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Mini-soliton stars
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Nontopological soliton solutions of a complex scalar field in general relativity are derived. The
theory is renormalizable (except for graviton loops), and these solutions are valid both classically and
quantum mechanically. We study the ground states (which are stable) as well as the excited states,
but restrict ourselves to spherically symmetric ones. Their physical characteristics can be rather re-

markable. For example, if the mass of the scalar field is about 30 CieV, then a mini-soliton star
could have a radius -6)& 10 ' cm, a mass —10' kg, and a density —10 ' times that of a neutron
star.

I. INTRODUCTION ds = e "dt —+e "(dr + r da +r sin a d P ), (1.5)

In the preceding paper, ' it was pointed out that the ex-
tension of the nontopological soliton to include gravity
can lead to new possibilities for cold stable stellar configu-
rations, called soliton stars. The simplest of these is the
mini-soliton star, whose structure will be analyzed in this
paper. Consider the case of a complex spin-0 field P of
mass m&0 in general relativity, with no direct meson-
meson coupling, or only repulsive coupling (as would be
the case if there is no other field and the theory is renor-
malizable). The theory is assumed to be invariant under a
space-independent phase transformation

p~e'ep;

consequently, we have the conservation of its generator N,
called the particle number. Mini-soliton stars refer to
those stable configurations with very large N. As we shall
examine in detail, such an object has a miniscule spatial
dimension —m ', like an elementary particle; but its
mass M can be rather large, typically about (in units
R=c =1)

p= re" . (1.6)

The functions u, v, and 8 depend only on r, or,
equivalently, only on p. Hence,

e "=d lnp/d lnr =1+r dv

dl
(1.7)

The invariant volume element is

d = lg I'" ll d "

=
~ g ~

' 'dtdx'dx'dx', (1.8)

where dx =dt and
~ g ~

is the absolute value of the
metric determinant. For the two coordinates (1.4) and
(1.5), we have

where a,P are the standard polar and azimuthal angles,
and p is (2n )

' times the circumference (i.e., the length of
the great circle) of a two-sphere, related to r by

—(lt m) m, (1.2) ~g ~

' dx'dx dx =e"+"p sinadpdadP (1.9)

M (Xm, (1.3)

which ensures its stability against decaying into N free
particles.

In the following, we shall restrict our investigation to
spherically symmetric solutions; the square of length dif-
ferential can be written in terms of the spherical coordi-
nates (t,p, a,P) as

where lz —10 cm is the Planck length. Take the exam-
ple of m —30 GeV: (1.2) means that the extension of the
mini-soliton star is —6)&10 ' cm, but its mass can be
—10' kg, with an N-10 and a density —10 ' times
that of a neutron star.

For the ground state, there is the inequality

in the former, and

~ g ~

'~ dx'dx dx =e"+ "r sinadr dadP (1.10)

p=po .

We may write, in addition to Hilbert s action, a surface
term

in the latter. Both coordinate systems are useful. Quite
often they will be used concurrently.

Consider a large two-sphere of a constant circumfer-
ence 2vrpo (which will —+ ao in the end). Let A (g) be the
gravitational action over a four-dimensional region
whose boundary S is the product of the time axis with the
two-sphere:

ds = e "dt +e 'dp +p (da +—sin adP )

or in terms of the isotropic coordinates ( t, r, a, P) as

(1.4) A(g)=(16mG) ' f &dr+ f WdS

where W is the scalar curvature,

(1.12)
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&=2n" „. —(4/po) (1.13) L (g) = E—(g)

n "n =1P (1.14)

with n".„ the covariant divergence of the (four-
dimensional) unit vector n", normal to the surface S, and
dS is the invariant surface element on S, so that (at points
on the surface)

=(2G) ' f e" e"—2 1+p
dp

du+e " 1+2p
dp

dp . (1.22)

and

npdx~dS =d7 (1.15)

Similarly, in the isotropic coordinates,

L(g)= E(g)=—(2G) ' f e"+'(2u'U'+U' )r dr, (1.22')

For example, in the spherical coordinates (t,p, a,p) the
only nonzero eornponent of n& is

where

u'=du/dr and v'=dv/dr . (1.23)
v ~

nz ——e (1.16)

v du 2n".„=e +-
dp p

(1.17)

Hence, on the surface S, we have

4&=2e " + —(e ' —1),
dp p

where p=po. Because of (1.15),

e "dpdS =e"+"p sinadt dpdadP,
which gives

dS=e"p sinadtdadp.

(1.18)

(1.19)

(1.20)

this gives nI'=e " and [by extending the definition (1.16)
of n„als oto points adjacent to S]

The inclusion of the surface integration in (1.12) converts
Hilbert's action into one that contains only the first
derivative of the metric, so that the usual Lagrangian
mechanics formulation can be applicable. For the two-
sphere (1.11), its circumference 2vrpo is clearly an invari-
ant quantity; therefore, W, defined by (1.13), is manifestly
invariant under any coordinate transformation in the
four-dimensional space, like the scalar curvature A.

For a complex field P, the matter action is

A (m) = —f [(5t"P„+U(gag)]dr, (1.24)

where p is the Hermitian conjugate of p,

aO t act

(1.25)0"=g"4., »d 0'"=g" 0.
Likewise, in the isotropic coordinates (t, r, a, p) the only
nonzero component of n„ is n, =e", which gives n"=e
and

The current j",defined by

j"—= i (p p—"—p "p),
is conserved:

(1.26)

du dv 2n". =e " +2
dr dr r

Therefore, (1.18)—(1.20) become

(1.17') jIJ —O

and therefore

(1.27)

—v du
2

dU

dr dr
(1.18')

e "dr dS =e"+ "r sina dt dr da dP, (1.19')

and

dS =e"+ "r sina dt da dP . (1.20')

A (g) =L (g) f dt, (1.21)

where L(g) is the Lagrangian of the gravitational field.
The corresponding gravitational energy is

E(g)= —L(g) .

