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Sai Iyer
McDonnell Center for the Space Sciences, Department of Physics, Washington University, St L.ouis, Missouri 63130

(Received 14 November 1986)

We employ a semianalytic technique, based on a modified WKB approach, to determine the com-
plex normal-mode frequencies of Schwarzschild black holes. It yields a simple analytic formula that
gives the real and imaginary parts of the frequency in terms of the parameters of the black hole and
of the field whose perturbation is under study, and in terms of the quantity (n + 2), where

n =0, +1,+2, . . . , and labels the fundamental mode, first overtone mode, and so on. In the case of
the fundamental gravitational normal modes of the Schwarzschild black hole, the WKB estimates

agree with numerical results to better than 0.13% in the real part of the frequency and 0.22% in the
imaginary part. The agreement for both the real and imaginary parts of the low overtones is better
than 0.5%. The relative agreement improves with increasing angular harmonic.

I. INTRODUCTION AND SUMMARY

The fundamental equations describing the perturbations
of black holes reduce, in many cases, to a single second-
order ordinary differential equation that is similar to the
one-dimensional Schrodinger equation for a particle en-
countering a potential barrier on the infinite line. (See
Ref. 1, Secs. 27 and 28.) A normal mode is a solution to
the differential equation with a complex frequency, satis-
fying the boundary condition of purely "outgoing" waves,
that is, waves propagating away from the barrier, at both
+ oo and —op, the latter boundary condition correspond-
ing to waves traveling across the horizon to the interior of
the black hole.

We have developed a new semianalytic technique to
determine the normal-mode frequencies, using the WKB
approximation. In a previous paper, Schutz and Will
described the basic elements of this method at lowest
WKB order, and applied it to the Schwarzschild black
hole. For the fundamental gravitational modes, their re-
sults agreed with the numerical results of Chandrasekhar
and Detweiler within 7% for the real part and 0.8% for
the imaginary part, but disagreed with the numerical re-
sults for higher overtone modes. In another paper (hereaf-
ter referred to as paper I), Iyer and Will laid the founda-
tions of the method in detail, and carried it to the third
WKB order, with the goal of obtaining higher accuracy.
The method resulted in a simple analytic formula that
determines the normal-mode frequencies [Eqs. (1.4) and
(1.5) of paper I].

The master equation for perturbations of a
Schwarzschild black hole has the form

f3=1,0, —3 for scalar, electromagnetic, and gravitational
perturbations, respectively, and M is the mass of the black
hole. The "tortoise coordinate" r, is related to r by
dr/dr, =1—2M/r. The quantity 4 represents the radial
part of the perturbation variable, assumed to have time
dependence e ' ', and appropriate angular dependence.
(See Ref. 1, pp. 143 and 144 for further details. )

Let Ico —V(r, )I be identified as the quantity in the
curly brackets in Eq. (1.1). Figure 1 depicts the "poten-
tial" V—co . The field + in regions I and III of Fig. 1 is
approximated by 1inear combinations of incoming-wave
and outgoing-wave WKB functions, carried to third order
in the WKB expansion. These functions are to be
matched through region II. For the low-lying normal
modes, the expected value of cu is such that the two turn-
ing points (r„)& and (r, )2 are too close together to permit
a valid WKB approximation to the solution in region II;
so we match the two exterior WKB solutions across both
turning points simultaneously. In region II we expand the
function V(r„) about (r„)o, the location of the peak of V,
in a Taylor expansion, retaining terms up to and including
the sixth order. We then obtain an asymptotic approxi-
mation to the general interior solution, and use it to con-
nect the two WKB solutions (see paper I for details).

