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Fermion soliton stars and black holes
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Explicit solutions of fermion soliton stars and fermion black holes are given. The former has no
horizon and the latter does. The soliton stars are cold, stable, and coherent states of very large mass
M-(lpm) rn, with lp the Planck length, m the mass of the relevant Higgs-type scalar field, and
A=c =1.

I. INTRODUCTION

This paper extends the analysis of the previous three pa-
pers' to fermion soliton stars and fermion black holes.
These objects are supposed to carry zero (total) electric
charge, and the fermions are representatives of either
quarks, or any other spin- —,

' particles.
We discuss first the fermion soliton star. The necessary

and sufficient conditions for such a configuration are (i)
the conservation of the fermion number N and (ii) the ex-
istence of nontopological soliton solutions, ' in the ab-
sence of the gravitational field. It is the latter condition
that distinguishes a soliton star from a neutron star, or a
white dwarf.

In order to satisfy (ii), we assume the existence of a
Hermitian scalar field o., in addition to the fermion field

g and the gravitational field g„. The simplest example is
when the self-interaction of cr is of the degenerate vacuum
form (in units fi=c= 1):

2

U(o. )= —,p o 1—

with p=o. mass. We may assign o.=0 to the normal vac-
uum state, and a=oo to the false (or degenerate) vacuum
state. (Theories of this type have been extensively studied
in the literature, e.g. , in connection with the abnormal nu-
clear matter, with the bag model, ' and with spontane-
ous T violation. ''

) The interaction between cr and @ is

(1.2)

where f is the coupling and g is the adjoint of 1(, making

PP a Lorentz scalar. Let the fermion mass (in the normal
vacuum) be m. For simplicity we assume

Ek- , ( —, )
~—m'~N ~ /R .

The shell contains a surface energy

E, =477sR

(1.4)

where s is the surface tension, related to o.
p and p by

2S~
6 POp (1.5)

M =3E,= 1277.SR

the total fermion number is related to R by

(1.7)

and therefore, for large N,

M~N ~ (1.9)

Because the exponent of X is & 1, when N is large the sol-
iton mass is always less than that of the free particle solu-
tion, and that ensures its stability.

Next, we include the gravitational field. For configura-
tions with R much greater than the Schwarzschild radius
2GM, the effects of gravity can be treated as a perturba-
tion. Gravity becomes important when R becomes of the
same order as 2GM. Hence, the critical mass M, for the
formation of a black hole may be estimated by simply
equating R with the Schwarzschild radius

The radius R can be calculated by minimizing the total
energy E =EI, +E,. Setting BE/BR =0, we have the
equipartition

Ek ——2E, .

Hence, the soliton mass M (which is the minimum of E)
can be written as

m —foo ——0, (1.3) R -2GMc ~

so that the fermion has a zero effective mass in the false
vacuum.

For orientation purposes, we repeat here the qualitative
feature of a fermion soliton star already discussed in I ~

Consider first the example of a nontopological soliton
without gravity. The soliton contains an interior in which
o.=o.p, a shell of width -p ', over which cr changes from
~p to 0, and an exterior that is essentially the vacuum.
The fermion field @ is confined to the interior; this pro-
duces a kinetic energy Ek ..

which leads to, because of (1.7),

M, —(48mG s) (1.10)

M, —(Ipp) p

Since Newton's constant G is the square of the Planck
length Ip —10 cm, whereas a typical Higgs-type field o.

may have oo-p about, or higher than, 30 CreV (but much
less than the Planck mass), we have
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which is —10' Mo, with a corresponding radius
R-/p p —10 light years, for p-30 GeV.

At present, very little is known concerning the nature of
the Higgs-type bosons, except that they should be massive,
spin 0, and have expectation values which modify the
masses of other fields. Thus, M, for the soliton star
could also be much less than the above estimate, depend-
ing on the theory.

In Sec. II we give the general formalism of the problem
for a spherically symmetric system consisting of g, cr, and

g„. The detailed solution of a fermion soliton star is
given in Sec. III, and that of a black hole in Sec. IV.

Since the theory has a particle-antiparticle system, we
need only give the explicit solution for N & 0.

where the factor 2 is due to the spin degeneracy,

fd k =4~f k dk, nk is the Fermi distribution

1 if k (kF,
nk —6(k kF )

0 ifk&kF, (2.7)

and, on account of (1.2) and (1.3),

ek =[k +(m fo.) ]—'~ (2.8)

v= fd knk
8w

(2.9)

The corresponding fermion number density v and the
nonzero components of the stress tensor T " are

II. GENERAL FORMULATION (2.10)

In this paper, we consider only the spherically sym-
metric solutions. The square of the length differential can
be written in terms of the spherical coordinates ( t,p, a, /3)

as

where

2 3 kT=
3

d knk8' (2.1 1)

ds = e "dt +—e 'dp +p (da +sin adf3 )

or in terms of the isotropic coordinates ( t, r, a, 13) as

(2.1) Consequently, they satisfy the identities

T&"——W —3T =(m fcr)S— (2.12)

ds = e "dt +—e '(dr +r da +r sin ad/3 ), (2.2)

p= re' . (2.3)

The functions u, v, and v depend only on r, or,
equivalently, only on p. As in II and III, it is useful to de-
fine

where a,g are the standard polar and azimuthal angles,
and p is (2m) ' times the circumference (i.e., the length of
the great circle) of a sphere, related to r by

aIld

W —T =eFv, (2.13)

S= fd knkek '(m fo), —2

8m

and eF is the Fermi energy, related to kF by

(2.14)

where S is the scalar density PP in the Thomas-Fermi ap-
proximation,

x =u =Iu eF ——[kF +(m fo)]'~— . (2.15)

y:—1+v—:1+rv'=e "=d lnp/d lnr,

where

u'=du /dr, v'=dv/dr .

Likewise, we introduce

u"=d u/dr, v"=d v/dr

x'=dx/dr, y'=dy/dr,

x =rx', y'=ry' .