By using (1.12)—(1.20), we find, in the spherical coordi-
nates,

Clearly, expressions (1.17)—(1.20) are identical to
(1.17')—(1.20'). For the time-independent metric g„„that
we are considering, the t integration is a trivial one. We
may write

(1.28)
ax~

A classical soliton solution is, by definition, regular
everywhere, and it is zero at infinity ( r~ ao ). Its ampli-
tude is proportional to the inverse of same appropriate
attractive-force coupling constant; in the case of the
mini-soliton star, since the attraction is provided by the
gravity, it is proportional to 6 ', as we shall see. In
the weak-coupling limit G~O, the soliton amplitude P
diverges, which is typical. Once this singularity in cou-
pling constant is factored out, a power-series expansion in
the coupling constant can be established. The quantiza-
tion and the formal quantum perturbative method can
then be carried out for any soliton state in a straightfor-
ward way. Here, there is also no difficulty, except that
the graviton-loop diagrams remain divergent (due to
quantum fluctuations at distances —the Planek length
lp «m '). Throughout the paper, we are concerned
only with distances -m ' or larger. Ignoring graviton
loops, a renormalizable quantum theory for the mini-
soliton star can be obtained by following the well-
established procedures for quantum solitons, provided
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(1.29)

Because the meson-meson coupling is repulsive in this
case, the existence of soliton solutions depends only on
Newton's constant G; the presence of f is not an impor-
tant feature. In what follows, we shall concentrate only
on the classical solution, and refer the quantization to the
standard literature.

As will be shown in the Appendix, at any given N, the
minimum energy solution requires P to have a harmonic
dependence on t:

(1.30)

Hence the matter action becomes

4ae"~ 1—
P

4a
e "~ 1—

P

i.e., as r~~
Q r —a

e ~ r+a
r+ae'~

2

1/2

—1/2
(1.43)

(1.44)

A(m)=L(m) f dt,

where

(1.31)
where

a = —GM .1

2 (1.45)

~ —1/2 —i coto.e (1.33)

where cr depends only on p (i.e., only on r). In terms of o,
the functions U, V, and 8' become

2U dOV= —,e
dp

2
do
dr

2

(1.34)

(1.35)

and

L(m)= f ( —U —V+ W) ~g
' dx'dx dx . (1.32)

For a spherically symmetric solution, we may write

These equations and other identities are discussed in
Sec. II. Their Newtonian limits are given in Sec. III. The
exact relativistic solutions (for f =0, but m&0) are exam-
ined in Sec. IV. Even for such a "free" field theory with
gravity, although the basic system is simple, the behavior
of the stellar mass M versus the particle number N is
surprisingly complex, as can be seen from the examples
given in Figs. 1 and 2, where n denotes the number of
nodes in cr. At a fixed N, the mini soliton star is
described by discrete levels (as typical for nontopological
soliton solutions).

II. GENERAL DISCUSSIONS

The particle number N is

N = J g dx dx dx

=(2/co) f W ~g ~

'~ dx'dx dx' .

Define the matter energy E(m) to be

E(m) =Neo L(m)—
= f (U+ V+ 8')

~ g ~

'~ dx'dx dx' .

The total energy of the system is given by

E =E(g) +E (m ) =Neo L, —

where the total Lagrangian is

L =L (g)+L (m) .

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

A. Basic equations

Let A'& be the Ricci tensor and H=g" M& the scalar
curvature. The Einstein equation relates

1

GPv =~@ —
2 g

to the matter tensor: in the spherical coordinates
(t,p, a, P) we have

n fixed

(schemati c)

The basic equations can be derived either by minimiz-
ing E with N fixed, or by taking the extremity of L with
co fixed. For a mini-soliton star, the solution is regular
everywhere, with

—(n, 1)

Q) ( E7l

Therefore, at oo,

g(e —(m —a& ) ~ r) 0

(1.41)

(1.42)
FIG. 1. A schematic drawing of the mass M of a spherically

symmetric mini-soliton star vs its particle number N for a fixed
number n of nodes (in the scalar field amplitude).

Likewise, u, v, and v approach the Schwarzschild solution
(also exponentially): as p~ oo,
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C)
O

O
n~0
(actua 0,1)

du , 2 du d p 2

dp p dp dp p

Substituting (2.1)—(2.3) into (2.5), we obtain

(2.5)

Q O

O

O&
0

(o,2

0.2 0.4
Gm N

(a)

0.6 0.8 5L
5u 5v

at a constant ~, or

d 4
( W'+ V —U}= ——V —2( W

dp p
which is simply (2.4) times doldp.
be readily derived by using either

+V), (2.6)
dp

These equations can

(2.7)

O
O

O--
I

E

O-
I

n=0
(detail)

(o,2)

(o, 1)
5E
5u 5U

5E

N

=0 (2.8)

x =u =ru

at a constant N, where F. and L are given by (1.39) and
(1.40).

In the isotropic coordinates (t, r, a.,13), it is useful to in-
troduce

C)Oo 0 0.2 0,4.

Gm N

(b)

0.6 0.8 y =—1+U =1+rv'=e
x —=rx', y =ry',

where, as before

(2.9)

FIG. 2. Actual plot of the mass M vs the particle number N
(a), and the binding energy Nm —M vs N (b) for n =0.

u'=du/dr, v'=dv /dr,
u"=d u/dr v"=d v/dr

x'=dx ldr, y'=dy ldr .

(2.10)

p2G t e
—2v ] 2e

—2vp
dU

dp

= —81rGp (W+ V+ U),

-2-. du
p G P —e

—» l+2e —2vp

=81rGp (W+ V —U),

and

(2.1)

(2.2)

Hence, (2.1)—(2.3) become

2y+y —1= SrrGr e '(W+ V+—U),

2xy +y —1 = 8' Gr e "( W + V —U),

x+y +x = SrrGr e "( W —V —U),

or, alternatively,

2u" +u' + —u'= —StrGe "(W+ V+ U),
r

(2.11)

(2.12)

(2.13)

(2.11')

pG =e '
p 2+ 1+p p (u —u)2 a —zv zd u du

dp dp dp

=SrrGp (W —V —U); (2.3)

2u'u'+u' +—(u'+u') =81rGe '( W+ V —U),
r

(2.12')

u "+v"+u' + —(u'+v')=87rGe '(W —V —U), (2.13')
r

and (2.4) can be written as

the last one is identical to that for p G~~. The field equa-
tion of the spin-0 field,

e " o."+ u'+v'+ —o' +iv e "o — =0 (2.14)
r do

zv d 0 2 du
2 + —+

dp p dp

dU do
dp dp

+co e "o — =0, (2.4)z —2 dU
do

with o'=do. /dr and o."=d o./dr .
Substitute these solutions into the integrals (1.22) and

