions.

A. Physical interpretation
where

'A t 2 2 2

2q(1+k 2k—pt) 2 d )
pA (1+t')' (3.26)

To interpret the metric (3.17) we express it in cylindri-
cal coordinates given by

co=(65)'~, t=gp, coE [0, oo ), t ER . (3.19)

Note that p =1,g ER corresponds to the axis co=0, t E R.
By using that

(dq) (dP) [(dt) —(d~)
6 g2+p2

(3.20)

the metric (3.17) can be written in its cylindrically sym-
metric form

II
ds = [(dt) —(dco) ]j 2(~2+F2)

k Y
(d(}}) — (dz —q2„)d P )

2

H
(3.21)

Since Y=p (71 +1)+q (p —1) and p& l, riER, Y is al-
ways positive and the metric (3.21) is nowhere singular.

The expressions giving (g,p) interms of (t, co) are quite
involved [paper I, Eqs. (28)] but they simplify consider-
ably near the axis, co~0+, and asymptotically, co~+ oo.
We find that:

Near the axis, co «
~

t ~, t = finite:

A =A(t) = 'P' "'—+q'
1+t' (3.27)

(3.28)

The metric (3.21) exhibits a conical singularity on the axis,
characterized by the angle deficit

r

(5P),„=2m. 1— (3.29)

which signals the presence of a cosmic string on the axis
with mass density

(3.30)

For the choice

(3.31)

Obviously, the curvature is smooth near the axis and the
two Killing fields behave like

2 2

=O(1), =O(co ), . =O(co ) .

co t2

g=t — +O(co ),4

2(1+t3)
2

p=l+ 2 +O(co ) .
2( 1+t')

(3.22)

the angle deficit —and the string —disappear, the axis is
locally flat, and the metric (3.21) represents the propaga-
tion of gravitational and electromagnetic cylindrical
waves.

(ii) Asymptotically

Asymptotically, co &&
~

t ~:

+O(co ),t (t' 1) 4—
2'

p=co+ +O(co ) .
(1—t'} —2

2')

(3.23)

H~q co, Y~q M, YJ +p ~co

which implies that

1+k'
q2( ) +O(co )

k pq

Hence

(3.32)

(3.33)

Using the expansions (3.22) and (3.23) we find the fol-
lowing behavior of the metric (3.21).

(i) Near the axis

cx qds
k

2

(dt) (dco ) (d P)— —
cx q
2

II=(pt —k) +q +O(co ),
Y=p'(1+ t')+ O(co'),

vJ +p =1+t +O(co ),

which implies that

(3.24)

1+k—k dz — d(t
k pq

(3.34)

The metric (3.21), therefore, is asymptotically flat in all
directions away from the axis. The original choice of Kil-
ling fields (c}/c)P) and (c}/c)z), which are orthogonal on
the axis, are no longer orthogonal in the asymptotic re-
gion. Instead (c}/c}P)and (c)/c}z ) given by

q(1+k —2pkt) 2 3q2(e)= 2 3 22 co +O cokp(1+t )
(3.25)

1+kZ~Z Z
k pq

(3.35)

Hence are orthogonal, and (()/c)z) becomes a spatial translation:
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a
ay

=O(co ), =O(co ) .
az ay

(3.36)

The "dragging" of the (a/az) Killing field is attributed to
the rotation of the spacetime.

Asymptotically the spacetime exhibits an angle deficit

(5$)„=2m 1— (3.37)

which, since
/ q /

&
/ p [, is always greater than the deficit

(5$),„determined near the axis. The increase in the angle
deficit is attributed to the positive contribution of the
gravitational and electromagnetic waves to the deficit.
The choice

j
a

~

=
~ q ~

' would eliminate the asymptotic
angle deficit but it would impose a negative deficit —an
angle surplus —near the axis.

It should be noticed that both angle deficits, near the
axis and asymptotically, are independent of the parameter
k which determines the strength of the electromagnetic
field (for k = 1 there is no electromagnetic field). The in-
dependence of (5$),„ from k is physically reasonable: it
expresses that the deficit near the axis is solely due to the
string. The independence of (5$)„ from k however, is
surprising. It suggests the conclusion that, although the
intervening gravitational waves do contribute to the angle
deficit, the intervening electromagnetic waves do not.
However, the electromagnetic waves do contribute to the
rotation of the spacetime by affecting the "dragging" of
the Killing field (a/az).