(2.4)

(2.5)

The total fermion number N and the total fermion energy
E(f) are given by

N =4m e'p dp v=4m e 'r dr v (2.16)

aIld

E(f)=4' f e" +'p dp 8 =4m f e" + "r dr 8'. (2.17)

The total energy of the system consists of, besides E(f),
also the gravitational energy E(g) and the o field energy
E (tr):

A. Thomas-Fermi approximation
and the total energy

For the fermion field g, we shall adopt the Thomas-
Fermi approximation. At each point in space there is a
Fermi momentum kF (observed in the appropriate local
frame) which, for the spherically symmetric solution, de-
pends only on p, or equivalently only on r. The fermion
energy density is given by the familiar expression

E =E(f)+E(g)+E(a),
where

E(g) = —(2G) ' fe" e' —2 1+p
dp

du+e ' 1+2p
dp

or, equivalently,

dp

(2.18)

(2.19)

d knkek,
8~

(2.6)
E(g) = —(2G) ' fe"+"(2u'u'+u' )r dr . (2.20)

For the lowest-energy state, o. is time independent; there-
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fore

E(cr)=4m fe"+'(U+ V)p dp

=4m fe" + '( U+ V)r dr, (2.21)
2v" +v' +—v'= —SmGe "(W+ V+ U),

r
(2.26')

the last one is identical to that for p Gp~. In the isotropic
coordinates ( t, r, cr, P), these equations become

where U(o ) is given by (1.1) and
2 '2

2u 'v'+ v' + (u—'+ v') = S~Ge "(T + V —U), (2.27')
r

—2U d0= ~e
dp

d0
2 e

dr
(2.22) and

While almost all the Thomas-Fermi formulas in this and
the next sections are well known, a derivation is given in
the Appendix.

u "+v "+u
' + (u—'+ v ') =S~Ge '( T —V —U),

r

or, in terms of x and y,

(2.28')

B. Variational principles and the basic equations

Regard the total energy E, given by (2.18), as a func-
tional of kF, cr, u, and v (or equivalently v). The basic
equations can be obtained by taking the extremity of E of
a fixed N; i.e.,

and

2y+y —1 = —SnGr e "( W+ V+ U),

2xy +y —1 = 8rr Gr e '( T + V —U),

x +y +x = 8rrGr e "(T —V —U),

(2.29)

(2.30)

(2.31)

5E —coF6N =0, (2.23)

where coF is the Lagrange multiplier. As we shall see, this
leads to the Einstein equations plus those of kF and 0..
Their solution gives the soliton mass

[kF +(m —fo ) ]' e"=eFe =cvF ——const (2.32)

where 8; T, V, and U are given by (2.6), (2.11), (2.22),
and (1.1).

The fermion distribution, characterized by the Fermi
momentum kF, is given by

M =E =E(f)+E(g)+E(o) . (2.24) and the 0. field equation is

L =NcoF E . (2.25)

Let L be the corresponding Lagrangian in the
Thomas-Fermi approximation: 2U d 0 2 du2+ —+

i
dp' p "p

dv d0
dp dp

+fS — =0,dU
d0

(2.33)
From (2.23), N can be expressed in terms of cvF and the
other variables kF, 0., u, v. Substituting that expression
into (2.25), we may regard L =L(kF, o, u, v, coF). Equa-
tion (2.23) is identical to taking the extremity of L at a
fixed coF,' i.e.,

or, equivalently,

2
e o + u +v+ —cr +fS — =0

r d0
(2.33')

6L —NL)F ——0,
with N now appearing as a Lagrange multiplier.

Let W& be the Ricci tensor and W=g" A'z the scalar
curvature. Einstein's equations relate

I

Gpv pv 2 gpv

to the matter tensor: in the spherical coordinates
(t,p, a, /3) we have

p G'=e '—l —2e 'p dv

dp

du , 2 du d 2
G, ' — —+ + G, + —G =0

dp p dp dp p
(2.34)

or, equivalently,

u'G, ' — —+u'+2v'+ G,"+2 —+v' G =0 .
r dr r

(2.34')

with o'=do/dr, cr"=d o/dr, and S given by (2.14).
These five equations, (2.26)—(2.28), (2.32), and (2.33) satis-
fy one identity, given by G".

&
——0:

= —S~Gp'( W+ V+ U),

2U2G P —2U
1 2

—2U

=S~Gp ( T + V —U),

(2.26)

(2.27)

Outside the soliton radius R, the Fermi momentum kF
is zero; therefore, from (2.33) we see that

cr=O(e "~) as phoo .

Correspondingly, in the spherical coordinates, as phoo
we have the Schwarzschild solution

and

pG =e ' p, + 1+p p (u —v)2U 2d u du

dp dp dp

=Sm.Gp (T —V —U); (2.28)

4aeQ ]

4ae'- 1—
p

1/2

—1/2 (2.35)
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Q r —a
r+a

V r+a 2 (2.36)

or, equivalently, in the isotropic coordinates, as r~ oo

0&y =e "&1 . (2.44)

By taking the combination G + —,(G~e —G, '), we have

Either expression establishes the positivity of M. In addi-
tion, from (2.40) and U=O at oo, it follows that (for soli-
ton stars)

where

a= —,GM.1 (2.37)
p e" " =8mGp e"+'( —,T+ —, W —U), (2.45)

dp dp

which leads to still another formula for M:

C. Soliton mass

The soliton mass M is defined by (2.24). As is well
known, " the same M can also be derived by using the
asymptotic behavior of the metric gpp e ' or g« ———e "
at p= oo.

M=8' f ( —, T+ —, W' —U)e" +"p dp

= 87r ( —, T + —, W' —U)e" + "r dr .
0

(2.46)

Another relation can be obtained by considering the
difference Gpp —G, ', this gives

M = lim pU/G
p~ oo

(u +U) =4nGpe "(.T+ W+2V)
dp

(2.47)

or (2.38)
and is always positive. Because u +V=0 at ao, we have
(for soliton stars)

M = —lim pu/G .
p~ oo

These formulas can be established by using (2.26};we find

u+U&0

at all finite p.

(2.48)

(2.39)

—1 u vE (g)—:(2G) 'e" —e'+ 2 1+p
du

dp dp

du—e " 1+2p
dp

and

d [E(f)+E(o)]=4vrp e" +'(W+ V+ U) .
dp

d ~ -- d
[pe "(1—e ')]=G [E(g)+E(f)+E(o)], -

dp dp

where, because of (2.17) and (2.19)—(2.21),

u =u(0)+O(p ),
U=O(p ),
cr=cr(0)+O(p ),
kF ——kF(0)+O(p ) .