(1.22') and (1.32) for L (g) and L (m). Regarding
L =L (g)+L (m) as a function of co, we have

is related to Einstein s equations, on account of the identi-
ty

dL BL
d co Bco

Q, V, O'

(2.15)
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Likewise, we may use these solutions to evaluate the cor-
responding E(g) and E(m). By regarding the soliton
mass

d vev r
GT" d7

= —4mGr e "~
( W'+ V+ U) . (2.22)

M:E—=E(g)+E(m) (2.16)

as a function of the particle number N, we have, on ac-
count of E =Neo —L,

Upon integration and using the Schwarzschild solution at
oo, we obtain

M =4~ f ( W+ V+ U)p'dp (2.23)

BE
BN

(2.17)
and

M —4~ P +V+Ue v
7 dy (2.24)

Set co &m, and take the regular solutions that satisfy
the boundary condition: o., u, U, U all =0 at p= oo. It fol-
lows from (2.14) that cr~O exponentially at infinity, as in-
dicated by (1.42); likewise, U, V, and Wall ~0 exponen-
tially at oo. Expand u and U in powers of p ", since the
right-hand sides of (2.1)—(2.3) are all 0 (e "~) where
k =(m —co )', so must their left-hand sides be. Thus,
to each power of p ', u and U must be equal to the
Schwarzschild solution; i.e., (1.43) is also accurate to
0(e "~). The same holds for u and U, as expressed by
(1.44).

B. Soliton mass

or

M = lim pU/G
p~ oo

M = —lim pu/G .
p~ oo

(2.18)

(2.19)

The soliton mass M is defined by (2.16). As is well
known, the same M can also be derived by using the
asymptotic behavior of the metric gpp e ' or g« ———e "
at p= oo.

Either expression establishes the positivity of M. In addi-
tion, from (2.21) and v =0 at co, it follows that

0&y =e '&1 . (2.25)

By taking the combination G + —,(Gz~ —G, '), we have

d 2 u —vdu

dp Gp
pe" =S~Gp e"+"(2W —U), (2.26)

which leads to still another formula for M:

M=87r f (2W —U)e" +'p dp

=Svr (2W —U)e" + "r dr .
0

This may be written as the virial theorem

E(g)+4~ f ( —3W+ V+3U)e" +~p dp=0.

(2.27)

The same result can also be derived by making a scale
transformation changing p, u (p), u(p), o(p) to
Ap, u (kp), u(kp), o(Ap) in (1.22), (1.37), and (1.38), and
then setting (BE/BA, )z ——0.

Another relation can be obtained by considering the
difference GpP —G, '; this gives

[pe "(1—e ")]=G [E(g)+E(m)],d ~ -- d
dp dp

where, because of (1.22) and (1.38),

(2.20)

—] u vE(g)—:(2G) 'e" —e'+2 1+p du

dp dp

These formulas can be established by using (2.1); we find (u +U) =S~Gpe '(W+ V)
Gp

and is always positive. Because u +u =0 at ~,
u+U &0

at all finite p.

C. Behavior near the origin

(2.28)

(2.29)

and

—e 1+2p
Gp

From (2.1), (2.2), and (2.4), we see that as p~O,

u =u(0)+0(p ),
U=O(p ), (2.30)

d E(m):4vrp e" +'( W—+ V+ U) .
dp

and

o=cr(0)+0(p .
) .

The integration of (2.20) gives (2.18) and (2.19) directly;
hence, the constant in the Schwarzschild solution (1.43) is
related to M =E(g)+E(m).

There are many alternative formulas for M: (2.1) and
(2.11') can also be written as and (2.31)

These imply that in the isotropic coordinates, as y ~0 the
variables x and y, defined by (2.9), are of the form

x = , ar +0(r )—
[p(1 —e ') ]=S~Gp ( W+ V+ U)

dp
(2.21)

y =1 + ,'br +0(r ), -—-
where a and b are constants. By using (2.11)—(2.13), we
find
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dx 2U(0) —4 W(0)
& —4,U(0)+ W(0)

(2.32) dy 1

dx 0 4
(2.44)

It is convenient to introduce

e—:—e
—u(p) ~ —u(p)

m

Because du/dp=du/dp and

(2.33)

where U(0) and W(0) are the values of U and W at
r =0. [Note that V(0) =0 because of (2.30).]

D. Integration method

in accordance with (2.31), (2.32), and (2.37). Equation
(2.40) then determines a universal curve, which terminates
at (ii), as given by the solid curve in Figs. 3(a) and 3(b).
There is a curious spiral structure near the end point (ii).
Since the W-dominating region plays a more important
role for the regular soliton stars, we shall postpone the de-
tailed discussion of this spiral trajectory to a later paper.

The Schwarschild solution corresponds to the hyperbola

(2.34) 2xy +y —1=0, (2.45)

e =—— e
—u(0) ~ —u (0)

Pl
(2.35)

and adjust o(0) so that a(p)~0 at oo, after a given num-
ber n of nodes; co is then determined by

=e —u(oo ) (2.36)

when expressed in terms of u, v, and o., the basic equa-
tions (2.1)—(2.4) do not contain co explicitly. We may use
the boundary condition (2.30) to integrate (2.1), (2.2), and
(2.4) from p=0 outwards. Fix

indicated by the dashed line in Fig. 3(a); it also satisfies
(2.40).

For the actual solution of (2.1)—(2.4), its (x,y) trajecto-
ry always starts (at r =0) at point (i) with a slope & ——,.
When the initial value e "' ' is large, W dominance is a
good approximation at small r; the corresponding trajec-
tory in the (x,y) plane follows fairly closely the universal
( W-dominating) curve. As r increases, W no longer dom-
inates. The trajectory gradually changes its course and fi-
nally approaches the Schwarzschild hyperbola (2.45) and
returns to point (i) as r~ ao, but at a slope dy Idx = —1.

E. W-dominating region

When the initial value e "' ' is increased steadily,
among the three matter-energy terms W V, and U, W be-
comes more and more important (at least near the origin).
Whenever that happens, there is an important simplifica-
tion.