The result is a pair of connection formulas [Eq. (3.33)
of paper I], relating the amplitudes of the incoming and
outgoing solutions on either side of the barrier. The boun-
dary condition of only "outgoing" waves leads to a for-

Region III
~

Region II
~

Region I
I

t

d2+/dr „~+[ co2 —[1 (2M/r )][A./r—
(+2@M r/)] I% (r„)=0, (1.1)

where A, =l(l +1), 1 being the angular harmonic index; FIG, 1. The function V(r~ ) —co .
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mula for the normal-mode frequencies, given by

co =[Vo+( —2VO')' A]

—i (n + —, )( —2VO')' ( 1+0),
(1.2)

I
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Here, the primes and the superscript (n) denote differen-
tiation with respect to r, . The subscript 0 on a variable
denotes the value of the variable at (r„)0 (Vo&0), and
a=n+1/2.

The frequencies of the first few gravitational normal
modes are shown in Fig. 2. The values for the fundamen-
tal modes agree with numerical results to within 0.13% in
the real part of the frequency, and to within 0.22 lo in the
imaginary part. The agreement in both real and imagi-
nary parts is within 0.5% for the lower overtones. The
relative agreement improves with increasing angular har-
monic. (When / =4 the WKB estimate for the fundamen-
tal frequency is practically identical to the numerical esti-
mate. )

The structure of this paper is as follows. In Sec. II we
discuss the master equation (1.1), and derive the normal-
mode frequencies. In Sec. III we derive certain properties
of the normal modes: (1) the symmetry between modes
with Re(co) & 0 and modes with Re(co) ~0, (2) the large-1
limit, (3) stability of the lower modes, and (4) stability in
the large-I limit. Section IV presents concluding remarks.

d'0 2 2+to. — 1 ——
dry r

2P+ 4=0,2 r3 (2.1)

where we have defined the dimensionless frequency
a =Men, where M is the mass of the black hole, and have
expressed the radial coordinates in units of M, with r,
now related to r by

dr 2=1——
dr~ r

(2.2)

~ 3

The even-parity perturbations of the Schwarzschild
black hole are described by the Zerilli equation. Howev-
er, since both equations yield the same normal-mode fre-
quencies, we shall deal only with Regge-Wheeler equa-
tion.

With I cr —V( r, ) I identified as the quantity in the cur-
ly brackets in Eq. (2.1), we obtain

II. NORMAL-MODE FREQUENCIES

The odd-parity perturbations of the Schwarzschild
black hole are described by the Regge-Wheeler equation
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FIG. 2. Gravitational normal modes. Here cr =Me@, where
M is the mass of the black hole.
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FIG. 3. Percentage deviation of %'KB results for low-lying
gravitational modes from Leaver's (Ref. 7) results. Accuracy
decreases with increasing n because of the increasing inadequa-
cy of a polynomial approximation to the potential as the turning
points migrate away from the peak.
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—16K, 8028 75 915 352 660 866 250+ +
y2 r 4

1 081 080 540 540
5 + 6

32P 27 621 234045+ 998 998 2 292 780
y 3 + r4

2 705 430 1 290 240+5 6 (2.3f)

where the primes and the superscript (n) denote differen-
tiation with respect to r, . The peak of V is determined
by V'=0, and occurs at

r=r, = ,'A, '[A, p+(A—,'+—", Ap+—p')'")—, (2.4)

~Leaver

0.1105—0. 1049i

0.0861—0.3481i

0.2929—0.0977i

0.2645—0.3063i

0.2295—0.5401i

0.2033—0.7883i

0.4836—0.0968i

0.4639—0.2956i

0.4305—0.5086i

0.3939—0.7381i

~WKB

0.1046—0. 1152i
( —5.3%)(—9.8%)
0.0892—0.3550i
(3.6%)(—2.0%)
0.291 1—0.0980i
( —0.61%){—0.3 1%)
0.2622 —0.3074i
( —0.87%%uo) ( —0.36%%uo)

0.2235—0.5268i
( —2.6'Fo)(2.S%%uo)

0.1737—0.7486i
( —15%)(5.0%)
0.4832—0.0968i
( —0.08%)(0.0%)
0.4632—0.2958i
( —0.15%)(—0.07%)
0.4317—0.5034i
{0.28%)(1.0%)
0.3926—0.7159i
(—0.33%)(3.0%)

TABLE I. Normal modes for scalar perturbations (p= I).
The percentage deviation of the WKB results from Leaver's re-

sults is given in parentheses.