(2.49)

These imply that in the isotropic coordinates, as r ~0 the
variables x and y, defined by (2.4), are of the form

D. Behavior near the origin

From (2.26), (2.27), (2.32), and (2.33), we see that, as

p —+0,

The integration of (2.39) gives the top equation in (2.38)
directly. The Schwarzschild form (2.35) gives then the
second equation in (2.38).

There are many alternative formulas for M: (2.26) and
(2.26') can also be written as

and

x = —,ar +O(r )

y =1+ ,'br +O(r ), —
(2.50)

[p(1 —e ")]= 8m.Ge ( W+ V+ U)
dp

(2.40)
where a and b are constants. By using (2.29)—(2.31), we
find

and

d Vy2 2 dU
4vrGr e 'i (W+V+U) . (—2.41)

dX 2U(0) —3T(0)—W(0)
U(0)+ W(0)

(2.51)

Upon integration and using the Schwarzschild solution at
ao, we obtain

M =4m f ( W'+ V+ U)p dp (2.42)

where U(0), T(0), and W(0) are the values of U, T, and W
at r=O. [Note that V(0) =0 because of (2.49).]

Equation (2.51) is valid for any U(cr). In our problem,
as we shall see, for U(0) given by (1.1) with cro satisfying
(1.3), o = cro and T = —, Win the interior; consequently,

and

M =4' f (W+ V+U)e "i r dr . (2.43)

dX (2.52}
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III. SOLITON STAR

A. Interior: p&R +O(p ')

(3.8), away from p=R; for crp —p —30 GeV and
~ p —R

~

of the same order as R, it is extremely small, of the order
of

For U given by (1.1), its derivative is exp( —A, ) —exp( —10 ) . (3.1 1)
dU 2=p (o' —o'p)(2o' —crp)cr/o'p
do

In the interior, we set

CT =Op,'

(3.1)

(3.2)

Thus, the approximation o.=o.
p in the interior is a reliable

one.
Introducing

p=A, pp

therefore, it follows from (1.3), (2.14), and (3.1) that

dU =(m —fo) =S =0 .
do

(3.3)

and

e
—u 3

8w

1/4
F

e
—u

(Xpop)'"

(3.12)

The field equation of cr, (2.33), is satisfied. For the same
reason, we can rewrite (3.7) as

and

(3.4)

and

2p =(e ""p —1)e '+1WV 4u 2

dp

(3.13)
kF4

3T = 8'=
4w

where, because of (2.32) and (3.3),

kFe "=cuF ——const .

Equations (2.26) and (2.27) become

dv 2
2p = —GcuF e "p —1 e '+1,

dp 77

(3.5)

(3.6)

(
~ —4u —2+ 1) 2U

dp

When p~O, these equations determine

u =u(0)+ —e "' ' +0( )

and
—4u(P) —2+ O (

—4)
6

(3.14)

did

dp

2
Gco 4e —4up2+ l e 2U —1

377

(3.7)

o.—crp-crpexp( —p ~ p —R
~

) (inside) .

From the estimate (1.7)—(1.11), for M of the same order
as M„given by (1.10), op-p of e "-1,we note that

Because of the boundary condition (2.35) at oo, the above
equations (3.2)—(3.7) are applicable only in the interior re-

gion.
In order to have the Schwarzschild solution outside the

star when p&R+0(p '), there is a transition region
p=R +O(p ') in which o changes from op to 0. Away
from the transition region, the o. field goes to zero ex-
ponentially in the outside; in the inside o. goes to o.p, but
also exponentially [cf. (3.35) below]:

cr-o.pexp( —p ~ p —R
~

) (outside)

(3.8)

3

8~
F —u(0)ee

—u(0) (3.15)

and then integrating (3.13) numerically from p=0 to R;
i.e., from p=O to

p=p. —=~'VR . (3.16)

From the estimates (3.9), we see that p, u, u, and v are all
—l.

B. ( x,y) trajectory

It is convenient to express the solution in terms of the
variables x and y, introduced in (2.4). For the interior
solution, we may substitute (3.4) and (3.5) into
(2.29)—(2.31) and eliminate 8/ between them. The result
is, for p &R,

The interior solution can be obtained by first assigning at
p=O an initial value

I /4

R —(Gp ) ', M —(Glu )

( G 2) —9/4
cpF G 1/4 3/2

Define

(3.9)

and

x =5xy +3y —x —3,
y = —3xy —2y +2

(3.17)

k —=4op(~G/3)' (3.10)

which for crp-30 GeV is very small, —10 ' . [The seem-
ingly complicated factor 4(m /3)' is chosen to make
(3.32) and (3.41) below have essentially the same form as
in III.] The relevant small parameter is the amplitude

—3xy —2y +2
dx 5xy +3y x 3

It is convenient to think of

z=—lnr

(3.18)

(3.19)
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as a fictitious time, x (r) and y (r) as the trajectory of a
"particle, " and x =dx/dr and y=dy/d~ as its velocity
components. Each solution describes a trajectory in the
(x,y) plane. As p~O (therefore r~O and r~ —ao), it
follows from (3.14) that

—4u(0) —2+ O(
—4)

and (3.20)
C)

—4u(0) —2+ O (
—4)

There are two critical points of (3.18), defined by
x =y=0:

(i) x =0, y= 1

0.1 0.2 0.3 0.4
V

See (b)

iW
0.5 0.6

and

1 2
(ii) x =, y=

V'7 '
7

(3.21)
C)

From (3.20), we see that at p=O, the trajectory begins at
(i), with an initial slope

C)

dy 1

dx o 2
(3.22)

lA

C)

1 2x= +g andy= +g.v'7 v'7 (3.23)

Treating g and r) as infinitesimals, we can write (3.17) as

in agreement with (2.52). When p increases from 0 to R,
the interior solution in the (x,y) plane moves along a
universal trajectory, called IF, with the subscript F denot-
ing the fermion case; IF is completely determined by the
first-order differential equation (3.18) with the initial con-
dition (3.22).