Setting in (2.11)—(2.13)

CB

C)

V=U=O,
we find

2y=1 —xy —y

x = —2 —x +3xy+2y

and

dy 1 —xy —y
2

—2 —x 2 +3xy +2y 2

It is convenient to think of

(2.37)

(2.38)

(2.39)

(2.40)

C)

0.2 0.4 0.6 0.8
v'

See (b)

(2.41)

as a fictitious time, and x(r),y(r) as the trajectory of a
"particle. " There are two critical points, defined by
x =y=0:

LA
C)

0

and

(i) x =0 and y =1

(ii) x =y =2—'" .

(2.42)

(2.43)

0.69 0.7 0.71 0.72

Assuming W dominance, we find that when r = —oo (i.e.,
r =0) the trajectory must start from (i) with an initial
slope

FIG. 3. The solid curve is the universal ( W-dominating) tra-
jectory defined by (2.40) and (2.44). The dashed curve is the
Schwarzschild hyperbola 2xy +y —1 =0.
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III. NEWTONIAN LIMIT

For the Newtonian limit, it is more convenient to adopt
the isotropic coordinates (t, r, a,P). We assume, as in
(1.33), u=0(g ) . (3.14)

Substituting (3.4), (3.9), (3.11), and (3.13) into (3.12), we
see that u '8' is of the same order as V'; since
W- U- V/g, we find

2 —1/2
( )

i cot— (3.1) From (3.5), we estimate

but with ~ only slightly less than m, so that
1/2

v =0(GU/g m ),

(3.2)
and from (3.6), or (3.7),

u+v =0(GU/m ) .

U= —m o. (3.3)

in addition, the matter density is supposed to be relatively
low (proportional to g, as we shall see). Hence, we
neglect the nonlinear o coupling and set, instead of (1.34),

Therefore,

GU/m =0(g ),
v =0(g ),

(3.15)

(3.16)

/u/ and /v/«1.
Neglecting u and v, (2.11')—(2.13') become

(3.4)

The other energy densities V and 8' remain given by
(1.35) and (1.36). The deviations of the metric e " and e '
from 1 are also small, by definition of the Newtonian lim-
it; i.e.,

and

u +v =0(P) . (3.17)

2o"+ —o'=(m —to e ")o. .
r (3.18)

Substituting (3.3) into (2.14) and using (3.16) and (3.17),
we derive, accurate up to 0 (g m ~o ),

2v" + —v'= —8vrG(W+ V+ U),
r

(3.5) Likewise, because of (3.3), (3.9), (3.11), and (3.17), we can
reduce (3.5) into

and

(u'+v') =—8nG( W+ V —. U},
r

u" +v" + —(u'+ v'}= 8~G ( W' —V —U) .
r

(3.6)

(3.7)

u "+—u'=4m. om o.

which is accurate up to 0 (g m ). Define

CO@=1— e
—2Q

m

(3.19)

(3.20)

For co&m, o. decreases with increasing r. Approxi-
mately, o. is proportional to Equations (3.18) and (3.19) can be written as

exp[ —(m —tv )'~ r]=e ™. (3.8) V o.=pm o. (3.21)

Thus, a typical r derivative d /dr brings a factor gm; i.e.,
and

d -gm
dl

and therefore we may estimate

(3.9)
V y=8m. G~ o (3.22)

where V' =(d /dr ) —2r '(d/dr) These . equations can
also be derived directly by using the Newtonian gravity.

Introducing

=0(g) . (3.10)

For the same reason, V= —,e "o' is small compared to
U by a factor -g'. Since cv is near m, W= —,'cv e "o~

differs from U by a similarly small factor; i.e.,
2 d

A

2 d

r dr

y=A, y, r =(mA, ) 'r,
cr=(8m. G) ' (m/cv)A, o, (3.23)

U
—=0(g ) and =0(g' ) .

U
(3.11)

In the isotropic coordinates, (2.6) takes on the form
(without approximation)

we convert (3.21) and (3.22) into a set of scale-independent
equations

V o.=y o. (3.24)

U' —V' —8"=2 u'+ U'+ —V+2u'W .
r

(3 12) and

V y=o. (3.25)

r —( m) (3.13)

Because of (3.8), the radial size of the mini-soliton star is
—(gm) '; hence, for the greater part of the solution The solution of cr(r ) can be characterized by its number

of nodes n. The ground state corresponds to n =0. It is
convenient to fix (for any n)
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o.=1 at r=0. (3.26)

and

y ~yp ———0.918 58 as r —+0, (3.27)

y~y (yi/—r) as r~ oo

where

These solutions are then universal functions. The special
cases n =0 and 5 are given in Fig. 4 as examples.

Take the solution for the ground state, n =0. From the
numerical result, we find

The particle number is

4~ ~o 2e u +3vr 2dr
0

=(2Gm ) 'A, f cr r dr

where the integral is related to the asymptotic behavior
(3.28) of y, through Gauss's theorem W. e find

1 /2

N =(2Gm ) 'y„' yi 1— (3.32)
m

Let

y =0.97896 and y&
——3.46826 . (3.28) cv= m(1 e) .— (3.33)

The asymptotic behavior of the matter field o is given by
J /2w

Y oo ~myO.~O. e r as r~~,
where

For e small, (3.32) becomes

where

N~ ——(2Gm ) '(2/y )'~ yi .

(3.34)

(3.35)
cr =3.3943 and 2(v+ 1)=yi/y (3.29)

Because of (2.17) and (3.33),
Once y and o. are known, y and o. can be obtained from
(3.23), in which A, is related to ro/m by taking the r = &x&

limit of the first equation, y=A, y. We have

dM
dN

=m (1 E)=m —1— N
Np

(3.36)

CO

y oo
772

2

(2 (3.30) which gives

M =Nm (1——,E) . (3.37)
Neglecting f',

u= —v= —,A, (y —y„) . (3.31)
The values of yp, y, and y& for n =0, 1, . . . , 5 are given
in Table I.