Is the string really rotating'? Or is all the rotation actu-
ally stored in the surrounding gravitational and elec-
tromagnetic field? To understand the details of the string
one should consider a cylindrically symmetric perfect
fluid solution with a regular axis—smooth curvature and
no angle deficit —and match it, at some distance cap=coo,
to the exterior solution (3.21). (By this procedure, for in-
stance, the relation 5$=8mpo, relating the angle deficit to
the mass per unit length for static cylindrically symmetric
strings has been established. ) It is very unlikely, however,
that a C matching would exist with hypersurface orthog-
onal Killing fields in the interior and nonorthogonal Kil-

B. The Weyl and Maxwell scalars

We change to the ($,8) coordinates given by

g = sinhP, p = cosho .

The metric (3.17) takes the alternative form

(3.38)

ds =U [(dg) —(d8) ]
p2

~

(1 —8')(dz)+i (1+8')(dP) ~, (3.39)
1 —8'8'*

where

2 & 2 2U = (p sinh g+q cosh 8+k —2pk sinhP), (3.40)

V= (b5)'~ = ( cosh/ sinh0)'~

and

1+8'
+(e)+ q2(e)

1

(3.41)

(3.42)

Proceeding as in Chandrasekhar and Xanthopoulos' (to
be referred hereafter as paper IV), Appendix A, we find
that a suitable null tetrad is given by Eq. (A4) of that
reference, and that for any metric of the form (3.39)
which satisfies the Einstein-Maxwell equations and is ob-
tained from any vacuum solution described by ++i N
=(1+E)l(1 E) via the ans—atz (3.4), the only nonvanish-
ing Weyl and Maxwell scalars are given by

ling fields in the exterior spacetime. This is the main
reason for attributing rotation to the string as well as to
the surrounding gravitational and electromagnetic fields.

If we could choose q =0, q2~, ~

——0 and the metric (3.21)
would have been hypersurface orthogonal. But since
q —p = 1, q =0 is not in the permitted range of the pa-
rameters. The conclusion is that the metric (3.21) does
not belong to a one-parameter family of solutions continu-
ously connected to a solution with hypersurface orthogo-
nal Killing fields, i.e., to one exhibiting no rotation.
Surprisingly enough, we cannot switch off the rotation of
the string.

E —k 2(E k)(E "~ E* 8)(E—*p+E*g—)
4U +2 —— „,S(E'g E*g)+D(E*g+E*g)+—

(1 EE*)(1 kE*)— — (1 EE*)(1 kE*—)— (3.43a)

z 1 g*
2

2(E k)(E*pg+E*gg 2E—*pg)—
4U +4——D +D @

—D g —DD+
1 —8' (1 EE*)(1 kE*)— —

1+
1 —EE*

D (E* k)— E —k
1 —kE

(E p Es)+(D 2D) — „(E'g —E*g)—
1 —kE*

(3.43b)
2[(1+k )(1+EE*) 2k(E+E*)]

~

E g
—Eg

~

4k(E —k)—(E*~ E*g)—
(1 EE*)

i

1 kE i—— (1 EE')(1 kE")2——



3718 BASILIS C. XANTHOPOULOS 35

p 1 —8'* 2(E" k—)(E ~+E gg+2E pg)4U~ +o =S2+S,~+S,g
—SS+

1 —8' (1 EE—')(1 k—E)

S(E —k), , — E*—k
l —kE

(E*~+E*g)+(S—2S) (E p+E g)

2IE —kI IEp EgI-—4U 422 ——D +D P
—D g

—DD+
(1—EE*)'

I

1 kE
I

—'
T

(E —k)(E*g E*g) —(E* k)(E—y E,g)—
1 —kE * 1 —kE

2 E—k I'IE@+E,gI'—4U2e~=S2+S ~+S,—SS+
(1 —EE*)'I 1 —kE I'

(E*—k)(E p+E g) (E k)(E*p—+E g)

kE ~ kE*
S+

1 —EE*

2[(1+k )(1+EE*) 2k(—E+E*)]
I

E ~+E g I
4k(E* —k)(E p+E g)

( 1 EE—"
)

I
1 kE—

I

(1 EE—*)(1 kE)~—
(3.43c)

(3.43d)

(3.43e)

(3.43f)

q (1—8'*) 2(E k) (E*gg—E*gg )— E —k—4U %2p SD+D——g+D g+, ' '„+ „,[S(E y Eg)+D—(E,y+E, g)](1 —8') ' ' (1 EE*)(1 —kE*) —(1 EE*)(1—kE*)—
2(1 —k2)(E g+E g)(E g Eg) —4E(E k)(E q+—E g)(E y Eg)—

(1 EE")
I

—1 kE
I

— (1 EE*) (1 —kE*)—

where

S= ( ln V ) g+ ( ln V ) g,

D=(lnV ) g
—( lnV ) g,

S=( lnU ) ~+( lnU ) g,

D=( lnU ) p
—(lnU ) g .

