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Explicit solutions of scalar soliton stars and scalar black holes are given. The former has no hor-
izon and the latter does. The soliton stars are cold, stable, and coherent states of very large mass
M ~(lpm)~*m, with Ip the Planck length, m the mass of the relevant scalar field, and fi=c =1.

I. INTRODUCTION

In this paper we give the analysis of scalar stars and
scalar black holes. We first discuss the scalar soliton
stars. In order to have such a solution, the system should
consist of (minimally) a complex scalar field ¢ and the
gravitational field g,,. The necessary and sufficient con-
ditions are as follows.

(i) There must be invariance under a space-independent
phase transformation

p—e'% ;

consequently, we have the conservation of its generator N,
called the particle number.

(ii) In the absence of the gravitational field, the theory
has nontopological soliton solutions."”? In contrast, for
the mini-soliton stars,>* one requires the theory to satisfy
only (i) but not (ii), and that makes the characteristics of a
mini-soliton star quite different from those of a soliton
star.

If the scalar field is a fundamental (i.e., not
phenomenological) field, then in order to have a renormal-
izable theory and the existence of nontopological solitons
[condition (ii)], one assumes, besides ¢, an additional Her-
mitian scalar field X. The simplest example is when the
self-interaction of X is of the degenerate vacuum form (in
units fi=c=1):

(1.

2

X (1.2)

Xo

UX)=3m2X?|1—

with m =X mass. We may assign X=0 to the normal
vacuum state, and X =X, to the false (or degenerate) vacu-
um state. (Theories of this type have been extensively
studied in the literature, e.g., in connection with the bag
model,>® and with spontaneous T violation.”?)

For orientation purposes, we repeat here the qualitative
feature of a scalar soliton star already discussed in I
Consider first the example of a nontopological soliton
without gravity. The soliton contains an interior in which
X~Xo, a shell of width ~m ~!, over which X changes
from X, to 0, and an exterior that is essentially the vacu-
um. The N-carrying field ¢ is confined to the interior;

this produces a kinetic energy Ej:
E,~7mN/R (1.3)

(assuming for simplicity that the mass of ¢ is zero when
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X =X, the false-vacuum state, but nonzero when X =0 the
normal-vacuum state). The shell contains a surface ener-

gy
E,=4msR?,

where s is the surface tension, related to X and m by
So~+mXo? . (1.4)

The radius R can be calculated by minimizing the total

energy E=E;+E;. Setting 0E/dR =0, we have the

equipartition
E,=2E; . (1.5)

Hence, the soliton mass M (which is the minimum of E)
can be written as

M =3E,=127sR?, (1.6)
the total conserved quantum number is

N=8sR?, (1.7)
and therefore, for large N,

M «N?"3. (1.8)

Because the exponent of N is <1, when N is large the sol-
iton mass is always less than that of the free particle solu-
tion, and that ensures its stability.

Next, we include the gravitational field. For configura-
tions with R much greater than the Schwarzschild radius
2GM, the effects of gravity can be treated as a perturba-
tion. Gravity becomes important when R becomes of the
same order as 2GM. Hence, the critical mass M, for the
formation of a black hole may be estimated by simply
equating R with the Schwarzschild radius

R ~2GM, ,
which leads to, because of (1.6),

M, ~(487G?%s)~" . (1.9)

Since Newton’s constant G is the square of the Planck
length I,~1073% cm, whereas a typical Higgs-type field X
may have Xy~m about, or higher than, 30 GeV (in any

case, much less than the Planck mass), we have
M, ~(Ipm) *m (1.10)

which is ~10"°M, with a corresponding radius R ~ 10?
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light years, for m ~30 GeV. In addition, the remarkable
feature is for such a system, with a giant mass and a large
radius, to be described by discrete coherent quantum
states.

At present, very little is known concerning the nature of
the Higgs-type bosons, except that they should be massive,
spin 0, and have expectation values which modify the
masses of other fields. Thus, M, for the soliton star
could also be much less than the above estimate, depend-
ing on the theory.

It is quite likely that all these scalar fields are in fact
phenomenological fields, and their interactions should be
described by an effective Lagrangian. In that case, the ef-
fective Lagrangian does not have to satisfy the renormali-
zation condition; hence, a single complex field ¢ (without
the Hermitian field X) is sufficient to generate a nontopo-
logical soliton solution. The simplest self-interaction of ¢
with a degenerate vacuum is

U=m2'¢[1—(2¢"¢ /0D,

where ¢T is the Hermitian conjugate of ¢ and og,m are
constants. In the normal vacuum, |¢ | =0 and m is the
mass of the plane-wave solution. We note that invariance
under (1.1) requires U to be a function of ¢'¢. In order to
have a nontopological soliton solution (in the absence of
gravity), the self-interaction of ¢ must contain an attrac-
tive component; this is why the coefficient of (¢T¢)2 in
(1.11) is negative. The stability condition further con-
strains U to be positive when |¢ | — «, and that leads to,
minimally, a sixth-order function of ¢ for the interaction
U.

In Sec. II we give the general formalism of the problem
for a spherically symmetric system consisting of ¢, X, and
8uv- At any given N, the energy levels are discrete. These
are computed in Sec. III for the simple case (1.11) with
X=0. In Sec. IV we extend our analysis to black holes.
The solutions derived show explicitly the relationship be-
tween matter distributions and the horizon; it is hoped
that such prototype calculations may lead to a better
understanding of these unusual and interesting physical
objects.

(1.11)

II. GENERAL FORMULAS

A. Lagrangian

Consider a theory consisting of a complex field ¢, a
Hermitian field X, and a gravitational field g,,, which is
also the metric of space-time, in accordance with general

relativity. The total Lagrangian is
L=L(g)+L(m), (2.1

where L(g) refers to the gravitational field Lagrangian
and L(m) to the matter-field Lagrangian, under the influ-
ence of g,,. We write

[ Limydt=— [ (8™, ++x"X,+U)|g|'*d*x ,
(2.2)

where
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| g | = absolute value of the determinant

of the matrix (g,,) , (2.3)

d*x =dx°dx'dx?dx® with x°= time 1, a dagger denotes
Hermitian conjugation,

$,=3/dx*, $h—=ds'/ax*,
X, =X /ax*

=g, ¢T“=g’”¢z, and X*=g#"X,. For the general
formulas derived in this section we do not fix the specific
form of U, except that it is a function of #'¢ and X, so
that the invariance requirement given by (1.1) holds. The
current j*, defined by

(2.4)

JH=—ilgTer o), 2.5)
satisfies

J*u=0;
therefore

ai,J lg|'%*)=0, (2.6)
and the particle number

N= [ j%g| " dx dxdx? 2.7

is conserved. For N340, it is clear that ¢ must be time
dependent.