In Fig. 1 the dashed curve is the Schwarzschild hyper-
bola, and the solid curve is IF. We see that as p~~
(therefore r and r=lnr also ~oo), IF spirals indefinitely
towards the point (ii), x =1/V7 and y =2/V 7. This can
be understood by expanding the solution near (ii):

0.35 0.36 0.37 0.38 0.39

(b)

At that point, the corresponding p=p;„ is related to the
stellar radius R by (3.16); therefore, after p=R —,the
surface region takes over. As we shall see, just as in the
case of a scalar soliton star, in the surface region when

p increases from R —to R+, the solution leaves
abruptly, moves along the straight line

FIG. 1. The universal trajectory IF, determined by (3.18j
with the initial condition (3.22) at x=0 and y=1. The end
point of IF is x =1/V 7 and y =2/V 7. (The dashed curve is

the Schwarzschild hyperbola 2xy +y —1 =0.)

178
/8 =7 —6 —11

d7 .'1, .'j. '

where

(3.24)
x —x;„=y —y;„,

and ends at a point, called

on the Schwarzschild hyperbola

2xy +y —1=0,

(3.27)

(3.28)

(3.29)

The eigenvalues of Mi' are

—, ( —3+i v'47)/V'7 (3.25)

with xz and yz both & 0. Afterwards, we are in the exte-
rior region p & R, which is described by the Schwarzschild
solution (2.35)—(2.37), i.e.,

x =x;„and y =y;„. (3.26)

which shows that as ~=lnr~ oo, the trajectory oscillates
indefinitely, with an exponentially decreasing amplitude
for g and r).

The actual solution depends on the initial value e
By solving (3.13), and using x =yPdu/dP and y =e we
obtain x =x (p) and y =y (p). Each solution follows the
universal trajectory IF up to a point, called "in" (denoting
the inner face of the surface) on IF, with

and

2arx =
r —a2 2

(3.30)

Q r —ay=e r+a
The trajectory then moves along the hyperbola (3.29) from
A when p=R +, back to point (i) when p= oo. This is il-
lustrated in Fig. 2. Different solutions are characterized
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c 2.051 72

CO

C)

in

C)
C)

in

0.05
I

0.& O. i 5 0.2 0.25 0.3
I I I

0. 1 0.2 0.3 0.4 0.5 0.6

(b)

6.30320 14.9137

co
C)

m
C)

C) C)

0.2 0.3 0.4 0.6 0. 1 0.2 0.3
I, Nl, j

0.4 0.5 0.6

(d)

FIG. 2. Four examples of the (x,y) trajectory of the fermion soliton star solution. Each trajectory consists of three sections: (i) in-

terior, from x =O,y = 1 to "in" along I, (ii) surface, from "in" to A, (iii) exterior, from A back to x =O,y= 1 along the Schwarzschild
hyperbola 2xy+y —1=0. (a) refers to the critical solution c of (3.59) and (3.60). (b)—(d) are the first three cusp solutions, with
n'=1, 2, and 3.

(x,y)= —,
' Ix+2y —[(x —y)'+3]' 'I . (3.31)

only by different points (x;„,y,„) when the transition
occurs; neither IF nor the Schwarzschild hyperbola de-
pend on the particularities of the individual solution.

As in III, we define

x =rdu/dr and y =1+r dv/dr are —1, du/dr and
dv/dr are both 0(r, '), i.e., A, 0(p). Hence, neglecting
0 (A, ), we can regard u =u, and v =v, as constants
across the surface; in addition, since S—mkF
=AO(mp ), in the approximation A, =O+, (2.33') be-
comes then

It will be proved in the next section that the point "in,"
defined by (3.26)„ is determined by p=p;„= A, pR where
p;„satisfies

—2v, „dU
e 'o."—

do

This gives the solution, valid for r = r, +0(p '),

(3.34)

—,'p;„=& (x (p;„),y (p;„)) .

C. Surface: p=R +O(p ')

(3.32)
o = [1+exp[pe '(r r, )]] 'cro . —

To the same accuracy, we have within the surface

U= V=0(p oo )

(3.35)

Throughout this section, we assume the fermion mass
m =

i fcro
~

to be less than, or comparable to, the o. mass

p, and o.o-p,' all three parameters are ~&G ' . From
(3.9) and (3.10), we see that the ratio of the surface width
-p, ' to the stellar radius R is only (pR) '-A,
( —10 if cro p —30 Cx-eV). As in the previous section,
the extreme smallness of A, greatly simplifies the solution
within the surface. In this region it is more convenient to
use the isotropic coordinates, given by (2.2). When p=R
(and therefore p=p;„), denote

but

W=O(cvF m)=A, r 0(U) .

(3.36)

By using (3.35), we find the integrals of U and V across
the shell (i.e., the surface):

Udr = Vdr = —,', poo e (3.37)

Hence, in the approximation A, =0 +, we may write (valid
in the surface region)

s U=Us

r =r, =Re
(3.33)

and

U=V=+poo e 'Sir r,)—
(3.38)

Within the surface der/dr is 0 (po0), but because
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dx
dr

dy 2= —TvrGr, e 'po'0 5(r r—, ) .
dr

in (2.29) and (2.31); these lead to, for r, + & r & r, —,

(3.39)
e " ~e ", p p/K, 6 v, (3.47)

actual task of integration can be facilitated by observing
the invariance of (3.13) under the transformation

In the exterior region r &r„ the same approximation
A, =0 + leads to zero matter density, and therefore

where ~ is a constant. Of course, the boundary condition
(3.15) must vary accordingly, with

U= V= &=0. (3.40) u (0)~u (0)—Ina. . (3 48)

The solution has to lie on the Schwarzschild hyperbola
(3.29).

Integrating (3.39} across the surface from r =r, —to
r, +, we see that the discontinuities in x and y from "in"
to 3 are

Consequently, solutions with different initial values
e "' ' are related to each other.