For the solution considered in this section we have

S= tanhg+ coth6},

D =tanhg —cothO,
2

U = (1—kE)( 1 kE*), —
k EE

(3.44)

k (1—k ) (EE*)
2a (1—kE) (1—kE*)

(3.47a)

Since 400——$0/0 )0, the parameter k should take values
in the interval [0,1].

It is easy to see that the consistency condition among
the Maxwell scalars

1 —5" k(1 —k )

2a2
+20=—

EE (E p+E g)(E p Eg)—
K ' ' ' ' . (3.47b)

(1 EE*)(1 kE—) (1 kE—*)—

E gg+E gg+2E ~g
—— E+ (E g+E g)——2 2

E
(3.45)

Egg —E gg ———
I
E g+E g I

=EE*(1 EE*), —
E 2„+ (Ep Eg ), — —

+20 +20 ~00 +22 (3.48)

is satisfied, by means of the identities (3.45). Similarly we
find that the Weyl and Maxwell scalars satisfy the two
identities

E p Eg =(1 EE*)E—(E*)— 0 +4=9%'2 and 34 00.%'2 ——4 20-0'0 (3.49)

(3.46a)

hence we find, after some major simplifications, that

k (E k)(E*)—
2a (1—kE)(1—kE*)

E (E —k)(E "p+E*g )~

, 4'0 —— , ' ', , (3.46b)
1 —8'* 2a (1 EE*)(1—kE)(1 —k—E*)

3k2 E(E k)(E+ E+ )2
0'4 —— (3.46c)

2a (1 EE*)(1—kE)(1 —kE*)—

which are the necessary and sufficient conditions' (Ref.
15 will be referred to hereafter as paper V) for the metric
(3.17) to be of Petrov type D and the twice repeated prin-
cipal null directions of the Weyl and the Maxwell tensors
to coincide.

Using the asymptotic relationships (3.23) between the
original (g,p) and the cylindrical (t, co) coordinates we
readily find that the Weyl and the Maxwell scalars
asymptotically behave like
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. . .+O(~- ),ik —4

2cxq N

3Ek', 40-
3 3 +O(co ),

1 —8', 2o. q co

3ik'
V4— 3 3

+O(co ),
g 2a q co

(3.50) 0~i 0; (3.55)

since cos(i8)=cosh8 and sin(i8)=isinh8, we obtain a
new real metric with signature (+ ———). Next we set

and m, a, and Q, are the mass, the angular momentum
per unit mass, and the charge. We perform the complex
transformation

and

+oo=+22-—

1 —8',"

1 —8', +2O——

k(1 —k)
+O(co '),

2(x q co

k(1 —k)
244 +

2a q"co

(3.51)

(1—k )m—Q,=, q=-
k

(k2 2 2)1/2

where k, p, and q are real parameters subject to

(3.56)

where
0&k &1 and q —p =1; (3.57)

ik'pq+ k'+ 1
+O(co ') .

1 —8',* ik pq —k —1
(3.52)

C. Relation to the Kerr-Newman metric

The conclusions that (i) the metric (3.21) is of Petrov
type D with the repeated principal null directions of the
Weyl and the Maxwell tensors coinciding and (ii) it is ob-
tained form the metric for the vacuum string by exactly
the same ansatz which leads from the Kerr to the Kerr-
Newrnan metric raise the question how the Kerr-Newman
and the metric (3.21) are actually related. We shall now
establish that the metric (3.21) is locally isometric to an
analytic continuation of the Kerr-Newman metric (but
not isometric to the real Kerr-Newman metric) with pure-

ly imaginary charge.
The Kerr-Newman metric with a ~m and signature

( —+++) is

6—a sin 0
ds

P

dt+ a(r +a —b)sin 8
5—a sin 0

sin 0+ (dp) + p [(dr) +b(d8) ], (3.53)
6—a sin 0

where

p =r +a cos 8, b, =r 2mr+a +Q„—(3.54)

A fall-off like co for the Weyl and co for the
Maxwell scalars suggests that the spacetime, although
time dependent, it does not radiate gravitational or elec-
tormagnetic energy. (It should be noted, however, that
this fall-off is along spacelike, and not along null direc-
tions. ) And this suggests the stability of the cosmic string
predicted by the present solution. Alternatively we could
argue that the stability of the string is implied from the
fact [see Eq. (3.30)] that its mass per unit length is con-
stant (i.e., time independent) and view the conclusion that
the spacetime is nonradiating as a consistency test of the
solution.