For the gravitational field, we shall restrict ourselves to
a time-independent and spherically symmetric metric. As
in II, the square of the length differential can be written
in terms of the spherical coordinates (¢,p,a,) as

ds?= —e?dt’ +e¥dp’ +pXda® + sin*adB?) (2.8
or in terms of the isotropic coordinates (z,7,a,/3) as
ds?= —e®dt’> +e®(dr*+r’da®+r’sin*ad?) , (2.9)

where ,f3 are the standard polar and azimuthal angles,
and p is (27)~! times the circumference (i.e., the length of
the great circle) of a two-sphere, related to r by

p=re’. (2.10)
The functions u, v, and T depend only on r, or,
equivalently, only on p. Hence,

e‘v-——dlnp/dlnrzl—}—r% . (2.11)
r

For the time-independent metric, the gravitational energy
E(g) is simply the negative of L(g). In the spherical

coordinates,
L(g)=—E(g)
:(ZG)_lfe“ e’—2 1+p—3%
- du
U 1420— . (212
+e + pdp dp. (2.12)
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In the isotropic coordinates,
L(g)=—E@=02G6)"" [ e**Quv’ +v' })ridr,
(2.13)
where

u'=du/dr and v'=dv/dr . (2.14)

As shown in the Appendix of II, the minimum energy
solution requires ¢ to have a harmonic dependence on ¢:
¢xe @ For the plane-wave solution, w>¢ mass,
whereas for the soliton solution

o < ¢ mass , (2.15)

so that ¢ is confined. In the spherically symmetric case,
we may write

$=2"12ge ~iet (2.16)

where o is real and depends only on p (i.e., only on r).
Similar reasoning gives X as a function of p (or
equivalently 7) only, independent of time. Hence L(m)
can be written as

Lim)= [(—U—V+W)|g|dxldx%dx>, (.17

where U=U(0,X) is the same function as in (2.2),
2

V=1 % Z—Z %
do |* [ax |’
=3e iy [717] (2.18)
and
W =tow’ ~*o? (2.19)
The particle number, defined by (2.7), is
N=Q2/0) [ W|g|'dx'dx%dx’ . (2.20)

The matter energy E(m) is given by the corresponding
Hamiltonian:

Em)=Nw—L(m)

= [(WU+V+Ww)|g|Vdx'dx?dx? . (21
The total energy of the system is
E=E(g)+E(m). (2.22)

The field equations can be derived either by taking the ex-
tremity of E with N fixed, or the extremity of L with w
fixed.

B. Basic equations

Let #,, be the Ricci tensor and # =gF*#,, the scalar
curvature. The Einstein equation relates
1
G#v=ﬂpv— ygm,.@
to the matter tensor: in the spherical coordinates (¢,p,c,3)
we have

—20 —25_dv
pZG,t=e 2”——1—26 ZvPE

=—87Gp*(W+V+U), (2.23)

5 du
—2y Y4
Pap
=87Gp W +V-U),

pZG’p”ze “W_142e
(2.24)

and

du
P ap

d

=+
P ap

=87Gp (W -V —-U);

pZGaa —e —2v

(u——ﬁ)!

(2.25)

the last one is identical to that for p’GgP. The field equa-
tions of the spin-0 fields are

2
—w Z_pg+ % :_Z_% _Z% Ze—Zuo,_%gzo
(2.26)
and
pow|a (2 au_av|ax|_av_
dp? p dp dp |dp ax
(2.27)

It is straightforward to verify that (2.23)—(2.27) are con-
sistent with G, =0; i.e.,

du ., |2 du d |-, 2. q4_

ap P + 2 T ap G, +pGa =0. (2.28
Substituting (2.23)—(2.25) into (2.28), we obtain

4 wav_=—2v_awim (29

dp P dp

which is simply the sum of (2.26) times do/dp and (2.27)
times dX /dp. These equations can be readily derived by
using either

SL | _ (8L | _|8L | _|8L | _,

du |, |&v |, |80 ], |8 ]|,
at a constant w, or

SE | _|8E| _|8E| _|3E| _,

Su |y 85T |y do |y 8Xx N—

at a constant N, where L and E are given by (2.1) and
(2.22).
In the isotropic coordinates (¢,r,a,f3), it is useful to in-
troduce
x=u=ru’,
y=l4v=14+mw'=e~?, (2.30)
x=rx', y=ry’,

where, as well as throughout the paper,
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u'=du/dr, v'=dv/dr ,

u"'=d*u/dr? v'=d%/dr?, (2.31)
x'=dx/dr, y'=dy/dr .
Hence (2.23)—(2.25) become
20402+ 2y = _8rGe WV U, (2.32)
r
2u’v’+v’2+%(u’+v')=87rGe2“(W+V—U), (2.33)
u"+u"+u'2+%(u'+u')=ste2v(W—V_U), (2.34)
or, alternatively,
294y’ —1=—87Gre®(W+V+U), (2.35)
2xy +yr—1=87Grie®(W+V—-U), (2.36)
X+y+x2=8wGrie®(W—-v-U), (2.37)
and (2.26) and (2.27) can be written as
e ¥lg"+ u'+v’+% o' +wze_2“a—§—q=0 (2.38)
g
and
e~ |x"+ u'+u'+3 X' —£=0 (2.39)
r ax
with o'=do/dr, X'=dX/dr, o'=d%/dr?, and

Xr/:dZX/er.
Substitute these solutions into the integrals (2.12),

(2.13), and (2.17) for L(g) and L(m). Regarding
L=L(g)+L(m) as a function of w, we have
dL _|3L =N . (2.40)
do 00 |, x

Likewise, we may use these solutions to evaluate the cor-
responding E(g) and E(m). By regarding the soliton

mass
M=E=E(g)+E(m) (2.41)

as a function of the particle number N, we have, on ac-
count of E=Nw—L,

dM oE
— | %L —w . 2.42)
dN " |3N |, or (
From the estimate (1.8), it follows that dM/
dN o« N ~'/3 and therefore
L N3, (2.43)
m
Consequently, for a large soliton star
L 1. 2.44)
m

By using (2.38) we see that at

o=0(e~ """\ —0(e =)0 ; (2.45)
correspondingly,
X—0 (2.46)

its vacuum value, also exponentially. Likewise, u, v, and
U approach exponentially the Schwarzschild solution. In
the spherical coordinates, as p— o we have

4 172
e~ |1 —— R
P
—12 (2.47)
e~ 1_&5‘_ ,
P

and in the isotropic coordinates, as r—

u_r—a
rta’ (2.48)
eV~ % ,
where
a=+GM (2.49)

C. Soliton mass

The soliton mass M is defined by (2.41). As is well
known,” the same M can also be derived_ by using the

asymptotic behavior of the metric g,,=e® or g, = —e**
at p=o0:
M= lim p5/G
J
or ’ (2.50)
M=—limpu/G .
p— oo

These formulas can be established by using (2.23); we find
d u 7 d
Lo —e ]=G——[E(g)+E(m )
dp [pe*(1—e™")] dp[ (§)+E(m)], (2.51)

where, because of (2.12) and (2.21),

d 5 du
—E =(2 —l,u|__ 70 211 au
dp (g)(G)e[e-{— +pdp
5 du
—e U |142p5%
e + pdp
and
%E(m)EMsze"“—’(W%- V4U).

The integration of (2.51) gives the top equation in (2.50)
directly, on account of M =FE(g)+E(m) and u=0=0 at
co. The Schwarzschild form (2.47) gives then the second
equation in (2.50). (Although many of the arguments
given here are essentially the same as in Sec. II B of II,
they are repeated to make this paper self-contained.)
There are many alternative formulas for M: (2.23) and
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(2.32) can also be written as

f»[p(1—e—23)]=87Gp2<W+V+U) (2.52)
1%
and

% e"”rzﬂ =—47Gre®’ (W +V+U). (2.53)

Upon integration and using the Schwarzschild solution at
o0, We obtain

M=4r [ " (W+V+Upkdp (2.54)
and

M=—4r fo“’ (W4+V+U)e™r2dr . (2.55)

Either expression establishes the positivity of M. In addi-
tion, from (2.52) and =0 at o, it follows that (for soli-
ton stars)

O<y=e""<1. (2.56)

By taking the combination G,*+ %(G,,”—G,'), we have

94,? 2 "-EZ—Z —8rGpe W —U) . (2.57)
This leads to still another formula for M:
M=38r fom QW —U)e*pdp
=87 [ @W Ut 3 r (2.58)

which is the virial theorem
E(@)+4r [ (=3W+V+3U)e"*p*dp=0.