TABLE II. Normal modes for electromagnetic perturbations
(/3= 0).

&Leaver

0.2483—0.0925i

0.2145—0.2937i

0.1748—0.5252i

0.1462—0.7719i

0.4576—0.0950i

0.4365—0.2907i

0.4012—0.5016i

0.3626—0.7302i'

0.6569—0.0956i

0.6417—0.2897i

0.6138—0.4921i

0.5779—0.7063i

~WKB

0.2459—0.093 1i
( —0.97%)(—0.65%%uo)

0.21 13—0.2958i
( —1.5%){—0.72%%uo)

0.1643—0.5091i
( —6.0%)(3.1%%uo)

0.1019—0.72S6i
( —30%)(6.0%%uo)

0.4571—0.095 li

( —0.11%)(—0.11%%uo)

0.4358—0.2910i
( —0.16%%uo)( —0.10%%uo)

0.4023—0.4959i
(0.27%)(1.1%)
0.3605—0.7056i

{—0.58%)(—3.4%)
0.6567—0.0956i
( —0.03%%uo )(0.0%%uo )

0.641 S—0.2898i
{—0.03%)(—0.03%)
0.6151—0.4901i
(0.21%)(0.41%)
0.5814—0.6955 i
(0.61%)(1.5%%uo)

'The 1=2, n =3 mode was inadvertently omitted from the ta-
bulation of modes in Ref. 7(c). %'e are grateful to E. Leaver for
supplying us with this value.
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TABLE III. Normal modes for gravitational perturbations (f3= —3).

~CD

0.3737—0.0889i

0.3484—0.2747i

0.5994—0.0927i

0.5820—0.2812i

0.8092—0.0941i

0.7965—0.2844i

0.5061—0.4232'

~Leaver

0.3737—0.0890i

0.3467—0.2739i

0.3011—0.4783i

0.2515—0.7051i

0.5994—0.0927i

0.5826—0.2813i

0.5517—0.4791i

0.5 120—0.6903i

0.4702—0.9156i

0.4314—1.152i

0.8092—0.0942i

0.7966—0.2843i

0.7727—0.4799i

0.7398—0.6839i

0.7015—0.8982i

~WKB

0.3732—0.0892i
( —0.13%)( —0.22% )

0.3460—0.2749i
( —0.20%)(—0.36%)
0.3029—0.4711i
(0.60%)(1.5%%uo )

0.2475 —0.6730i
( —1.6%)(4.6%)
0.5993—0.0927i
( —0.02% )(0.0%)

0.5824—0.2814i
( —0.03'Fo)( —0.04%)
0.5532—0.4767i
(0.27%%uo)(0. 50%)
0.5157—0.6774i
(0.72%)(1.9%%uo)

0.4711—0.8815i
(0.19%%uo)(3.7%)
0.4189—1.088i
( —2.9%)(5.6%)
0.8091—0.0942
( —0.01%)(0.0%)

0.7965—0.2844i
( —0.01%) ( —0.04%)
0.7736—0.4790i
(0.12%)(0.19%%uo)

0.7433—0.6783i
(0.47%%uo) (0.82%%uo )