Near the axis ~=0 all the Weyl and Maxwell scalars
tend to finite, nonzero, time-dependent values.

since Q„&0, the first of the identifications (3.56) requires
that Q, is imaginary. Moreover set

r —m = — g, cosh0=p,pm
k

which implies that
2 2

r +a cosh 0= g, /+a sing 0= y
k k

(k a —m )(g +1),1

k

a (r +a —b ) sinh 8
k k2 2 z, &2=k k a —m qz~, ~.6+a sinh 0

And finally change, in the Kerr-Newman metric

t~kmz/a, /~mfa '(k a —m )

(3.58)

(3.59)

(3.60)

The metric (3.53) transforms to a constant multiple of the
metric (3.21),

2 2
2

(ds)I+ ~)——(ds),«„s,
m

and the claim is established.

(3.61)

IV. THE SECOND FAMILY

The second family of solutions, also describing an elec-
tromagnetic string, is characterized in the notation of Sec.
II by the ansatz

Z=l . (4.1)

Then, clearly, the first of the two complex Ernst equa-
tions (2.3) is identically satisfied while the second reduces
to

(1 HH*)[(bH q) q (5H p) p]

= —2H*(b.H q
—oH q ), (4.2)

which is precisely the vacuum Ernst equation (3.3). The
ansatz (4.1), therefore, corresponds to an alternative way
for constructing, from any vacuum solution, an elec-
tromagnetic solution with two commuting Killing fields.
The physical characterization of these solutions is that
there is no gravitational field when there is no electromag-
netic field. Such solutions have been recently investigated
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in paper V in the study of colliding gravitational and elec-
tromagnetic waves that develop timelike singularities. We
shall here show that within the same family (4.1) there are
solutions describing a rotating cosmic string coupled with
gravity and electromagnetism.

As in Sec. III we shall adopt the choice of gauge

Hence

e "'Vb, =a (p g +q p ), (4.1 1)

where a is a constant of integration.
To summarize, the metric corresponding to the solution

(4.4) is

A=q +1, 6=@ —l;
and we shall consider the solution

pp+Eqj l 2 2
q —p =l .

p ~+q p p. -qp
From the first of Eqs. (2.4) we find that

(4.3)

(4.4)

where

(dil ) (dP )

5

(dP) ——(dz —q2dg)Y H
(4. 12)

C =0, 4=1—HH = Y

pg+qp
(4.5) 2 2 2 2 q~H=p g+qp, q2 ——

pY
'

(4.13)
where Y is again given by Eq. (3.8). (Since there is no in-
terplay between vacuum and electromagnetic solutions in
this section, we shall no longer use the subscript e to dis-
tinguish the metric coefficients of the electromagnetic
solution. )

The determination of q2 is straightforward from Eqs.
(2.6), (4.4), and (4.5). We find that

k ~0, a ~0, k /a ~finite (4.14)

Y:p2g2+ q 2p2

Comparison of Eqs. (3.12), (3.16), (3.17), (4.12), and (4.13)
show that the metric of this section could be obtained
from a suitable

2pq g6 2pq p 6
Y q2~

Y

and therefore that

(4.6)
limit of the metric of Sec. III. Since the limiting pro-
cedure is not always well defined in relativity' it is safer
to work the new solution ab initi'o.

q6
q2 Y'p

(4.7)

where, as in Sec. III, q2 has been made to vanish on the
axis p = 1 by a suitable choice of the integration constant.

Next we turn to the determination of v+p3. For solu-
tions of the family characterized by the condition (4.1) the
right-hand sides of Eqs. (2.8) simplify considerably. Ex-
pressing 4 interms of H one finds, as in paper V, Sec. 2
but with some differences in signs because of the different
choice of 6 and 5 that

0,2H
ds = [(dt) —(den) ]

"I +P

(dP) ——(dz —q2dg)
CO2rr

Y H

(i) Near the axis
From Eqs. (3.22) we find that

(4.15)

A. Physical interpretation

Expressed in the cylindrical coordinates (3.19) the
metric (4.12) becomes

2(H „H'„+H*~„)M + M
(1 —HH" )'