The same result can also be derived by making a scale
transformation changing p,u(p),v(p),o(p) to Ap,u(Ap),
T(Ap),o(Ap) in (2.12), (2.20), and (2.21), and then setting
(0E /9A)y =0.

Another relation can be obtained by considering the
difference G,#—G,’; this gives

%(u +7)=87Gpe (W +V)

and is always positive. Because u +7=0 at «, we have
(for soliton stars)

(2.59)

u+v<0 (2.60)

at all finite p.

D. Behavior near the origin

From (2.23)—(2.27), we see that, as p—0 (therefore, also
r—0),

u(0)4+0(p?) ,

S
Il

(2.61)
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These imply that in the isotropic coordinates, as »—0 the
variables x and y, defined by (2.30), are of the form

x=+ar’4+0(r"
and (2.62)
y=1+3br’4+0(r%,
where a and b are constants. By using (2.35)—(2.37), we
find
dx
dy

where U(0) and W(0) are the values of U and W at r=0.
[Note that ¥(0)=0 because of (2.61).]

L 2004w

2.63
Uu)+wi() ~ ( )

0

III. A SIMPLE EXAMPLE

As noted in Sec. I, very likely all these scalar fields are
in reality only phenomenological fields. Hence the in-
teraction U does not have to satisfy Dyson’s renormaliza-
tion condition; in that case, the simplest example for a
scalar soliton star is for U to be given by (1.11) and

X=0. (3.1)
As in (2.16), we set

¢=2—1/20'€ —iwt
for the minimum energy solution; (1.11) then becomes

o

0o

1
U=5m%?*|1—

272
] | 52

The normal vacuum is described by |¢ | =0, and there-
fore, o =0; the “false” vacuum refers to o =0, which is
related to 0 = — o through a phase change ¢—e'¢.

By substituting X =0 into (2.2), one sees that all formu-
las, (2.1)—(2.63), in Sec. II remain applicable. On the oth-
er hand, some of the approximate expressions given in
Sec. I have to be modified, as we shall see.

A. Order of magnitude estimates

As in Sec. I, we first give a qualitative description of
the soliton solution in the absence of gravity. One may
take a trial function

, P<R+O0(m™"),
oo 100 P< +0(m™") (3.3)
0, p>R4+0(m™"),

and, when p=R +0(m 1),
0o

02——(1+62m(p~R))1/2 . (3.4)

The latter expression (3.4) is chosen because it satisfies

2
de dU_, (3.5)

dp do
and the boundary condition (3.3). Using this trial func-
tion, one finds that the energy of the soliton is given ap-
proximately by
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E=E, +E,, (3.6
where Ej is the kinetic energy due to the interior p < R,
1 |47
Ekz? T R 3(1)20'02 ’ (3.7

and E; is the surface energy due to the transition region
p=R+0(m~Y),

E,~4msR?, (3.8)
where
s=4moyt. (3.9)

The frequency w is related to the particle number N by

Am

N~ R3woy? . (3.10)

Keeping N fixed, and setting 3E /0R =0 and M =E; + E;
we see that

E,=3E,,
(3.11)
M=2E =5 3T sR?
Hence,
M o N4/3
R@NZ/S M1/2

(3.12)
wcxN_l/socM_l/4. "

Because M « N*/3, for sufficiently large N, M has to be
< Nm; that ensures the stability of the soliton solution.

Next, we turn on the gravitational field. It is clear that
gravity becomes important only if R is of the order of the
Schwarzschild radius 2GM. By using the second equation
in (3.11), we obtain an estimate of the critical mass

M, ~(G%) '~(p*maoy?) ! (3.13)

the same as in (1.9) and (1.10). The only modification to’

the two-field case, ¢ and X, discussed in Sec. I is the dif-
ferent powers of N between (1.8) and (3.12).

Using (3.12) and (3.13) and treating og~m <<lp—},
M ~M_, we can estimate the relative importance of the
three matter energies U, V, and W introduced in
(2.17)—(2.19). Because ¥V and W are proportional to
(do /dp)?* and w’0?, in the interior p < R +0(m ~!) we ex-
pect
172

V 1 m
— — 1. .
[M << (3.14)

W wR?

Neglecting do/dp in the field equation of o, (2.26), we
find
2

~

Noxs
mZ

e %, (3.15)

_1
2

and therefore

For m ~30 GeV and M of the same order as the critical
value M,, we have

—;—~—%~1,,2m2~10—35 .

As we shall discuss, in the transition region p~R, be-

cause 0 makes a rapid transition in the form (3.4) from

near o, to near O over a distance O(m~!), V=U>>W.

In the exterior, when p is > R 4+O0(m ~!), all matter ener-
gies U, ¥, and W go to zero exponentially.

(3.16)

B. Field equations

In the spherical coordinates, the equation for o is given
by (2.26):

2 —
e-w|d4o 12 du dvldo |, o -um, 4dU_,
dp’ p dp dp|dp do
(3.17)
where, on account of (3.2),
2 2
U _ g1 || | 1-3]|Z l (3.18)
do oy o5

In the isotropic coordinates, the equation for o is given by
(2.38):

tole g _ au
do

—2v

e =0,

O_II+ u’+v’+% 0,1

(3.19)

where, as before, 0’ =do /dr and o' =d?c /dr?. Likewise,
the equations for the gravitational field are given by
(2.23)—(2.25), or equivalently (2.32)—(2.34), where U is
given by (3.2),

Ve=1e-2 da —Llo—2yr2
dp 2 ’
W L le 242 (3.20)
in accordance with (2.18) and (2.19) and X=0. In the

present case, the identity (2.28), which comes from
G%.,. =0, is the same as (3.17) multiplied by do/dp; the
matter equation is not independent of Einstein’s equa-
tions.

In the following, we regard o as being of the same or-
der as m, both in the range of 30 GeV or thereabouts.
The parameter

A=(87G) %0, (3.21)

is, therefore, extremely small ~10~!". (g, could be con-
siderably larger than 30 GeV, and A would still be quite
small.)
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C. Interior: p<R +0(m™")

Define
p=A’mp and e "= ia—:n—e““ (3.22)
For M of the same order as M, ~(G*moy®)”!, we have

R~GM ~(Gmay?)~'~(A’m)~}; therefore, 5 is ~1. In
the interior, because o is near o, we expect do/dp
=(do/dp)A*m to be O(A?). Equation (3.17) becomes

we 25— 4U _ o) (3.23)
do
which, together with (3.18) and (3.22), leads to
2
O 4 Xm0 . (3.24)
Op 4
Since, according to (3.12) and (3.13),
1/4
@ m 2y—1/2
— ~ | ~(G ~A 25
" M (Gm~*) , (3.25)

we expect # and u both to be ~1; as we shall see, this is
also consistent with the field equation of u.
Because of (3.16), we have

W+V+U=W[1+0(AH]; (3.26)
therefore,
2
8#sz(WiViU)=% e 002, (32D
0o

In the following, we adopt the approximation that the
small parameter A2~ 1073 (if gg~m ~ 30 GeV) is

AM=0+ . (3.28)

Hence, for p <R
V=U=0, o=o0y,

and (3.29)
W=1wloge 2

because dii /dp=du /dp, (2.23) and (2.24) become
ﬁj—;—:(%e‘mﬁz—l)ezul

and (3.30)
253—;=(%e—2552+1)e2”—1

When p—0, these equations determine
7=u(0)+ve #9521 0(5%
and (3.31)
L

T= = e—Zﬁ(O)ﬁ2+0(p—4) .