I I I

COo

CIo

n~0
Newtonian Limit

IOo

o

CVo
IAo

I

o
0 12 I 0 S 12

(b)

IOo
EOo

o
Ol

~o

n~5
Newtonian Limit

IAo

IAo ~

I

CV

oe
I I 4 I

20

(c)

10 20
F'

FIG. 4. Newtonian limit of the gravitational potential and the matter amplitude when the number of nodes n =0 and 5. See
(3.23)—(3.26) for the definitions of y and o.
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TABLE I. Values of yo, y„, and P& for the Newtonian solutions when the number of nodes
n =0, 1, . . . , 5. [See (3.27)—(3.28) for their definitions. ]

3'o

—0.918 58
—1.209 96
—1.343 70
—1.428 28
—1.489 43
—1.537 01

0.978 96
0.91627
0.892 21
0.877 99
0.868 12
0.860 66

3.468 26
7.71395

11.935 47
16.132 18
20.310 19
24.473 66

IV. NUMERICAL SOLUTIONS where e " is given by (2.33):

We have made extensive numerical studies for the exact
equations (2.1)—(2.4) when (4.3)

U= —,m o~ . (4.1)

In spite of the simplicity of the basic theory, the result is
surprisingly nontrivial. In this case, the matter equation
(2.4) becomes linear in o, and all matter energy densities
U, V, 8'are quadratic in o.. Define

p=mp, cr=(16vrG)' o',

Equations (2.1), (2.2), and (2.4) can be reduced to

e ' —1 —2Pe '(dujdp) = ——,( W+ V+ U)P

e '—I +2Pe '(du /dP) = —,
'

( IV+ V—U)p

(4.4)

(4.5)
U:——,o, V= —,e '(dcrjdp) (4.2)

and

e 'I(d crldp )+(do/dp)[(2lp)+(djdp)(u —U)]I =(1—e ")cr, (4.6)

in which both dimensions m and G have been scaled
away. [Likewise, (2.3) can also be reduced, since it is
derivable from (4.4)—(4.6).]

We then apply the integration method outlined in Sec.
II D to (4.4)—(4.6). At each radial point, these numerical
solutions carry an accuracy of about one part in 10 . The
main features, which we find to be both complex and il-
luminating, are given below.

A. Mvs N

For a fixed

and by W. Thirring [Phys. Lett. 127B, 27 (1983)].) As
e "' ' keeps on increasing, the curve M„(N) now des-
cends until it reaches its second cusp, labeled ( n, 2) with

M =M(n, 2) and N =N(n, 2); (4.10)

then it turns back and rises again, up to third cusp
( n, 3), . . . . Each of these cusps is labeled ( n, n '), with
n'=1, 2, . . . indicating its consecutive order. The curve
M„(N) approaches a limiting point as e "' '~oo. (See
Secs. IVB and IVD for further discussions. ) Everywhere
on the curve, we have

n =number of nodes in o(r), (4.7)
dM„(N)

dN
(4.11)

we first assign an initial value e "' ', defined by (2.35). A
solution may then be derived by following the steps given
in Sec. II D. This yields a mass M and a particle number
N. As illustrated in Fig. 1, when e "' ' increases from 1,

M:—M„(N) (4.8)

M =M(n, 1) and N =N(n, 1); (4.9)

then it changes its course abruptly. (Note added in proof.
It has been brought to our attention that the lowest
branch of the 1s solution has already been analyzed by R.
Ruffini and S. Bonazzola [Phys. Rev. 187, 1767 (1969)]

rises from the origin M =0 and N =0 to its first cusp, la-
beled (n, l) with

Along each such zigzag curve M„(N), for a given parti-
cle number N, quite often, there would be more than one
stellar mass M. The minimum value always lies on its
first portion between the origin and (n, 1), which will be
defined to be

[M„(N)] (4.12)

Hence, each curve [M„(N)];„has a finite length, begin-
ning at the origin and ending at (n, 1). At any N, when-
ever [M„(N)];„exists, it satisfies the inequalities

[ M( )N];„[(„M(+)N];„(Nm. (4.13)

For example, for n =0 the curve [Mo(N)];„ends at
the cusp (0,1), with
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M(0, 1)=0.633(Gm)

N(0, 1)=0.653(Gm )

and, at that point, co is

co(0, 1)=0.853m .

Within the interval N & N (0, 1), we have

(4.14)

—( Gm) '(5.232)& 10 +5) (4.17)

Further details are given in Table II (in Sec. IV E).
The same pattern repeats itself, as illustrated in Fig.

5(a). In Fig. 5(b) we plot M(n, 1)—mN(n, 1) vs N(n, 1)
for n =0, 1, . . ~, 10; these points lie surprisingly well on a
straight line:

M(n, 1)=m (1—0.022 173)N(n, 1)

M(1, 1)= 1.356(Gm)

N(1, 1)=1.392(Gm )

and, at that point, cu is

co(1,1)=0.881m .

(4.15)

For N & N(1, 1), there is no longer any n = 1 solution.
The n =2 solution takes over until N =N(2, 1); in turn,

[M2(n)],„ends abruptly at the cusp (2, 1), with

[Mo(N)];„&[M, (N)];„&[M2(N)]

But for N & N(0, 1), there is no longer any n =0 solution.
In the range N(1, 1) &N &N(0, 1), the minimum stellar
mass is given by the n = 1 solution. The curve

[M
~ (N) ];„terminates at the cusp (1,1) with

with 5 —10 shown in Fig. 5(c). We have also examined
the relation between M (n, 1) and N(n, 1) for much larger
n, and find the straight-line fit still good. In Fig. 5(d) we
give the plot for n up to 56; the best fit is

M(n, 1)=m (1—0.021576)N(n, 1)

—( Gm ) (1.8542 X 10

—1 3750)& 10 e +e) (4 18)

with

a=5.81&& 10

and e-10 shown in Fig. 6.
From (1.37) and (2.27), we see that

M (2, 1)=2.085( Gm )

N (2, 1)=2. 138(Gm )

and, at that point, co is

co(2, 1)=0.888m .

(4.16)
M —Nco =2 f ( W —U)

~ g ~

' ~ dx 'dx dx (4.19)

A comparison with (4.14)—(4.16) indicates that its left-
hand side is only —10 times M; i.e., 8' —U is relatively
small (compared to U), which is reminiscent of the
Newtonian case. This is borne out by comparing the ex-

O

E

Q O--
O

O

I

E
O

E
C3

O.
O

O
0 3

Gm N

(a)

10

I

O
X

0 O
U
LL.
O

C3
I

O
X

I

Gm N

10

I 0

E O

CV

O

0 5 10 15 20 25 30 35 40 45
Gm N

FICs. 5. Binding energy Nm —M vs N for n =0, 1, . . . , 6 (a), where ( n, 1) denotes the first cusp when the number of nodes is n.
The nearly linear dependence of M(n, 1) on N(n, 1) is illustrated for n up to 10 in (b) and n up to 56 in (d). The correction term 6,
defined in (4.17), for n =0, 1, . . . , 10 is given in (c).
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n
o
X
sA, ~ ~

~ ~

for n ~ 0,1,2, ..., 10

then n ~ 12,14,...,56
~ ~

X= L„(~)d
dc'

(4.22)

C0
4)
L
I0
O IO

l
C)

X

~ ~

co = M„(N),
dN

in accordance with (2.15)—(2.17). Hence the slope of
M„(N) is always positive, and & m. It has a cusp at

I

10 10 20 30 40

FIG. 6. Correction term e in the mass formula (4.18), for
n =0, 1, . . . , S6.

d L„(co) =0,
d co dc'

(4.23)

since dX/des changes sign whenever co passes its cusp
value co(n, n ').