Define u(p) and U(p) to be the solution of

2pdu/dp=(e "p —1)e "+1

and

v

xin xg 8 pin 3
'TT Grs po p

(3.41)

and

2pdu/dp=( —,e "p +1)e "—1,
(3.49)

1 — 2 $2~y =y;„—y& ———,p;„=—,~Gr, e po.p

where p;„=A, pR is given by (3.16), with X =16nGo0 /3
and R =r, e '. Since xz and yz are on the Schwarzschild
hyperbola, we have

with the boundary condition

u =v=0 at p=O. (3.50)

Any solution of (3.13) with the boundary condition
u(0)&0 can then be derived from u(p) and U(p) through

2xwyw +yw (3.42) exp[ —u(p)] =exp[ —u(p) —u(0)]

Expressing xz and yz in terms of x;„, y;„, and p;„, we
derive the conditions (3.31) and (3.32).

and

exp[ —V(P)] =exp[ —U(p)],

(3.51)

D. Exterior: p&R

In the exterior region p & p;„, the Schwarzschild solution
takes over: in the spherical coordinates, we have (2.35)
and

where

2u(0)

Because y =e ' and x =yp du /dp, we have

(3.52)

2a 4a
—1/2 ' 1/2

4ay= 1—
p

(3.43)

jn the isotropic coordinates we have (2.36) and (3.30). In
addition, p and r are related by

y =e ', x =ypdu/dp . (3.53)

Thus, from u(p) and v(p), we also derive x(p) and y(p).
These four functions are plotted in Fig. 3.

In order to have a solution of the fermion soliton star,
we must satisfy (3.32):

p=(r+a)'/r . (3.44)
—,p=h (x y), (3.54)

From

2ar, r, —a
xz —— and y& ——

r —a r, +a (3.45)

(p) = & (x (P),y (p) ); (3.55)

where b. (x,y) is given by (3.31). Substituting the solu-
tions x (p) and y (p) into (3.31) we define

we obtain

gg

e '=
r, +a and e '=

2
r, +a

(3.46)

hence, (3.54) becomes

(3.56)

whose solution p=p;„determines a p;„ through (3.52); i.e.,
Comparing e ' with the value of e" at p=p;„—and using
(3.12), we obtain coF. The mass M and the radius R can
be determined from P;„=A, )MR, r, =Re ', and x~ (or
y~ }. The fermion number N can be evaluated by integrat-
ing (2.16).

2Q(0)
pin =pine

From (3.26) and (3.41), it follows that

xin =x (pin)~ yin =y(p

(3.57)

(3.58)

E. Numerical results

Following the method outlined in Sec. III A, we first as-
sign at p=A. mp=O an initial value e "' ', in accordance
with (3.15). The two coupled first-order differential equa-
tions (3.13) are then integrated from p=0 to p&0. The

These and (3.45) and (3.46) then determine M, R, r„and
other physical characteristics of the soliton star.

In Fig. 4 the solid curve is b, (p) which is independent
of e "' ', and the dashed line is e "' 'p/8. For
e "' '=2.5, there are two solutions of (3.56). It is clear
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'ogio P

(b)
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X
O
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C)

C)
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Iog)0 P

(c)
iOgto P

FIG. 3. From the solutions of u(p), &(p), x(p), and y(p) of (3.49), (3.50), and (3.53), one can derive u(p), U(p), x(p), and y(p)
through (3.51) and (3.52), for any initial value u(0).

e "' '=e '=1.6204941 . (3.59)

At c, (3.56) has only one unique solution; its physical
characteristics are

that if we decrease e "' ', the dashed line will swing
counterclockwise, until it reaches a critical point, called c,
when

coF ——2.2628& G ' ' cr

%=3.9869~10 '/ ' 'G' ' '",',
M =1.0796&& 10 /wG pop

R =7.0221 && 10 /~Gpoo

p;„=0.37451, e "' '=1.3908 .

(3.60)

tion

I 0
o

co

A

CO

0 )0
I I

0.20.1 0.3 0.4 0.5 0,6

FIG. 4. The solid curve is 6 (p) defined by (3.55). The ini-
tial value e "' ' determines the slope of the dashed line,

~ e ' 'p, whose intersection with 6 (p) gives a solution of the
fermion soliton star, in accordance with (3.56) and (3.57).

FIG. 5. (x,y) trajectory of the limiting case L for the soliton
star when e ' '~ ao and p;„~oo. The point "in" is at
x = 1/V 7 and y =2/V 7; therefore the upper curve consists of
the entire universal trajectory IF.
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TABLE I. Physical characteristics of the first six cusps for the fermion soliton star solutions.

n'

2.051 72
6.303 20

14.9137
37.807 5

94.209 3
235.780

Pin

0.472 797
0.276 939
0.321 248
0.309 723
0.312 617
0.311 884

3/4g 1/4 1/2
COF 77 P 00

1.747 66
2.098 89
1.996 88
2.021 67
2.015 34
2.01693

7/4G9/4 3/2 2
Oo

1.028 33 )& 10
4.331 66&& 10
5.491 50' 10-'
5.178 96' 10—'
5.256 73 )& 10
5.236 98 K 10

~G 2pg 02M

2.335 40 && 10—'
1.23352&& 10
1.471 94 &&

10-'
1.409 22 && 10
1.42493 X 10—'
1.420 95 ~ 10-'

R /GM

3.795 90
4.209 59
4.092 16
4.120 93
4.11359
4.11544

The corresponding (x,y) trajectory is given in Fig. 2(a).

For e "' ' & e ', there is no solution; for
e "' '~ e ', there are two solutions. When

e
—0(oj (3.61)

one of the solutions has p;„~oo, as can be inferred from
Fig. 4; this solution will be referred to as L, the limiting
solution. (The product p;„=p;„e "' ' remains finite. ) The
(x,y) trajectory of L is shown in Fig. 5; in this case, the
point "in" is at x = I/v 7 and y =2/V7. The various
physical characteristics of L are

x~ —
( —2+ v'22), y„= (1+v'22),l 1

3 7

6+(x,y)—:—, Ix +2y +[(x —y) +3]'~ I . (4.1)

The interior solution of a star stops at p=p;„, determined
now by [instead of (3.32)]

matter density is nonzero, will be referred to as the inside
of the star, and r ~ r, as its outside. For the black-hole
solution, the stellar radius r, is & a = —,

' GM, the
Schwarzschild radius in the isotropic coordinates. We
call r &a inside the black hole, and r ~ a its outside.