The interior solution can be obtained by first assigning at
p=0 an initial value

(3.32)

and then integrating (3.30) numerically from p=0 to R;
i.e., from p=0 to

p=pin=A’mR , (3.33)

which is regarded as ~1.
D. (x,y) trajectory

It is convenient to express the solution in terms of the
variables x and y, introduced in (2.30). For the interior
solution, we may substitute ¥'=U=0, given by the ap-
proximation (3.28) and (3.29), into (2.35)—(2.37) and elim-
inate W between them. The result is, for p <R,

y=l-xy—p?,
. (3.34)
X=—2—x243xy+2y?,
and
2
d_ 1oyt (3.35)
dx  —2—x*43xy+2
It is convenient to think of
7= Inr (3.36)

as a fictitious time, x(7) and y(7) as the trajectory of a
“particle,” and x =dx /d7 and y=dy/dt as its velocity
components. Each solution describes a trajectory in the
(x,y) plane. As p—O0 (therefore r—0 and 7— — ), it
follows from (3.31) that

x=1e—2052 4 0(5%)
and (3.37)
y=1—-Le2O052,L0(5%) .
'Tl?ere are two critical points of (3.34), defined by
x=y=0:
(i) x=0 and y=1
and (3.38)

(if) x =p=2"12,

From (3.37), we see that at p=0, the trajectory begins at
(i) with an initial slope

-1 (3.39)
o 4

a
dx

[This agrees with (2.63), since U(0)/W(0)=0(A?) can be
neglected.] When p increases from O to R, the interior
solution moves along a universal trajectory, called I (the
interior), in the (x,y) plane; I is completely determined by
the first-order differential equation (3.35) with the initial
condition (3.39), and is shown by the solid curve in Fig. 1.

At p=R —, the solution is at a point, called “in”

(denoting the inner face of the surface) on I, with
X =Xin and Y =DYin - (3.40)

As shown in Fig. 2 (and as we shall see), in the surface re-
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FIG. 1. The universal trajectory I, determined by (3.35) with
the boundary condition (3.39) at x =0 and y=1. (The dashed
curve is the Schwarzschild hyperbola 2xy 4+y*—1=0.)

T
- -G
U0 _ %
zero node
o
b 4
>
®© 4
(=
} 4 3 — _,-J
[¢] 0.2 0.4 0.6 0.8
X
(@)
b T T
T e™® ~ 15,5784
o 4
o] n' = 2
zero node
@« -
2+
EN
™ 4 -
o
t
o |
=1 * 7
L } i } }
[o] 0.2 0.4 0.6 0.8 1

(e)

gion when p increases from R — to R+, the solution
leaves I abruptly, moves along the straight line

X —Xin=Y —VYin » (3.41)
and ends at a point, called

AXx4,y4) (3.42)
on the Schwarzschild hyperbola

2xy +y2—1=0, (3.43)

with x4 and y4 both >0. Afterwards, we are in the exte-
rior region p > R, which is described by the Schwarzschild
solution (2.47)—(2.49), i.e.,

= 2ar
r2_g2
and (3.44)
_u_r—a
YEe = e

The trajectory then moves along the hyperbola (3.43) from
A when p=R +, back to point (i) when p= . Different
solutions are characterized only by different points
(Xin,Yin) When the transition occurs; neither I nor the
Schwarzschild hyperbola depend on the particularities of
the individual solution.

In Fig. 1 the dashed curve is the Schwarzschild hyper-
bola, and the solid curve is I. We see that as p—
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FIG. 2. Four examples of the (x,y) trajectory of the soliton star solution. Each trajectory consists of three sections: (i) interior,
from x =0,y =1 to “in” along I, (ii) surface, from ““in” to A4, (iii) exterior, from A back to x =0,y =1 along the Schwarzschild hyper-
bola 2xy +y2—1=0. (a) refers to the critical solution ¢ of (3.90) and (3.91). (b)—(d) are the first three (zero-node, n =0) cusp solu-

tions, with n’=1, 2, and 3.
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(therefore r and 7=Inr also — « ), I spirals indefinitely
towards the point (ii), x =y =27'"2, This can be under-

stood by expanding the solution near (ii):
x=2""24¢& and y=2"12479. (3.45)

Treating &£ and 7 as infinitesimals, we can write (3.34) as

£ i — i , (3.46)
where
1 7
U//:z—”zl_l 3
The eigenvalues of .# are
(—1+V3i)/V2 (3.47)

which shows that as 7=Inr— o, the trajectory oscillates
indefinitely, with an exponentially decreasing amplitude
for £ and 7.

The surface (i.e., transition region) begins at the point
“in” when the solution leaves I. As we shall prove in the
next section, this point is determined by

TPin= 1 {Xin +2in—[(xin—yin)*+31'"%}, (3.48)

where py,, Xi,, and y;, are defined by (3.33) and (3.40).

E. Surface region p=R +0(m ')

For M of the same order as M., (3.13), the ratio of the
surface width to the radius R is only (mR)™'~A2
(~1073*if 0y~m ~30 GeV). As in the previous section,
the extreme smallness of A2 greatly simplifies the solution
within the surface. In this region it is more convenient to
use the isotropic coordinates, given by (2.9). When p=R
(and therefore p=p;,), denote

u=u,, v=v,
and (3.49)
r=ry;=Re

Within the surface do/dr is O(mo,), but because
x=rdu/dr and y=1+rdv/dr are ~1, du/dr and
dv /dr are both O(rs_l), i.e., A2O(m). Hence, neglecting
O(A?), we can regard u =u, and v =u, as constants across
the surface; in addition, since w?/m? is also O(A?), Eq.
(3.19) becomes then

e oAU _g (3.50)
do
This gives the solution, valid for r =r, +0(m ~1),
o
ag+ , (3.51)
(1+€” r—=rg )1/2
where
w=2me" . (3.52)

[Without the gravitational field, (3.51) reduces to (3.4).]
To the same accuracy, we have within the surface

U=V=0(m?0y?)
but (3.53)
W =0(w’c?)=A*0(U) .

By using (3.51), we find the integrals of U and ¥V across
the shell (i.e., the surface):

1 —V,
f Udr= f Vdr=smoye *.
shell shell

Hence, in the approximation (3.28), A’=0+, we may
write (valid in the surface region)

(3.54)

U=V= %maoze 'USS(r—rs )
and (3.55)
W =0
in (2.35) and (2.37); these lead to, for r;+ >r >r;,—,
dx _dy
dr — dr
In the exterior region r >rg, the same approximation
A?=0+ leads to zero matter density, and therefore

= —7Grye*mo?d(r —r) . (3.56)

U=V=W=0. (3.57)

The solution has to lie on the Schwarzschild hyperbola
(3.43).
Integrating (3.56) across the surface from r=r;— to

rs +, we see that the discontinuities in x and y from “in
to A are

_ = Vg 2
Ax=x,—x 4 =5pin=7Grse ‘moy

and (3.58)

1 — v 2
Ay =yin—y1=5Pin=7Grse ‘moy°,

where 5, =A*mR is given by (3.33), with A2=87Go,? and
R :rseu‘. Because x4 and y, are on the Schwarzschild
hyperbola, it follows that

2X Y4 +y4i—1=0. (3.59)

Expressing x4 and y, in terms of x;,, yi,, and p;,, we
derive the condition (3.48).
F. Soliton mass

Since 4 is on the Schwarzschild hyperbola, we have, in
accordance with (3.44) and (2.48),

2ar; ry—a
Xq4= » Ya= ’
r?—a? rs+a
(3.60)
ug rs—a v rs+a
e ‘= , e ‘=
rs+a ¥

s

Therefore from x4 and y 4, one can deduce #/a, e , and
e". From (3.58), r, is also determined; therefore, so is M,
since @ =+GM. The same M can also be computed by
using the mass formulas (2.54) and (2.55).