As mentioned before, for each initial value e "' '& 1,
we determine a solution; cu is related to u at oo through
(2.36):

co = me (4.24)
act solution with the Newtonian solution of the same n

and the same particle number = X(n, 1). [Note that along
M„(N) during its initial portion, from the origin
M =O,X =0 to its first cusp ( n, 1), the initial value e
is still not large; later on, when e "' ' becomes &~1, the
exact solution is quite different from the Newtonian ap-
proximation. ]

Another simpler comparison can be made by approxi-
mating (4.17) as

M=m (1 —0.022 173)1V

and combining it with the Newtonian formula (3.37); this
leads to setting

—,e =0.022 173

in (3.34) and (3.35), from which a Newtonian approxima-
tion of X=N(n, 1) can be derived. By using Table I, we
find X(n, 1) times ( Gm )

' calculated from the Newtoni-
an formulas (3.34) and (3.35), to be 0.64 for n =0, 1.50
for n =1, 2.30 for n =2, 3.14 for n =3, 3.97 for n =4,
and 4.81 for n =5. As can be seen from Fig. 5(b) and
(4.14)—(4.16), the Newtonian approximations are within
10% of the exact values.

At first sight, this seems extraordinary. The Newtoni-
an curve M =M„(N), for any n, has no cusp. How can
the exact solution at its cusp resemble even remotely the
Newtonian solution? As will be discussed in the next sec-
tion, the appearance of cusps, though dramatic, depends
on the second derivative d L, /den . Hence, it is sensitive
to small differences between solutions.

inca/m = —u(0) —j 8~Gpe '( W+ V)dp .
0

(4.25)

Now —u(0) is &0, (4.25) gives inc@/m as the difference
between two positive numbers, which can both be quite
large, especially when e "' ' is &&1. For any given n, ~
turns out to be an oscillatory function of e "' ', begin-
ning at m when —u(0) =0 and approaching a constant as—u(0)~ oo. In Figs. 7(a) and 7(b) we give two examples
of co vs —u(0) for n =0 and 10. Along each curve, label
the consecutive minima and maxima as a„,b„,c„, . . . [in
the direction of increasing —u(0)] as shown in Figs. 7(a)
and 7(b). At each a„,b„,c„, . . . , we have

d c(7

du (0)
(4.26)

Likewise, as shown in Figs. 8(a) and 8(b), for any given
n, N is also an oscillatory function of the initial value
e " '; the cusps ( n, 1 ), (n, 2), . . . are precisely its consecu-
tive maxima and minima. Furthermore, each (n, n') cusp
(when n

' varies from 1 to 2,3, . . .) must be sandwiched be-
tween a maximum and a minimum of the co vs e
curve. This is because at each of the extremities
a„,b„,c„, . . . , we have (4.26); therefore, du(0)/dc@= ao

and

The relation between u(0) and u(oo) is complicated.
From (2.28) and U(0)=U(oo)=0, we see that

u( oo ) —u(0) = j 8~Gpe '(W+ V)dp;

consequently,

B. Cusps dN
dQ)

dX du (0)
du(0) d~

(4.27)

M„(N) =%co L„(co), —

where

(4.21)

Using the exact solution and keeping n, the number of
nodes in o., fixed, we may determine the total Lagrangian
from (4.19):

L =L„(co)=2 f ( U —W)
~ g ~

'—~ dx 'dx'dx' . (4.20)

The mass function M„(N) is related to L„(ro) by

As can be seen from Figs. 8(c) and 8(d), along the N vs co

curve (keeping n fixed and moving in the direction of in-
creasing e "' '), one encounters first the cusp (n, 1), then
a„, after that the cusp (n, 2), then b„, then (n, 3), then c„,
etc. For very large e "' ', although the curves M vs N,
N vs cu, and co vs e "' ' all keep on oscillating, the values
of I, N, and co hardly deviate at all from their asymptot-
ic limits.
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n=0

Cp

C. ( x,y) trajectories

For any given n, each initial value e
mines a solu

'
e e ) deter-

ution, from which a trajector
'

h

( .9). When p 0, the trajectory starts at2.
x an y are de ined b

ap

In e

x =0 andy =1
wtth an mitial slope, according to (2.32)—(2.35

—2u(0)+ 1

dx 4 —2u (0)

(4.28)

(4.29)

Hence

LA

C)

n=10
(4.30)1&— dy 1)—

dx 0 4

Each trajectory traces at least lone oop, since as p~ oo, it
has to return to the same point (4.28) with a slope

Q)
C)

ap

bp
Cp

dx
(4.31)

FIG. 7. Frequency ~
and 10; the consecutive

I
-U(P)

(b)

vs the initial value lne ' ' for n =0
minima and maxima are denoted by

2xy +y —1=0 . (4.32)

For small —u(0 t&, t e trajectory stays fairly close to the
Schwarzschild hyperbola as can bcan e seen by using the
Newtonian solution. When — (0) ben —u ecomes large, there

thereby, it also approaches the hyperbola, determined
from the Schwarzschild solution,
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ote

er o n, ,a„,(n, 2),b„,(n, 3),c„,. . . on the N
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appear several interesting features.
As examples, we give the (x,y) trajectories for n =0

and 1 in Fig. 9, n =10 in Fig. 10(d), all for the initial
value

LA
CO

C)

e
—u(0) (4.33)

IX)

CO

Kl
C)

0.2

0.2

0.3

0.3

0.4

0.4

The Schwarzschild hyperbola is always represented by the
dashed curves in these figures.