To obtain the solution inside the star we follow the
same steps as in Sec. IIIA. First assign an initial value
e "'o', then integrate (3.13) from p=0 outwards. Using
x =ypdu/dp and y =e ', we determine x =x(p) and

y =y(p), as before. Define [instead of (3.31)]

p;„= (5 —v'22),
3V7

coF ——( ~, )' [7(5—v 22)] ' (1+v 22)n G' p' cr
Let

—,
' p;„=&+(x (p;„),y (p;„)) . (4.2)

X =( —,', )(-,' )'"(5—~ZZ)'"/~'"G'" '"~ ' (3.62)

122 —25v'22
126v'7

'7TG p C70
schematic

R 63 =4. 115069 .
GM 20 —v'22

rs 1 3v7+1+v 22
GM 2 3v'7 —1 —V 22

By systematically changing e "' ', we can survey all
the solutions. In Figs. 6(a) and 6(b), M is plotted versus

X, schematically in 6(a) and precisely in 6(b). As in II
and III, it shows the typical pattern of cusps, which are
labeled consecutively, n'=1, 2, 3, . . . . The (x,y) trajec-
tories of the first three cusps n'=1, 2, and 3 are given in
Figs. 2(b)—2(d). The physical characteristics of the first
six cusps are listed in Table I.

As representatives of the extensive analysis that has
been made, we show in Fig. 7 the curves M vs coF, N vs

coF, R vs co+, and R vs M, and in Fig. 8 the dependences
of e"' ', M, coF, and R on p;„.

IV. BLACK HOLES

A. General discussion

0

C)
C)

0
O

CU

I

CO

x

C)
0

actuai

(a)

2+
C

I

4x1Q Bx10
7/4g9/4 3/2 3

N0'0

(b)

0.01 2

Throughout this section, we adopt the approximation
regarding A. =4o0(m G /3) '~ as an infinitesimal. (A, is
—10 ' for oo-30 GeV. ) The region r &r„where the

FIG. 6. Fermion soliton star mass M vs the particle number
N: a schematic drawing in (a) and the actual plot in (b). (The
labels 1,2, . . . refer to the consecutive cusp number
n'=1, 2, . . . , with L standing for n'= oo. )
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FIG. 7. M vs coF in (a), N vs co+ in (b), R vs co+ in (c), and R vs M in (d).
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FIG. 8. e"' ' vs p;„ in (a), M vs p;„ in (b), ~F vs p;„ in (c), and R vs p;„ in (d), where p;„ is defined by {3.57).
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x;„=x(P;„) and y;„—:y(P;„) .

Equation (4.2) ensures that the point B, with
1—

xa =xin —
8 pin

and

1

y8 —=yin 8 pin ~

lies on the Schwarzschild hyperbola (3.29) with

xg (0, yg (0

(4.3)

(4.4)

(4.5)

ch j/g

from r=-0 ~ r= ~

e "~ ~ = 0.35

p=R =p;„/pg

From the Schwarzschild solution, we have

(4.6)

Except for the sign change between 6 (x,y) of (3.31)
and b, +(x,y) of (4.1), the procedure for deriving a black-
hole solution is essentially the same as that for the soliton
star. As in (3.16), the star radius in the spherical coordi-
nates is given by FIG. 9. Example of a (x,y) trajectory of a black-hole solu-

tion, with the arrow in the direction of increasing r (the radius
in the isotropic coordinates).

2ar,
xg =

r —aS

r —aSya=
r, +a

(r, +a)'R=

(4.7)
M —Ms gee +Mstgi- (4.9)

where

everywhere.
As already discussed in III, the sign of e" can also be

inferred from the mass formula

B. The sign of e"

In the exterior of the star r & r„ there is no matter den-
sity; therefore, the Schwarzschild solution holds:

2
r —ae"= e'=
r+a

'

e'=e

r+a

(4.8)

Hence, while e is positive for r ~a, it becomes negative
for r &a, i.e., inside the black hole. Einstein s equation
for free space, u" +v"+v' +r '(u'+v')=0, requires u'

to be continuous; therefore e" changes sign at r =a+.
Since e" is continuous at the surface of the star r =r„e"
is also &0 inside the star. In contrast, e is positive

rs

consequently, r„a, and M can also be determined. Be-
cause xz and yz are negative, we have r, &a; i.e., the ra-
dius of the star is smaller than the Schwarzschild radius
(in the isotropic coordinates).

The (x,y) trajectory of the black hole is then completely
determined. From r=0 to r =r, —,it follows IF up to
(x,„,y;„); this is the inside of the star. From r =r, —to
r, + it travels from (x;„,y;„) to (xz,y~) along a straight
line, and thereby sweeps over the surface region. Outside
the star, the Schwarzschild solution takes over; the (x,y)
trajectory follows the hyperbola 2xy +y —1 =0 from
B at r =r, + to x = —oo,y=O which is the inner face of
the horizon r =a = —,'GM, then switches to x = oo,y=O
the outer face of the horizon, and back to x =O,y=l
(when r = co ) along the x & O,y & 0 branch of the
Schwarzschild hyperbola. This is illustrated in Fig. 9.

Ms pygmy f 8 dr

+
M„„—:f 8' dr,
8' = e "r [4ne "(U + V+ W) —(2G ) 'e "v'(2u '+ v ')] .

(4.10)

(4.1 1)

Because M,~„,=Ma/r, &M, we must have M„„&0, in
agreement with e" & 0 inside the star. The sign of e" im-
plies that under an infinitesimal time translation dt, the
line element e "dt has opposite signs on the two sides of
the horizon. Hence, one may regard the direction of time
flow as also changing sign across the horizon (with
respect to an appropriate overall frame).

Because kF the Fermi momentum and eF the Fermi en-
ergy are, by definition, positive, we have

67F (0 (4.12)

on account of (2.32). From (3.15), we see that the sign of
e " is positive.