We discuss first the evaluation of (2.55) in the isotropic
coordinates. In the approximation (3.28), A2=0+, (2.55)
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can be written as

M:M[+MS >
where
.o
My=dm [* (W4+V+U)™ r7dr (3.61)
and
rS+
Mg=4r [ * (W+V+U)e™"rdr . (3.62)

'S
In the interior r <r,, we have (3.29). Therefore, (2.32)
becomes

2U"+U’2+iU’=—87TG€20W;
r

ie.,
(r2'e®?)' = —4xGrie>’wW . (3.63)

From the definitions (2.30) and (3.40) of y and y;,, it fol-
lows that

Yin=1+r'" atr=r,— .
Integrating (3.63) from r=0 to r;—, we find

v, /2

M; =G (1—y;,)rse (3.64)

The surface integral, on account of (3.55) and (3.58), is

Mg =mmog’rs’e /2
=G e (yin—ya) - (3.65)
The sum of M; and My gives the mass of the soliton star:
M=G Yl1-y, )rsev‘/2 . (3.66)

Using (3.60), we find the right-hand side of (3.66) to be
G ~'2a =M, in agreement with the expected answer.

Of course, the soliton mass can also be computed by us-
ing (2.54) in the spherical coordinates:

M:Ml +MS , (3.67)
where

— R — 2

My=4m [ (W+V+Ulpldp
and (3.68)

— R+ 2
Ms=d4r [, (W+V+U)pkp .

In the spherical coordinates, p <R refers to the interior
and p> R to the exterior. Because of (2.10) and (2.30) we
have

p=re’, y=e™",

(3.69)
dp v
dr =rer-

When p <R, we have the interior solution U=V =0 (in

the approximation A>=0+). Hence, (2.23) becomes
%[(e ¥ _1)p]l=—87Gp*W ,

which gives, upon integration from p=0to R —,

3667

M;=2G) " 1—y,,)R . (3.70)

It is important to note that, because y =e ~7, across the
surface R+ >p>R —, the metric g,,=e”, like y, is a
step function. In contrast, the metrics g, = —e?* and
g,»=e? in the isotropic coordinates are all continuous.
Only their derivatives (with respect to r) are step func-
tions at the surface; from (3.55), (3.56), and (3.58), it fol-

lows that

%: —8(r —ry)Ax = —87TGrse2USV

and (3.71)

A S(r—r)Ay = —87Gre ™V .
dr

Using (3.69), we write
Vpdp="Ve®ry dr= Vez"rygidy
y

=—(87G) " 'ydy .

When p varies from R — to R +, y changes from y;, to
y4. Consequently,

Ms=4n [ (V4 Upidp=—G 'R [ "y ay
=(2G) ' (yin’—y4*)R .
The sum M; + My is
M=02G)"1-y,)R . (3.72)
At p=R+, the Schwarzschild solution (2.47) holds.
Since y =e ~*, we find

4a

2

=1——,

Ya R

and (3.72) gives the correct relation a =5 GM, as expect-
ed.

G. A self-consistency check

On the inside face of the surface, r=r,— (or
equivalently p=R —), we have (x,y)=(x;,,y;,). Let the
corresponding value of W be W;,. As a further check on
the self-consistency of our solution (in the approximation
A?=0+) we may compute W,, by using either (a) the in-
terior solution, or (b) the exterior and the surface solution.
In method (a), (2.36) and (3.29) give, at r=r;—,

87Gr,2e Wiy =2x1pin + Vit —1 . (3.73)

In method (b), we note that in the isotropic coordinates,
(2.29) can be written as

rgd—(U—V—W)=2[(ru'+2rv'+2)V+ru’W]
r

=2[(x+2p)V+xW]. (3.74)
In the outside region when r is >r;, we have

U=V=W=0; on the surface, for r,+ >r>r,—, the
solution is W =0 and U=V given by (3.55); at r=r;—,
we have U=V =0 and W= W,,. Thus, integrating (3.74)
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from r=r;— to r, + we obtain

ry m—zf

Note that ¥V is a 6 function and x +2y a step function.
Because of (3.71), (3.75) becomes

(x+2y)Vdr . (3.75)

1 —2 st dx d
rWin=—aGr)~le ™ [ X -+2y d{ dr,
which gives
87Gr2e Wi =xint—x 2420 —y4D) . (3.76)

Using (3.58) and (3.59), we find
(Xin—pin)=(x4—ya VP =x"+29,4—1,

and therefore (3.73)=(3.76), confirming the consistency
between the two methods (a) and (b).

H. Numerical results

Only the zero-node solutions (node number n =0) will
be given here. As in the mini-soliton stars, o can have
nodes. We have also calculated the ns40 solutions; those
results will be given elsewhere.

Following the method outlined in Sec. III C, we first as-
sign at p=A’mp=0 an initial value e ~*'%, in accordance
with (3.32). The two coupled first-order differential equa-
tions (3.30) are then integrated from p=0 to p>0. The
actual task of integration can be facilitated by observing
the invariance of (3.30) under the transformation

e

0.4 06 0.8
t
1

0.2

213 S S S S

109, £
(a)

0.4 0.6 0.8

0.2
t

log, £
(e)

e " ke " pp/k, T—T, (3.77)
p—p

where « is a constant. Of course, the boundary condition
(3.32) must vary accordingly, with

#(0)—u(0)—Ink . (3.78)

Consequently, solutions with different initial values
e "% are related to each other.
Define #(p) and D(p) to be the solution of

2pdb /dp=(~e 2 p2—1)e2 41

and (3.79)
2pdi /dp=(+e¥p 4 1)e? 1,

with the boundary condition

A

=0=0 at p=0. (3.80)

Any solution of (3.30) with the boundary condition
7(0)5£0 can then be derived from #(p) and 5(p) through

exp[ —#(p)]= exp[ —#(p)—z(0)]

and (3.81)
exp[ —U(p)]= exp[ —0(p)] ,

where
p=pe™ . (3.82)

Because y =e ~"and x =ypdiu /dp, we have

1.4

>

0.9

0.7

S S S TS |
-1 0 1 2 3 4 5

N
09,0 £
(d)

PO P T

FIG. 3. From the solutions of #(p), 9(p), x(p), and y(p) of (3.79) and (3.80), one can derive #(p), v(p), x(p), and y(p) through

(3.81) and (3.82), for any initial value % (0).
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p—e—d - : . - ‘ .
al'ld (383) limiting solution
x=ypdi/dp . 2t L Bin = infinity .
Thus, from #(p) and D(p), we also derive x(p) and y(p). . 5
These four functions are plotted in Fig. 3. ST Pa, ' 1
In order to have a solution of the soliton star, we must *““o% "
satisfy (3.48): N
sT A 1
+P=A_(x,y), (3.84) >~
~
where 0 o oz o3 o o5 0.6
A_(x,p)=+{x+2p—[(x—y)+3]"%} . (3.85) x
FIG. 5. (x,y) trajectory of the limiting case L for the soliton
(The significance of the subscript — will become clear star when ¢ "® o and pn—co. The point “in” is at

when we discuss the black-hole solution.) Substituting the
solutions x(5) and y(p) into (3.85) we define

A_(P)=A_(x(p)y(P)) ; (3.86)
hence, (3.84) becomes
+e¥9%5=A_(p), (3.87)

whose solution p=p;, determines a p;, through (3.82); i.e.,

Pin=Pine”® . (3.88)
From (3.40) and (3.58), it follows that
Xin :x(ﬁin)’ Yin :y(ﬁin) ’ (3.89)

X4 =Xin _A—(ﬁin)’ Y4=DYin _A—(ﬁin) .

These and (3.60) then determine M, R, r,, and other phys-
ical characteristics of the soliton star.