2M„2M„= 4—

4(b.H ~H*~+oH „H*„)
(1 HH*)—

(4.8a)

(4.8b)

II=p t +q +O(co ),
q2- 3 co +O(co ) .q

p'(1+ t')'
Hence

2

ds =a A (dt) (des) —(dg)2—
2p 2

(4. 16)

where M is given by Eq. (2.9). For the solution (4.4) we
find that (the easiest way: set H =h ', h =pi) iqp, and- ,

note that the right-hand sides of Eqs. (4.8) remain invari-
ant under inversion and complex conjugation)

where

212+
~ =~(t)= p

1+t

2q(dz) +.
2 2' (dz)(dP),

pA(l+t )
(4.17)

(4.18)

~M ~+ —Mp ——0,

2gM „+2pM p
——4—3n'

Integration gives

p 4
5 Y

M = ln Y—
4 ink —

4 ln6+ const .

(4.9a)

(4.9b)

(4.10)

As in Sec. III A we find that the two Killing fields exhibit
the behaviors (3.28), the curvature is smooth, there is a
conical singularity (a cosmic string) on the axis, and the
angle deficit is given by the expression (3.29).

And finally, for the choice
~

a
~

= ~p i

' the string
disappears and the metric (4.15) describes cylindrically
symmetric gravitational and electromagnetic waves.
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(ii) Asymptotically
From Eqs. (3.23) we find that

1II=q co, q2 — +O(co ') .
pq

Hence

ds =a q (dt) (d—cp) — (dP) —dz-
cx q

(4.19)

2

(4.20)

dP
w

where

1
h =—=p sinhP —iq cosh8 .

H
(4.24)

The scalars (4.23) satisfy the conditions (3.49) which im-
ply that the metric (4.15) is of Petrov type D with the
twice repeated principal null directions of the Weyl and
the Maxwell scalars coinciding.

Asymptotically we find that

We conclude that the metric (4.15) is asymptotically flat in
all directions away from the axis T.he Killing fields
(8/BP) and (Blitz), where

Iz~z =z-
w

(4.21)

B. The Weyl and Maxwell scalars

become asymptotically orthogonal and they exhibit the
behaviors (3.36). The asymptotic angle deficit is given by
Eq. (3.37) and it is greater than the deficit determined
near the axis.

1
'P2 —

~ ~ ~ +O(co ),
2A' q co

34'p-
~ +O(co ),

2aq co

3%4- +O(co ),
2(x q co

1
4&pp ——Np2 —

4 +O(co ),
2o.' q co

1 ~+0(co ') .
2a'q 4~4

(4.25)

For any solution of the Einstein-Maxwell equations of
the form (3.39) obtained by the ansatz Z= 1 (@=0,
4'= 1 —HH') the Weyl and the Maxwell scalars in a suit-
able null tetrad have been evaluated in paper V, Appendix
A, Eqs. (A6) and (A7). Here

The spacetime is not radiating and the string is stable.
Note that the fall off of the Weyl curvature is faster in the
present solution that the solution of Sec. III. Near the
axis, on the other hand, all the Weyl and Maxwell scalars
tend to finite, nonzero, time-dependent values.

p )+7iqp psinhg+ iqcosh8

p 7) +q p p sinh g+q cosh 8

V= (cosh/ sinh8) ' (4.22) V. DISCUSSION

1 —8'

1 —8"

1 1

2a~h(h") 2a (hh")2

3 (p coshP+iq sinh8)
2ct h(h*) (hh' —1)

3 (p cosh/ iq sinh8)—
2a h(h') (hh* —1)

(p cosh/ —iq sinh8)
2a (hh') (hh' —1)

(4.23)

CX
U =a (p sinh g+q cosh 8)= EE*

We find after some long reductions and very remarkable
simplifications that

Why is that the solution for rotating cosmic strings,
vacuum and electromagnetic, would turn out to be of
Petrov type 0? And why should they be so closely related
to the Kerr and Kerr-Newman black-hole solutions, being
locally isometric to their analytic continuations? Is it
merely the fact that we were looking for the simplest solu-
tions of the Ernst equation and it was a matter of luck
that we found some; or, are there uniqueness theorems for
the string solutions, based mainly on the three properties
mentioned in Sec. I, exactly as for the black-hole solu-
tions?' ' And why, contrary to the situation with the
black-hole solutions, are the ones we are currently consid-
ering not connected, by one-parameter family, to solutions
with hypersurface orthogonal Killing fields? Why, in oth-
er words, cannot we switch-off the rotation of the strings?
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