From Fig. 9(a), for n =0, we see that as p increases, the
(x,y) trajectory starts from (x =O,y =1) and ends at the
same point, making a single loop. For n = 1 in Fig. 9(b),
it makes one extra loop at about the middle; for n = 10 in
Fig. 10(d), it makes ten more loops. These are to be ex-
pected, because at each a node by definition o.=0, and
therefore U and W are also zero. Because U and 8'are
positive functions, these must be their minima. The oscil-
lations of U and W induce a similar behavior in both x
and y, on account of (2.11)—(2.13), which produces these
loops in the (x,y) trajectories. Further illustrations of cr,

x, and y vs p are given in Figs. 10(a)—10(c), for n = 10.

D. Solutions when e "' '~&1

At the origin p=O, we have V=O because of (2.32),
and W~~Usince

FIG. 9. The (x,y) trajectory of the solution with an initial
value e ' '=2. (a) is for n =0 and (b) for n =1. The dashed
curve is the Schwarzschild hyperbola 2xy +y —1 =0.

U
=e

and e "' ' is assumed to be &~ 1. Hence, the W-

dominating trajectory of Fig. 3 becomes applicable in the
central part of the soliton. In Figs. 11 and 12 we give the
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-LI(O)
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FICJ. 10. Solution for a mini-soliton star with ten nodes (n =10) and an initial value e "' '=2. (a)—(c) give o., x, and y vs the ra-

dius p. (d) shows its (x,y) trajectory, which makes ten extra loops before approaching the Schwarzschild hyperbola 2xy+y —1

(dashed curve) as p~ oo.
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FICx. 11. The (x,y) trajectory for n =0 (a) and for n =1 (b)—(d) when the initial value e ' ' is large, =10'. The point S denotes
the scaling region and the cross indicates the critical point x =y =2 ' . The dashed curve is the Schwarzschild hyperbola and the
point N in (b) and (d) denotes the node of the n =1 solution.
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FIG. 12. The (x,y) trajectory for n = 10 when the initial value e "' ' is large, = 10 . The points S and N denote the scaling region
and the first node. The critical point x =y =2 ' is indicated by a cross, and the dashed curve is the Schwarzschild hyperbola.
Note the ten loops in (d); to see all the loops clearly, more magnification is required.
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examples of (x,y) trajectories for n =0, 1, and 10 when W —U = —,(e "—1)o. (4.38)
—u[o] &08 (4.34)

We see that each trajectory now has n +1 extra loops (in-
stead of the previous n). These solutions can be best un-
derstood by separating the trajectory into four fairly dis-
tinct regions.

(i) Central region. This extends from the origin

p=O to p-e"' '/m &&m (4.35)

d 4
( W —U + V) = ——V —2( W + V)

8D

8p p 8p
or equivalently

(4.36)

G [(W —U+ V)e "]=—e " —V+2U2. 2. 4 8Q

Jp p Jp
(4.37)

In this region, because e "' I&&1, the (x,y) trajectory
stays very close to the W-dominating solution of (2.40),
given by Fig. 3. In the ease of e "' '= 10, the central re-
gion refers to the portion beginning at the starting point
x =O,y =1, covering the entire upper part of the trajecto-
ry and then extending counterclockwise to the lower part,
up to the point S [in the middle of the first loop of Figs.
11(a), 11(b), and 12(a)].

Within this region, V rises from 0 to a value much
larger than U, though it remains much smaller than 8'.
It is useful to think of (2.6),

xs =2 —k and ys =2 r +p (4.39)

Both g and ti are small; their relation will be analyzed
below.

(ii) Scaling region. In the (x,y) plane, the scaling region
refers essentially to the single point S (and its immediate
neighborhood). At that point, the variables cr, u, W, V,
U, and p all change substantially. Instead of the purely
8'-dominating central region, V now also plays a role.

Set, as an approximation,

x=y=O (4.40)

The right-hand side of (4.36) may be regarded as a friction
force. Because du/dp and V are both ~0, this force is
always negative, like friction. Within a "time"

p & e "["/m
rr would slide down in the potential (4.38), converting part
of the potential energy to kinetic, hence, V could rise to
become much larger than U. This behavior is illustrated
by the beginning parts of Figs. 13(a), 13(c), 13(d), and
14(a)—14(d). Because the W-dominating trajectory stops
at its critical point (2.43), (x,y)=(2 'r, 2 'r ), the cen-
tral region ends at a point 5 quite close to that critical
point [marked by a X in Figs. 11(a)—11(c) and 12(a) and
12(b)]. Let xs and ys be the coordinates of S. We may
write

in terms of a mechanical analog. Imagine a point particle
of "position" o and "time" p, with a "kinetic energy" V
and a "potential energy, "

and

U=O (4.41)
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FIG. 13. Dependence of o., x, and y on the radius p for the solution with ten nodes {n = 10) and a large initial value e ' '=10'.
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FIG. 14. The matter densities U, V, W, and the ratio V/8 vs the radius p for the solution with n =10 and e "' '=10 .

in (2.11)—(2.13). Equation (4.40) follows from the as-
sumption that p changes, but the (x,y) trajectory remains
at the point S; the second approximation (4.41) is made on
account of Ubeing much smaller than Vand 8'. Hence,

Hence,

2v dOV=28
dp

2

and

8'=(16m.G) '(x +1—y )p

From (4.40) and (2.9), one has

—v X dQ
y =e ', —=p

dp

and therefore

u x/y

Because of (4.44),

~
—2u~2 —2

1 —y —xy =0,2

V =(16rrG) '(2xy —x +y —1)p

(4.42)

(4.43)

(4 44)

(4.45)

(4.46}

and therefore V/W is a small constant, confirming (4.43).
An examination of the middle parts of Figs. 13(a), 13(c),
and 14(a)—14(d) shows that these formulas hold remark-
ably well, with g-0. 1 and g —0.2 for the case n = 10 and
e "' ' = 10 . The scaling region extends from
mp-expu(0) « I to mp- I, when o is near its first
node.