In Fig. 4 the solid curve is A_(p) which is independent
of e *® and the dashed line is e*%5/8. For
e ¥0=2 5 there are two solutions of (3.87). It is clear
that if we decrease e ~#© the dashed line will swing
counterclockwise, until it reaches a critical point, called c,

when
e~ 7% 12662898 . (3.90)

At ¢, (3.87) has only one unique solution; its physical

0.2
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,
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P
FIG. 4. The solid curve is A_(p) defined by (3.85) and (3.86).
The initial value e ~#© determines the slope of the dashed line,

+¢79%, whose intersection with A_(j) gives a solution of the

soliton star, in accordance with (3.87) and (3.88).

x=y=1/ V'2; therefore the upper curve consists of the entire
universal trajectory 1.

characteristics are

0=0.7116mA=2.013(7G) ’may, ,

N =0.4963 X 4702 /m 1> =0.01096 /7G> ’m 25y’ ,

M =0.4861 x4m0 2 /mA*=0.03038/7G*may?,  (3.91)
R=1.0882/mA*=4.477GM ,

Pin=1.0882 .
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FIG. 6. Soliton star mass M vs the particle number N: a
schematic drawing in (a) and the actual plot in (b). (The labels
1,2,... refer to the consecutive cusp number n'=1,2,...,
with L standing for n'= w.)
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TABLE I. Physical characteristics of the first six cusps for the zero-node solutions.
n' e 1@ e 4@ Pin o/(m1G)V’may, G m0,’N 7G*moy’M R/GM
1 2.029 04 4.40605 1.43010 1.30252 0.030668 3 0.062303 1 2.86925
2 16.578 4 28.8475 0.981914 1.62547 0.0151839 0.040597 4 3.02333
3 96.909 8 175.162 1.047 40 1.564 85 0.0171199 0.043 696 1 2.996 25
4 599.072 1076.18 1.036 53 1.574 49 0.0167910 0.0431801 3.00061
5 3669.86 6599.18 1.038 30 1.63294 0.016 8442 0.0432639 2.99990
6 22514.5 40479.2 1.03801 1.57317 0.0168355 0.0432503 3.00002

The corresponding (x,y) trajectory is given in Fig. 2(a).
~u

For e—ﬁ(0)<e —u(0)

c

, there is no solution; for e
g .
>e ¢, there are two solutions. When

e "0, (3.92)
one of the solutions has p;,— «, as can be inferred from
Fig. 4; this solution will be referred to as L, the limiting
solution. (The product py,=pie*? remains finite.) The
(x,y) trajectory of L is shown in Fig. 5; in this case, the
point “in” is at x=y=1/v2. The various physical
characteristics of L are

xin:yinzl/‘/i, X4=Y4 =1/\/§ ,

1) (3.93)
N=+(V3-V2/m G may?
1 1 1
M=*§ 75—73 /#szaoz.
1
8L zero node _
Nz )
5 < |
E 2T 1
E
SL — B
© \\\\
© s 3 25 B

w/(ﬂG)‘/cho
(@)

12

T T - T

zero node

Lo S

TTGmGOZR
—

1.5 2 2.5 3
w/(ﬂG)‘/Zmao
(c)

Because of the symmetry under particle-antiparticle
conjugation, there is a degeneracy under the sign change:

w— —
and

N——N.

(3.94)

In (3.91), (3.93), and also in all the tables and figures, only
the N > O solutions are given,

By systematically changing e ~“'"), we can survey all
the zero-node solutions (n =0). In Figs. 6(a) and 6(b), M
is plotted versus N, schematically in 6(a) and precisely in
6(b). As in the mini-soliton stars, it shows the typical pat-
tern  of cusps, which are labeled consecutively
n'=1,2,3,.... The (x,y) trajectories of the first three
cusps, n'=1, 2, and 3, are given in Figs. 2(b)—2(d). The
physical characteristics of the first six cusps are listed in
Table 1.

As representatives of the extensive analysis that has
been made, we show in Fig. 7 the curves M vs w, N vs o,
R vs w, and R vs M, and in Fig. 8, the dependences of
e™? M, o, and R on p,.
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FIG.7. Mvswin(a), Nvswin(b), R vswin (c),and R vs M in (d).
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FIG. 8. ¢™? vs 5, in (a), M vs B, in (b), @ vs Biy in (c), and R vs p, in (d), where By, is defined by (3.88) and (3.33).

IV. BLACK HOLES

To obtain the black-hole solution, we extend the range
of x and y, introduced in (2.30), to negative values.

A. The Schwarzschild solution

Without the matter field, we have the Schwarzschild
solution, represented in the (x,y) plane by the hyperbola

2xy+y2—1=0, 4.1

which has two separate branches; each can in turn be di-
vided into two regions depending on the sign of the prod-
uct xy. Let a=+GM always be kept positive. When
x>0 and y>0, or x <0 and y <0, (4.1) is satisfied by
having

x=—2r and y=1—2

r’—a? r+a

; (4.2)

this will be referred to as the normal Schwarzschild re-
gion. When x >0 and y <0, or x <0 and y >0, (4.1) cor-
responds to

22ar2 andy:r+a , 4.3)

a*—r r—a

X =

which is the abnormal (or anti-) Schwarzschild region. In
this paper, we limit our interest to the normal
Schwarzschild region only. (Note that, in our definition,
the normal region includes both the x >0,y >0 part as
well as the x <0,y <O part.)

In the absence of matter, the two radii p and r are relat-
ed by

172 2

(r+a)

= (4.4)
r

172
a
-

Therefore 2mp, the circumference of a two-sphere, has a
seemingly superficial degeneracy when r varies from less
than a to greater than g, thereby giving rise to the two
separate Schwarzschild regions. This situation changes
drastically when there are matter fields, as will be
analyzed below.

r
a

B. Matter field

Consider the special example discussed in Sec. III
Again, we shall adopt the approximation (3.28); i.e., treat-
ing A2=87G oy’ (~1073*if 6g~m ~30 GeV) as an infin-
itesimal. All discussions given in Secs. III B and III C are
applicable here, except (3.42) and (3.48), as we shall see.
As before, the (x,y) trajectory starts from x=0,y=1,
when =0 then it follows the trajectory I to the point
“in.” However, in the transition region, when r varies
from r;— to ry+, the trajectory moves along the straight
line (3.41), but instead of going to 4 given by (3.42), it
now goes to

B:(xB,yB) (45)

on the other branch of the Schwarzschild hyperbola (4.1)
with xp and yp both <0. At B, the trajectory begins its
exterior part where the matter density is zero. It follows
the Schwarzschild curve to x = — o0,y =0 which is the
inner face of the horizon r=a =+GM, then switches to
X = o0,y =0 the outer face of the horizon, and back to
x=0,y=1 (when r= ) along the x >0,y >0 branch of
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from r=0 —> r=o00

black hole N | )
n

SchworzSch,-/d
0 X
SChWQrzSch”d .
B .

e = 0.2

FIG. 9. Example of a(x,y) trajectory of a black-hole solu-
tion, with the arrow in the direction of increasing r (the radius
in the isotropic coordinates).

the Schwarzschild hyperbola. This is illustrated in Fig. 9.
In the next section, we shall discuss how (x;,,y;,) and
(xp,yp) are to be determined.

C. Basic equations
For the black-hole solutions, it is convenient to choose
wo=—|o| <0, (4.6)

where o is the frequency introduced in (2.16). [As in
(3.94), there is the particle-antiparticle symmetry. When
®— —w, we have N— — N, but all other physical charac-
teristics are unchanged.] As before, define

AN =87Goy?, p=A*mp
and (4.7)
—u [0) —u

Am ¢
[In the next section, it will be shown that inside the star
e *is «0. The convention w <0 makes e ¥ thus de-
fined, > 0 and also N=(2/a))f et Wridr > 0.]