C. Numerical results

Define p by (3.52), and let u(p) and v(p) be the same
solution of (3.49) with the boundary condition (3.50). By
using y(P) =exp[ —v(p)] and x (p) =ypdu /dp, we define,
in terms of b+(x,y) given by (4.1),

&+(p):—&+(x (p),y (p) ) (4.13)

which is obviously independent of e"' '. For each solu-
tion p=p;„of

(4.14)
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from r=O ~

-u(O)
1 P

black hole

Warzschl') d
-u(0)

10 20 30 40
solution

a solution o ef th black hole can be derived, with

xin=x(pin)i yin=y pin

2ars
&a =&in —

8 pin= (0,
r —aS

r, —a
0+aS

vp;n=p;ne, R =r, e ',2u(pj

(4.15)

fined b (4.13); its intersec-FIG. 10. Solid curve is 5+(p) defined y
~' 'p/8 gives the solution p=p;„, intion with the dasheu ine e p

accordance with (4.14). FIG. 12. The (x,y) trajectory of the (sshell) S solution for a
fermion black hole. For r & r„ the space is flat; at r =r, =

2 a,
there is a shell of matter, and for r ~ r, one has the

the horizon located atSchwarzschild solution, wit
r =a =

2 GM, where M =8/9+G po.p .

L hose physical characteristics arethe limiting so ution, w ose

x;„=1/V7, y,„=2/v'7,

xs = — (2+ V 22), ys = — ( —1+v'22),1

3&7

r —aSQS e'=
r, +a

r, +a 2
r =

S

122+25v'22 3v 7+1—v'22
GM =0 131067GM

252&7 3v 7 —1+1/22

and, as before, t e c wf, h S h arzschild radius in the isotropic
coordinates is

a = —GM .1

2

The function b, +(p) is shown
' 'g. . s+

'
wn in Fi . 10. From its

iven e"' ', there is one an
only one so1ution of (4.14). When e " ~oo, we ave

(4.16)GM =2.551 60GM,20+ V22

= —' —)' [7(5+&22)] '/ (V22 —1)vr / G'/ p'/2cro,COF =—
(

' )&/4(5++22)3/2/ 7/4G9/4 3/2 3
21 6

122+25&22M= 7TG pCTp126''7

from r=Q ~ r=- ~

black hole

e -u(0)

L solution 0.4 0.8

7/4G9/4 3/2 3
N

1.2

FICz. 11. The (x,y) trajectory of the (l
' '

glimitin ) L solution for
a fermion black hole. eeS (4.16) for a description of the L solu-
tion.

N for the fermion black-hole solution, with
n'=1, 2, . . . denoting the successive cusps, and n = oo e
solution.
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TABLE II. Physical characteristics of the first five cusp solutions (n'=1, 2, . . . , 5) of black holes. Here, n'=0 and n'= oo refer
to the S solution and the L solution.

n'

0
1

2
3
4
5

e —s(0)

0
0.5734
1.4158
3.5589
8.8885

22.233

3/4G 1/4 1/2
COF 77 P Op

0
—0.262 91
—0.226 64
—0.235 57
—0.233 30
—0.233 88
—0.233 76

7/4G 9/4 3/2 3NCTp

0
1.07001
0.879 64
0.927 47
0.915 38
0.91844
0.917 82

m'Gpop r,

9

0.11355
0.135 57
0.129 93
0.131 35
0.13099
0.13107

mG pop M

9

0.681 90
0.726 62
0.715 46
0.718 28
0.717 57
0.717 71

The (x,y) trajectory of the L solution is shown in Fig. 11.
As in III, when the initial value e "' '~0, there is

another limiting solution, which may be called the S solu-
tion (or, shell solution): the point "in" of the S solution is
at x=0 and y=l; correspondingly, we have xz —— 3,
y&

————, , M =8/9~G'po. p, and r, =2/9~Gpo p but
N =coF ——O. Consequently, the matter energy is due en-
tirely to the U+ V term on the surface of the star. Inside
the black hole there is a shell of scalar field matter located
at r =r, =2/9vrGpop = —,

' a (with the horizon at
r =a = , GM), a—nd inside the shell, for r & r„we have a
flat space with e "=—3, e '= —,, e "=1, and
e "~coFe "/Am=0. The (x,y) trajectory of the S solu-
tion is shown in Fig. 12.

In Fig. 13 we give the mass M of the black hole versus
its particle number N. Again, it has an infinite number
of cusps, which will be labeled consecutively by
n'=1, 2, 3, . . . . The slope dM/dN =coF is negative, in

m~~ and @~os, (4.17)

but maintain intact the relation (1.3)

m fop 0———

agreement with (4.12); in contrast, for the soliton star
solution of Sec. III, the corresponding slope dM/dN is
positive. The physical characteristics of the first five cusp
solutions are given in Table II. The limiting solution L
refers to n'~ao (and also e "' '~co).

In Fig. 14 we plot coF vs N, coF vs r„M vs r„and M
vs r, /a. We see that the ratio of the star radius r, to the
Schwarzschild radius a = —,GM (in the isotropic coordi-
nates) is always & 1, as expected. Figure 15 illustrates the
relation between the circumference 2mp of a two-sphere
and the radius r in the isotropic coordinates for the
black-hole solution.

An interesting mathematical limit is to set
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FIG. 14. coF vs N in (a), coF vs r, in (b), M vs r, in (c), and M vs r, /a in (d) for the fermion black-hole solution.
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e "'"= O. r7S4
black hole

The extension to gauge fields will be given in a subse-
quent paper.

At present, there is no experimental evidence that soli-
ton stars exist. Nevertheless, it seems reasonable that
solutions of well-tested theories, such as Einstein's general
relativity, the Dirac equation, the Klein-Gordon equation,
etc. , should find their proper place in nature.
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APPENDIX

0.5734
hole

In this appendix we give the derivation of the Thomas-
Fermi approximation used in Secs. II A and II B.

1. Lagrangian

0.1

r/a

(b)

I lg
10

At each point in space, we set up a vierbein of four
(real) basis vectors e " and their inverse e„;they satisfy

gpv=&p &v 'Qap ~

a p

pv p v ap
FIG. 15. p vs r for the n

' = 1 fermion black-hole solution,
with (a) in a linear scale of r and (b) in a logarithmic scale. The
matter distribution is located in the shaded region with r (r„
and the horizon is at r/a=1. Outside the star r ~ r„we have
the Schwarzschild solution p/a =[(r/a)' +(a/r)' ']'.

and keep fixed Newton's constant G and the surface ten-
sion

0 1f p+v,
1 if p=v,

—1 0 0 0
0 1 0 0

matrix gzv
——

p p 1 0
0 0 0 1

s = 6 acro ——finite&0; (4.18)
The covariant derivative of a fermion field g is

hence, oo ——0 and, from (3.10), A, =O. From Table II, it
follows that all overall physical parameters of the solu-
tion, such as co+, X, r„M, and a = —,

' GM stay the same,
since they depend only on 6 and s. In this limit, outside
the star, r ~ r„ the Schwarzschild solution becomes exact,
because in that region o., 8' U, and V are all zero
(without approximation). This, then, provides a con-
venient alternative way to bypass the complication dis-
cussed in the second remark of Sec. IV F in paper III.