(iii) Belly. When cr hits its first node, point N on the
(x,y) trajectory in Figs. 11(b) and 12(a), the situation
changes into the V-dominating region. At the node o.=O,
and therefore

U= W=O

and (2.11)—(2.13) give

x = —x(x +y),

it follows then that

p(x —y)/y (4.47)

2y=1 —y —xy,
dx X +Xy

y +xy —1

(4.50)

and

o ~ 1 —2'~ (g+g) In(pm) . (4.49)

Substituting (4.39) into (4.42) and (4.47}, and neglecting
quadratic terms in g and g, we have The (x,y) trajectory is forced from the scaling point S to

take a swing in order to reach N, along (4.50). This forms
the belly between S and N in Figs. 11(b) and 12(a). [The
point N is absent in Fig. 11(a) since it refers to n =0, the
no-node solution. ]

(iv) Nodal region. Beyond the first node, (16m.G)'~ cr is



3656 R. FRIEDBERG, T. D. LEE, AND Y. PANG 35

TABLE II. Radius R, particle number N, and mass M at the first cusp (n, 1) when the number of
nodes n =0, 1, . . . , 10.

0
1

2
3
4
5
6
7
8

9
10

mR

3.109 78
7.891 62

12.831 69
17.840 01
22.892 76
27.977 50
33.089 11
38.222 51
43 ~ 374 70
48.544 21
53.728 30

Gm ~N

0.653 003
1.392 134
2.137 840
2.883 631
3.628 891
4.373 581
5.117754
5.861 469
6.604 782
7.347 736
8.090 369

GmM

0.633 001
1.356 265
2.085 372
2.814 529
3.543 186
4.271 317
4.998 970
5.726 202
6.453 063
7.179 595
7.905 833

very small, and the solution resembles a corresponding
Newtonian one, as can be seen from Figs. 13(a) and 13(b).
This is perhaps the least interesting region.

only the M;„(N) vs N curve at the (n, 1) cusps for dif-
ferent n =0, 1,2, . . . . At each (n, 1) cusp we have

M;„=M(n, 1)

E. Radius

The radius of a mini-soliton star may be defined by

and

N =N(n, 1) .
(5.2)

R =— 4vr f (U+ V+ W)p dp, (4.51) For n =0, 1, . . . , 10, (4.17) can be written as

M;„(N)=m (1—0.022173)N
where, in accordance with the mass formula (2.23), M is
given by

M =4m f (U+ V+ W)p dp . which gives

—( Gm ) '[5.232 X 10 +6(N)], (5.3)

The numerical values of the radius R, the particle number
N, and the mass M at the first cusp (n, l) are given in
Table II for n =0, 1, . . . , 10. As expected, they all in-
crease with n. The ratio R/GM is plotted against X in
Fig. 15(a), and against M in Fig. 15(b); both refer to
values at the cusp (n, 1), and for n =0, 1, . . . , 56. (Note
that for the Schwarzschild radius the corresponding ratio
is R/GM =2. )

We have also tried a different definition of the star ra-
dius, replacing (4.51) by

Z e--

~ ~

~ ~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~

~ ~
~ ~

for n'= 1 and

n = 0, 1,2, . . ., 10
then n = 12,14„,56

1 QO

8~ f (2W —U)e" +"p dp,

where, in accordance with (2.27),

M =8' f (2W —U)e" +'p dp .

(4.52)
10 20

Gm N

(a)

40

We find that the fractional difference between these two
definitions of radius, (4.51) and (4.52), is only —10

V. STABILITY
~ ~

~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~

~ ~ ~
~ ~

At each N, the ground-state stellar mass M;„(N) is
given by the minimum of all [M„(N)];„,which is also
the [M„(N)];„with the smallest allowed n. Each of
these ground state solutions is stable, except against fis-
sion, because inequalities such as

10 20

GmM

30

for n'= 1 and

n = 0, 1,2, ~ . . , 10
then n = 12,14,.. . , 56

40

M,„(N+N') ~M;„(N)+M;„(N') (5.1) (b)

can occur. A complete survey of all possible % and N'
lies outside the scope of this paper. Here, we will study

FIG. 15. Plot of R/GM vs N (a) and vs M (b) at the cusp
(n, 1) for n =0, 1,2, ~ . . , 56.
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[M,„(N +N') M—;„(N) —M;„(N')]Gm =5.232)& 10 —5(N +N')+5(N)+5(N') g 0, (5.4)

since 5 is —10 . Consequently, for n =0, 1, . . . , 10 the inequality (5.1) holds, and a large n mini-soliton star is unstable
against fission.

For larger n, up to 56, we may use (4.18) and denote the correction term there as e(N). This gives

[M;„(N+N') M—;„(N) M—;„(N')]Gm =1.8542)& 10 —1.3750&& 10 (e +e —e ' + ')

e(N—+N') +e(N) +e(N'), (5.5)

where a=5.81&& 10 and e(N) is —10, given in Fig. 6.
The sum inside the first set of parentheses on the right-
hand side is

e
—aGm N)( 1 e

—aGm N')

which lies between 0 and 1. Thus, (5.1) holds, indicating
instability against fission. The no-node solution
[Mo(N)];„ is, of course, absolutely stable.

Apart from fission by increasing the number of nodes n

indefinitely, there does not seem to be an upper bound in
mass for the mini-soliton stars.
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APPENDIX

To establish the time dependence of P for the lowest-
energy solution at a fixed particle number X, we write

f e (PRfr Prrtrg )
~
g ~

' '«'«'dx' . (A4)

The energy of the system is

E =E(m)+E(g), (A5)

where E(g) is given by (1.22) and is independent of P. As
in (1.38), the matter-energy E(m) can be written as

E(m)= f (U+ V+ IV)
~ g ~

' 'dx 'dx'dx',

where U and V are independent of P~ and Pr and W is

'"(A'+0r') .

(A6)

(A7)

and

4~ ~A+&A

4r+&4r

(A8)

keeping PR, Pr, and the metric g„„ fixed. The minimum
energy solution is determined by

At any time t, assuming that rtrR, Pr, and N are given,
we wish to find the P~ and Pr which make E minimum.
Consider an infinitesimal variation

P =(Pg +iPr )IV 2, (Al) 5(E+orN) =0, (A9)

where P~ and Pr are both real. Setting the superscript
p=0 in (1.26), we have

where co is the Lagrange multiplier. This leads to

'(t'R or(t'I ~ fr or(t'R (A 10)

.o
Bt

Denote

ay'
C}t

and therefore

(Al 1)

~4R

at
~dr

and Pr ——
Bt

In accordance with (1.37), N becomes

(A3)
which is (1.30).

Note that the validity of this conclusion is independent
of the complexity of the nonlinear interaction U(P), and
of the interaction between g„and P.
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