Let r, be the star radius in the isotropic coordinates,

and a =5 GM is the black-hole radius in the same coordi-
nates. We have, for the black-hole solution,

rg<a . (4.8)

The basic equations inside the star, r <r,, are the same
(3.30) and (3.31) given before. Hence, by assigning an ini-
tial value e ~#® > 0, we can integrate these equations and
derive u=u(p), v=0(p), y=e ", and x=ypdu/dp.
Let

A ep)=Ti{x+2p+[(x—p)?+3]'%, (4.9)
and p;, be the solution of

FPin=8 1 (Xjn,Yin) 5 (4.10)

where

Xin=xX(pin) and y;,=y(pi,) .

By following the arguments given in Sec. III E, one sees
that

%ﬁin <0
and (4.11)

xp=x(pin) —

Y8=Y(Pin) = ¥Pin <0

describe the coordinates of a point on the Schwarzschild
hyperbola. Except for the sign change between A_(x,y)
of (3.85) and A (x,y) of (4.9), the procedure for deriving
a black-hole solution is essentially the same as that for the
soliton star. As in (3.33), the star radius in the spherical
coordinates is given by

p=R=p,/mA\*. (4.12)
From the Schwarzschild solution, we have
2arg
Xpg=—5"-,
B rl—a?

L (4.13)
Yp= rs+a ’ .

(re+a)?
R=——"""1;

rS

consequently, r;, a, and M can also be determined. Be-
cause xg and yp are negative, we have r; <a; i.e., the ra-
dius of the star is smaller than the Schwarzschild radius
(in the isotropic coordinates).

D. The sign of e* and the mass of the black hole

In the exterior of the star r > r,, there is no matter den-
sity; therefore, the Schwarzschild solution holds:

2
euzl__a, eV= [.’ﬂ
r+a r
and (4.14)
eF:e~u

Hence, while e is positive for r >a, it becomes negative
for r <a, i.e., inside the black hole. Einstein’s equation
for free space, u'' 4+v" 4+u'?4+rWu'+v')=0, requires u’
to be continuous; therefore e* changes sign at r=a+.
Since e* is continuous at the surface of the star r=r,, e*
is also <O inside the star. In contrast, e’ is positive
everywhere.

To further confirm the sign of e¥ let us consider the
following calculation of M. From (2.13), (2.21), and
(2.41), we have

M= fow &dr,
where (4.15)
&=e"r 4me®(U+V+W)—(2G) le®v'2u’+v")] .

We may separate M into two parts:
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Moo= f’s+ & dr
and (4.16)
re+
AlstarE fo gdr 4

where M, denotes the contribution due to the inside and
the surface of the star, and M, the contribution due to
the (empty) space outside the star. For the integration of
Mg,.c., we have U=V =W =0 and, in accordance with
(4.14) and (4.15)

Ma

& = — (4.17)
r
which gives
M pace :M—r"— M. (4.18)
s
Consequently, we must have
M. <0, (4.19)

so that My, +Mg,, =M. Since & e, this is in agree-
ment with e“ <0 inside the star. The sign of e* implies
that under an infinitesimal time translation dt, the line
element e“dt has opposite signs on the two sides of the
horizon. Hence, one may regard the direction of time
flow as also changing sign across the horizon (with
respect to an appropriate overall frame).

It is of interest to note that the same mass can also be
decomposed as

M=M,+M_ (4.20)
where

M.= [ &ar
and (4.21)

M Efoa_fa”dr.

(The interval from a — to a+ gives zero contribution.)
From (4.17) it follows that

M,=M,

and therefore (4.22)

M_=0.

If one wishes, one may view M as entirely due to the grav-
itational energy outside the black hole. Of course, the lo-
calization of energy has no invariant significance since,
for example, the same M can also be written as

M =41 fow (W+V+U)e>rdr

in which the integrand is always positive and resides only
inr<r;<a.

E. Numerical results

As in previous sections, we study only the zero-node
solution (of the matter field) in this paper. Replacing
A _(x,y) of (3.84) and A on the Schwarzschild hyperbola
by A, (x,y) of (4.9) and B on the other branch of the
same hyperbola, the black-hole solution can be obtained
by following the same steps as those given in Secs. IIIC

and IIT H.

Define p by (3.82), and let #(p) and ¥(p) be the same
solution of (3.79) with the boundary condition (3.80). By
using y(p)= exp[ —0(p)] and x(p)=ypdi /dp, we define,
in terms of A (x,y) given by (4.9),

A

AL(P)=A (x(P)y(p) . (4.23)

Clearly, A ,(p) is independent of e ~*'*. For each solu-

tion p=p;, of

+e"9%=A_(p), (4.24)
a solution of the black hole can be derived, with

Xin=XPin), Yin=Y(Pin)

| 2ar,
Xg=Xin— §Pin= rsz_az <0 ’

. ro—a
YB=Yin— §Pin= r ta <0 (4.25)
ﬁin:ﬁinemm’ R :rsevs >

u,  Fs—a vg rs+a
e=—"7) e°*=
re+a 7y

and, as before, the Schwarzschild radius in the isotropic
coordinates is

a=+GM .

The function A, (p) is shown in Fig. 10. From its
shape, one sees that for any given e*?, there is one and
only one solution of (4.24). When e ~#*' o we have the
limiting solution L, whose physical characteristics are

Xin=Ypin=1/V2, xg=yg=—1/V73,
re=+(2—V3)GM, R=3GM ,
0o=5(V2—-V3)7G) ’mo,, (4.26)

N=%(V3+4+V2) /7G> *m%a¢? ,

S foomos.

1.36

e 0= 10

1.24
t
tr

black hole 4

>

FIG. 10. Solid curve is A, (p) defined by (4.23); its intersec-
tion with the dashed line e*'%5/8 gives the solution p=pi,, in
accordance with (4.24).
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from r=0 — r=o0

: !
black hole 1
in

0 x

SCth"Zscth
e U0 _ oo

L solution

FIG. 11. The (x,y) trajectory of the (limiting) L solution for
a black hole. See (4.26) for a description of the L solution.

As before, because of particle-antiparticle symmetry, there
is a degeneracy under «— —® and N— — N, but leaving
all other parameters unchanged. The (x,y) trajectory of
the L solution is shown in Fig. 11.

We note that mathematically, when the initial value
e %9 _,0, there is another limiting solution, which may
be called the S solution (or, shell solution, for reasons
given below): the point “in” of the S solution is at x =0
and y =1; correspondingly, we have xz= — %, yp=— %,
M=16/277G’mo,?>, and r,=4/277Gmoy’, but
N=w=0. Consequently, W =0 in the interior of the
star, and that invalidates our approximation (3.26) and
(3.27). Physically it means that when w/m is much less
than O(A), say O(A?), deviations from the S solution
might occur. Nevertheless, when w/m is O(A)+0, but
w/Am small, the solution would resemble the overall
characteristics of the S solution: inside the black hole
there is a shell of matter located at r=r

TABLE II. Physical characteristics of the first five cusp solutions (n'=1,2, ..
Here, n'=0 and n'= « refer to the S solution and the L solution.
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from r=0 — r=

black hole/

ScthrZSc'h'H-d.

™3O _ o

S solution

FIG. 12. The (x,y) trajectory of the (shell) S solution for a
black hole. For r <rg, the space is flat; at r=r;= %a, there is a
shell of matter, and for r > r; one has the Schwarzschild solu-
tion, with the horizon located at r=a= %GM, where
M =16/277G*m oy’

=4/277Gmoy* = va (with the horizon at r=a=+5GM),
and inside the shell, for r <r,, we have a flat space with
e ¥=—3, e'=1, e '=1, and e "=we “/Am=0.
The (x,y) trajectory of the S solution is shown in Fig. 12.

