
PHYSICAL REVIEW D VOLUME 35, NUMBER 12

Soliton stars and the critical masses of black holes
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New possibilities of cold stable stellar configurations, based on nontopological soliton solutions in

general relativity, are examined. They represent coherent quantum states with very large masses M;
depending on the theory, M can be —10" times the solar mass, or less.

It has been commonly accepted' that for any star con-
sisting of normal matter, after its nuclear burning source
is exhausted, no stable solution exists if its mass M is
greater than a critical value M„which at zero angular
momentum is & five solar masses Mo. The star would
undergo violent processes, either by expelling some of its
mass and becoming a neutron star or a white dwarf with
M &M„or by collapsing into a black hole. This relative-
ly low critical mass M, has been used as a criterion for
the observation of black holes. The purpose of this paper
is to point out that by using the nontopological soliton
solution a new type of cold stable stellar configuration,
called a soliton star, can be formed (at least theoretically).
Depending on the theory, cold soliton stars may have a
mass as large as 10' Mo without becoming black holes.

To illustrate the basic mechanism, consider the follow-
ing example of a nontopological soliton, first without
gravity. The theory contains an additive quantum num-
ber N (like the baryon number) carried by either a spin- —,

field g, or a spin-0 complex field P, with its elementary
field quantum having N =+1. In addition, there is a sca-
lar field o.. Take the self-interaction of o. to be the typical
degenerate vacuum form (in units A'=c = 1):

2

U(o ) = —,
'

m o. 1—
CTp

We may assign o.=0 to the normal vacuum state, and
o.=o.o to the (abnormal) degenerate vacuum state.
(Theories of this type have been studied in the literature,
e.g., in connection with the spontaneous T violation, ' the
abnormal nuclear model, the bag model, ' and the
Higgs mechanism. ") The soliton contains an interior in
which o.=o.p, a shell of width -m ', over which o.

changes from o.
p to 0, and an exterior that is essentially

the vacuum. The ¹arrying field g, or P, is confined to
the interior; this produces a kinetic energy Eq (assuming
for simplicity that the mass of 1t, or p, is zero when
o =oo, but nonzero when o =0):

(3~)' ( ~X) ~ /R for P,Ek- .
~X/R for P .

The shell contains a surface energy

E, =4~sR

where s is the surface tension related to o.
p and rn by

2s= —,mop (3)

The radius R can be calculated by minimizing the total
energy E=Ek+E, . Setting BE/BR =0, we have the
equipartition

Ek =2Es (4)

Hence, the soliton mass M (which is the minimum of E)
can be written as

M =3E, = 12msR

the total conserved quantum number is

1/4
16 2

s R for P,X= ~ 3 3~

SsR for P,
and therefore, for large N,

Because the exponent of N is & 1, when N is large the sol-
iton mass is always less than that of the free particle solu-
tion, and that ensures its stability.

Next, we include the gravitational field. For configura-
tions with R much greater than the Schwarzschild radius
2GM, the effects of gravity can be treated as a perturba-
tion. Gravity becomes important when R becomes of the
same order as 2GM. Thus, the critical mass M, may be
estimated by simply equating R with the Schwarzschild
radius

R -2GM, ,

which leads to, because of (5),

M, -(48mG s)

The correctness of such an estimate together with the de-
tailed solutions for soliton stars are given in a series of pa-
pers. ' ' Since Newton's constant 6 is the square of the
Planck length Ip —10 cm, whereas a typical Higgs-type
field a may have o.p-m about, or higher than 30 CxeV
(but much less than the Planck mass), we estimate

M, —(lpm) m . (9)

For example, if m is -30 GeV, we have M, —10' Mo
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and R —Ip rn —10 light years; if I is —300 ReV,
then M, —10' Mo and R —10 ' light year.

In the usual derivation of M, for a white dwarf, or a
neutron star, one simply compares the kinetic energy Ek
of a degenerate Fermi gas with the gravitational attrac-
tion; that gives a critical mass

-m~ ( lt mt' ) (10)

M, -(lt p) p . (12)

In the example of p —30 GeV, M, is —10' kg, the radius
is —6 &C 10 ' cm, and the corresponding density is ex-
tremely high, —10 ' times that of a neutron star. Because
of the smallness of its size, we call such a configuration a
mini-soliton star.

As we shall see, for a given number of nodes, say, n of
the field, the mini-soliton star has an upper bound M„ in
mass, beyond which no stable solution exists. This bound
increases with n. The critical mass M, estimated above in
(12) corresponds to M„with n =0, or not too large.
However, by considering configurations with very large n,
it seems possible to derive equilibrium configurations for

which is -Mo for m& ——nucleon mass. The different
powers in the lp dependence of these two estimates (9) and
(10) make the large disparity in M, .

At present, very little is known concerning the nature of
the Higgs-type bosons, except that they should be massive,
spin 0, and that their expectation values modify the
masses of other fields. Thus M, for the soliton star could
also be quite different from the above estimate, depending
on the theory. For example, by removing the degeneracy
of the false and normal vacua and adjusting their energy
difference, M, can vary from the order of galactic mass
to that of a solar mass.

In this connection, we may mention a related, but dif-
ferent, stable configuration. The theory consists of simply
a "free" spin-0 complex field P of mass @&0, plus gravi-
ty. There is again a conserved additive quantum number

(While the gravitational interaction of a neutral scalar
field has been studied, ' because of the absence of a con-
served quantum number, there is no nontopological soli-
ton solution. ) For large X, one can show that because of
gravitational attraction, stable soliton solutions exist. Be-
cause of the Bose-Einstein statistics, the radius R is of mi-
croscopic dimension (even though N is ~~ 1)

R-p —1

Setting R -26M, one can estimate its critical mass

any M, at least classically. In this case, the wavelength is
about n/R; by equating the gravitational energy GM /R
with the kinetic energy 2Vn/R, we estimate the critical
mass to increase linearly with n. This possibility of hav-
ing cold stars with very large n then adds still another
complexity to the question of black-hole formation for
these exotic configurations.

A classical soliton solution is, by definition, regular
everywhere, and it approaches zero (usually) exponentially
at infinity. The matter field amplitude is typically pro-
portional to g ', where g is the relevant coupling con-
stant. Once this singularity in g is factored out, a power-
series expansion in the coupling constant can be estab-
lished. The quantization and the formal perturbation
series may then be carried out for any soliton solution. '

The theory is renormalizable, if it satisfies the standard
Dyson criteria' (originally developed for the plane-wave
solutions, without solitons). Hence, except for graviton-
loop diagrams, which remain divergent due to fluctua-
tions at distances of the order of the Planck length lz, a
classical soliton solution automatically implies the ex-
istence of a corresponding quantum soliton solution, with
all radiative corrections, to any powers in g, finite (pro-
vided that the theory is renormalizable to begin with).
Thus, these soliton-star solutions that we have described
are all bona fide quantum states.

The estimate of M, given above in (9) refers to the
ground state of the soliton star. For the same N, there are
also excited quantum states. The level spacings between
them may be a small fraction of the total mass M. Since
M can be extremely large, the amount of energy release in
such a transition can be comparable to that emitted by a
quasar, or other ultraviolent astronomical objects.

Nonlinear field theories have been found to be of im-
portance in all elementary particle interactions: QCD, the
electroweak theory, grand unified theory, etc. Many of
their physical properties are still in the developing stage.
For stellar configurations, although the nonlinearity of
gravitation is fully recognized through general relativity,
that of the matter field is far from adequately explored.
The aim of this and the subsequent papers in the series is
to indicate the physical richness in these new possibilities.
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