„+a

where I
& and the Dirac matrices y„satisfy

(A2)

(A3)

V. REMARKS

Recent progress in particle physics points out the im-
portance of nonlinearity and coherence in the realm of
10 ' —10 ' cm, as exemplified by the QCD vacuum in
connection with quark confinement and the role of Higgs
fields in electroweak symmetry breaking. Assuming that
these overall phenomena may be effectively represented by
scalar fields, it seems reasonable that such coherence can
be accumulated and extended to macroscopic and even to
astronomical distances. The explicit model solutions de-
rived here are meant to demonstrate the feasibility, at
least in principle.

and I & is the Christoffel symbol:

I = —,g
~g p ~gp„~g„.

In addition, we require the Hermitian of y„ to be
3

r~= X~~~
a=0

(A4)
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The part of the Lagrangian density that contains the fer-
mion field is

where for the explicit representation (A12), g is related to
the Hermitian conjugate g by

~(f)= aq — aq
2 (3x 1" (3x &

,' (ti(y—"I „+I „y")3t/ (m—f—o)pp. , (A5)

4=0 P3.
The corresponding Lagrangian is

L (f)—:f e" + "W(f)d r,

(A16)

(A17)

y"D„P+(m fo )$—=0 .

The current j" is given by

(A6)

where p is the adjoint of p. [See (A16) below. ] Hence,
the Dirac equation is

where d r =dxdydz. By partial integration, L(f) can
also be written as

L(f)= —fe" + "P y" +I & )(t)+(m fcr)—P d ra
ax~

(A18)
j"=—t0y"~( . (A7) in which the I & matrices reappear, in contrast with (A15).

From the Dirac equation, one sees that j" satisfies the
conservation law 2. Quantization

(
I g I

'"j")=0,
ax~

where, as before,

~
g

~

=absolute value of the determinant

of the matrix g& (A9)

In what follows we shall restrict our discussions to the
time-independent spherically symmetric metric gz, de-
fined by

From (A18), it follows that

aL (f)
a(aq/at)

="
which leads to the quantization condition:

[g(r, t), tti (r', t)I =e '5 (r —r') .

Introduce

3v/2

(A19)

(A20)

ds = e "dt +e —"(dx +dy +dz ); (A10) so that 7 and 7 satisfy the canonical anticommutation
relation

it is convenient to adopt Dirac's representation of the y
matrices. Let o.; and p; be two commuting sets of the
standard (space-independent) Pauli matrices satisfying

IX(r, t),X (r', t)I =5'(r —r') . (A21)

In terms of X and X the Lagrangian L (f) becomes

Io o, )=[p p, I=»,
[~irPj ] 0r [~i~oj ] 2ieijk~k

[pit pj ]=2ieijkpk

(Al 1)

—e "p~ (m f~)X—(A22)

(f) fd 3r tgt + te(u —v)/2+tp)tT. V(e (u —v)/2+
)

ax
at

where the roman indices vary from 1 to 3 (i.e., x to z).
Choose the y„and y" matrices to be

P3~ T =e P2i ~

(A12)

Correspondingly, the fermion Hamiltonian is

H(f) = fd r e'" ')/ Xt[ ip)o" V e+' (p—m3fcr)]—
Q U

P3 y; =e P2O;

It can be readily verified that

uI,= —,p]o-r
r

and

1 vr= ——(ocr)—,
2 r

(A13)

(u —U)/2y

The time component of j" is
—u pter

—u —3v .

therefore, the fermion number

X=fj'~ g ~

'"d'r = fX'Xd3r .

(A23)

(A24)

where u
' =du /dr, v' =du /dr, and boldface denotes

three-vectors. Consequently,
3. Thomas-Fermi approximation

r„q~+~~r„=o,
and (A5) becomes

~(f)=—1 Btti — Bt)/

ax~ ax~

(A14)

—(m fo. )/tlat, (A15)—

We assume that u, v, and o. are slowly varying func-
tions. Divide the entire three-space into small cubes, la-
beled n =1,2, . . . . The dimensions of these cubes are
much larger than the de Broglie wavelength of the typical
fermions in the system, yet sufficiently small that within
each cube u, v, and o. can be approximated as constants.
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Hence, we can write the operators H(f) and N as sums
over these cubes:

H(f) = QH„(f)

Substituting these expressions into the expectation values
of (A25), and returning the sum into integrals, we derive

(H(f)) = f d r fd p nze" "[p +e "(m fo—)]'~.2

8~
and

N= gN„,
(A25) and

(N)= fd'rfd pn~

(A29)

where

H„(f)=e"I"' "I"'f d rX"( —ip~oV+'p3m„)g,

where, as in (A28),

n~=0(p pF) —. (A30)

N„= d rgb,
n

m„=e "'"'[m fo(n —)], .

(A26)
Note that in (A28), p refers to the fermion momentum

in the laboratory frame; it is more convenient to use the
corresponding momentum k in the local frame. Define

with the integral d r extending only over the nth cube,
n

and u (n), v(n), and cr(n) the values of u, v, and o within
the cube. Inside that cube, we assume a degenerate Fermi
distribution of free particles with a top momentum pF(n).
The expectation values of H„(f) and N„are given by

and

A: =e 'p,
kF ——e 'PF,

nk =0(k kF) . —

(A31)

(A32)

and

( H (f)) d3 curn) —v(n)n (p2+m 2)l/22

8m

(A27)

We find

(H(f) )=, f e" + 'd r f [k +(m fo)]'~ n~d—'k.
8w

(N„)=, fd'pn, ,
8w

where

and

(N)= fe "d rfnkd k .
8m.

(A33)

0 if p &pF(n),
n~ =9(p pF(n) ) = .—

1 if p &pF(n) .
(A28)

Equations (2.16) and (2.17) are then derived; from these
expressions all other Thomas-Fermi formulas used in
Secs. II A and II B follow.
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