In Fig. 13 we give the mass M of the black hole versus
its particle number N. Again, it has an infinite number of
cusps, which will be labeled consecutively by
n'=1,2,3,.... (Here, as well as in the other figures,
n=number of nodes =0.) For N positive, the slope
dM /dN =w is negative, in agreement with (4.6); in con-
trast, for the soliton star solution of Sec. III, the corre-
sponding slope dM /dN is positive. The physical charac-
teristics of the first five cusp solutions are given in Table
1I. (’1(;)he limiting solution L refers to n'— « (and also
e Y 5 0).

In Fig. 14 we plot ® vs N, ® vs r;, M vs r,, and M vs

.,5) of black holes (with n= nodal number =0).

n' e %0 ®/(7G ) *mao, 772G *m20y’N TGmoyir, 7G*moy’M
0 0 0 0 - =0.148 148 42 —0.592593
1 0.44087 —0.185508 1.855 80 0.044 6367 0.394 495
2 2.79547 —0.155051 1.61923 0.059 3980 0.432996
3 17.1022 —0.159 560 1.654 88 0.0570287 0.427 349
4 104.949 —0.158 815 1.64901 0.0574157 0.428 283
5 648.7 —0.158 653 1.649 96 0.0573527 0.428 131

| | 2-V3)(V241V3) 1|1 1

T(V2-V73) +(V34v2)2 Tl=to=
* ® 2 6 66 31v2 V3

=-0.158919 =1.649 83 =0.0573615 =0.428152
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FIG. 13. M vs N for the zero-node black-hole solution, with
n'=1,2,... denoting the successive cusps, and n'=c the L

solution.

rs/a. We see that the ratio of the star radius r; to the
Schwarzschild radius @ =+GM (in the isotropic coordi-
nates) is always < 1, as expected.

F. Remarks

(1) As nomenclature, we have been calling the regions

r<rg:
r>rg
r<a:

r>a:

'/ szaow

ﬂszaon

inside of a star ,

outside of a star ,

o (4.27)
inside of a black hole ,
outside of a black hole ,
o~ 4
© 1
black hole
") L L
s 2 .
L
s r b
L
0
o4 4
o
° . . .
0 0.5 1 1.5 2
KS/ZGS/ZmZUDJN
(a)
©
2 : : 1
black hole
| 4
o
2
L
<+ | A
° 1
— .
[o] 0.05 0.1 0.15
ﬂGmaoer

()
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where r=a is the horizon and a >r,. In this definition,
the inside of a star refers to a region that is spacelike with
respect to its outside (as in the usual practice). Likewise,
the inside of a black hole also refers to a region that is
spacelike with respect to its outside (which differs from
some of the conventions in the literature).

Inside the star, when r increases from O to r;,—, we
have p=e"r also increasing from 0 to R —. However, in
contrast to r; < +GM (the Schwarzschild radius in the
isotropic coordinates), R is >2GM (the Schwarzschild ra-
dius in the spherical coordinates). In this region r <r;,
the function e* is <O, but e’>0, as mentioned before.
However, since Einstein’s equation depends only on e2*
and e? (which are both positive), there is nothing remark-
able.

Outside the star, the Schwarzschild solution applies.
Depending on whether one is inside or outside the black
hole, the situation changes drastically.

In the region outside the star but inside the black hole,
the circumference 2mp of a two-sphere decreases with in-
creasing #, on account of

12 17272
r a
=da - -
P a r
Since —g,=e™, g,=e”, and g,,=e? are all positive

and are exactly the same as the usual ones in an empty
space outside a black hole, an observer in this region,
a >r>r,, would feel a gravitational force in the direction
away from the star (i.e., in the direction of increasing r, or
decreasing p), as if there could be a gravitational repulsion
from the matter distribution (inside the star). Hence, he

T —
o~
o ] 1
3 . L
g s| 2 1
NO
~ ",l_ black hole g
« ©
[
w
o 4 -
o
o -t |
o] 0.05 0.1 0.15
2
7TGmo,ry
(b)
©o
o T T T
black hole
=
Yo vl ]
b o
£
o~
(&}
[3
<+
ol 1 T
L | L L
0.2 0.3 0.4 0.5 0.6

rg/a
(d)

FIG. 14. @ vs Nin (a), ® vs r; in (b), M vs r, in (c), and M vs r,/a in (d), all for the zero-node black-hole solution.
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might conclude that he is “outside” a black hole.
Somehow, in spite of the presence of a star located at
r <ry (which is within his horizon), to him the “real”
black hole seems to lie in the opposite direction. In any
case, he might be perplexed.

For r > a, the situation becomes normal again, and we
have the usual description of an empty space outside a
black hole.

The relation between p and r over all these regions is il-
lustrated in Fig. 15.

(2) So far we have kept to the approximation

AP=0+ .

Note that outside the star, but inside the black hole, the
amplitude of the matter field varies as

a~00exp[—meus(r—rs)] .
For r near a —, and taking the difference a —r; to be of
the same order as az%GM, we have, for oy~m ~30
GeV,

T exp(—A~2) ~ exp(—10%) . (4.28)

0o

This number is so small that in all reasonableness one
does not have to differentiate it from zero. Nevertheless,
it is not zero. If one blindly substitutes this amplitude
into the field equation of the scalar field, because
e = at r=a, difficulties might arise. In the follow-
ing, we shall show one of the ways to avoid the complica-
tion and to indicate how to calculate the perturbation due
to exp(—A72)>0.

Recall that whenever the particle number N is 50, the
scalar field ¢ has to be ¢ dependent; our solutions are all
of the form o ,(r)e ~'*'. Consider a superposition

o= [ C,o.e " “dw, (4.29)
so that

¢=0 at r=a when t=0. (4.30)
In the approximation

exp(—A"3H) =0+, (4.31)

we could have
Cm =8(w —CL)o) .

Since exp(—A~?) is extremely small, C, has only a tiny
spread in frequencies. In time, ¢ has to develop disper-
sions. At t=0, since ¢ is 0 at r=a, the space is empty
(i.e., free of matter density) at the horizon. (Therefore, the
singularity at r =a is not due to any local distribution of
matter, but is associated with Schwarzschild’s coordinate
system.)

Exclude from the Schwarzschild space a small region ()
that includes r=a. Inside (), we may express Einstein’s
equation in terms of, say, the Kruskal coordinates,'® or
other coordinates regular at r =a. (Hence, () may have to
extend beyond the original Schwarzschild domain.) Out-

T T T
e = 0.44087
© bieck hole 1
|
\O ‘
a o
— }— - J
1 15 2
r/a
(a)
l;o/o /
//
8l /
+
1 /
+ /
| /
T
4 -

e ¥ 0.44087
black hole

PRI S

10

FIG. 15. p vs r for the n’=1 zero-node black-hole solution,
(a) in a linear scale of r and (b) in a logarithmic scale. The
matter distribution is located in the shaded region with r <r,,
and the horizon is at r/a=1. Outside the star r > r,, we have
the Schwarzschild solution p/a =[(r/a)'*4(a /r)'?].

side ) but inside the Schwarzschild space, we can use our
solution as the zeroth approximation and treat the small
parameter exp(—A~2) as a perturbation; this provides a
boundary condition for the region inside . The conse-
quences of exp( —A~2)s£0 may then be analyzed.

The solution for the scalar soliton stars derived in Sec.
III covers a mass region

0 < (mG’moy®)M <0.062303 ,

and the black-hole solution discussed in this section cov-
ers only the region

0.394495 < (7G’mo )M < 3% .

For masses outside these ranges, the metric must have ex-
plicit nontrivial time dependence.
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