0.7072—0.8813i
(0.8 1%)(1.9%%uo)

with r„being equal to (r„)o, when r =ro. For a given A,

and P we determine ro, substitute into Eqs. (2.3), and sub-
stitute the resulting values into Eqs. (1.2) and (1.3). The
resulting frequencies are listed in Tables I, II, and III,
which also include a comparison with the results of
Leaver, and those of Chandrasekhar and Detweiler
(CD). Notice that Chandrasekhar and Detweiler quote a
gravitational mode with l =4 that has no counterpart in
either our results or Leaver's results. This anomalous
value was presumably a result of numerical instabilities in
their computational method that appeared when
Im(cr) —Re(o ). (For further discussion of these instabili-
ties, see Ref. 3.) Our results for the electromagnetic
modes agree well also with the results of Cunningham,
Price, and Moncrief. Figure 3 depicts the percentage de-
viation of our results from Leaver's results for the low-
lying gravitational modes. It is instructive to compare
Table III with Table I of Ref. 2. For the fundamental
l =2, n =0 mode, the percentage deviation from Leaver's
results in the real and imaginary parts decreases from
(6.7%, 0.79%) in the first WKB order to (0.13%, 0.22%)
at third WKB order; for the I =3, n =0 mode it decreases
from (2.9%, 0.43%) to (0.02%, 0.0%). In the first WKB
order, the excited mode l =2, n = 1 was not even close,
with a percentage deviation of (30%, 15%), while at third
WKB order, the percentage deviation is (0.20%, 0.36%).
The accuracy of the third-order WKB approximation is,

in fact, excellent for any n & I, and for a given n, the rela-
tive agreement improves with increasing I. For a given l,
the accuracy decreases with increasing n because the poly-
nomial approximation to the interior potential, truncated
at a given order, is no longer adequate.

Mashhoon and co-workers have employed another ap-
proach, based on a connection between the normal modes
and the bound states of inverted black-hole effective po-
tentials. Use of the "Poschl-Teller" potential, which has
two free parameters available for fitting to the black-hole
potential yields, for the fundamental gravitational modes,
values of Re(cu) that are within 1.3% of Leaver's results,
and values of Im(co) within 1.7%. However, in this case,
Re(cu) is independent of n, contrary to the numerical esti-
mates. The "Eckart" potential, which has three parame-
ters for fitting gives Re(co) decreasing with increasing n,
in agreement with the numerical estimates, but yields
fewer normal modes than the Poschl-Teller potential as it
has fewer bound states. For further discussion of the re-
sults obtained, the characteristics of the various poten-
tials, and the limitations of this method, see Ref. 9.

III. PROPERTIES OF THE NORMAL MODES

It is apparent from Eq. (1.2) that modes with Re(co) & 0
and modes with Re(co) &0 are in one-to-one correspon-
dence, the corresponding modes being characterized by
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+a and —a, respectively, where a=n+ —,'. Further, we
see from Eqs. (1.3) that these modes have the same A and
0, and hence that the real part of co is identical for both,
with the imaginary parts being of equal magnitude but of
opposite sign. This leads to the conclusion that Im(co) is
identical for the two modes, and Re(co) is of the same
magnitude for both, but of opposite sign. (See also Ref.
9.) This symmetry is reflected in Fig. 2.

Using Eqs. (1.2), (1.3), (2.3), and (2.4) in the limit of
large 1, we obtain, for the modes with Re(co) )0,

1 1 1

3v3 2 9VS
5cc 115
12 144

1

18v 3

5a 115
12 144

1 1

3u'3 27v'3
235a 1415
432 1728

(3.1)

This is in agreement with the analytical results of Press'
and Detweiler, " and it extends Eqs. (28) and (29) of Ref.
9(c).

It is known rigorously that the Schwarzschild black
hole is stable against external perturbations (Ref. 1, pp.
199—201). Not surprisingly, the results for the lower
modes support this conclusion, as shown by the negative

Im(o). Equation (3.1) indicates that in the large-1 limit
Re(cr) increases linearly with 1, and Im(cr) tends to a nega-
tive constant ( —a/3~3) for a given n, consistent with
stability. As shown in Fig. 2 and Tables I, II, and III, for
fixed 1 the magnitude of Im(cr) increases steadily with n,
and the sign remains negative. Im(o) exhibits the same
behavior in the large-1 limit, as seen from Eq. (3.1). This
argument is supported by Leaver's results for n &)l. "

IV. CONCLUSIONS

We have used the WKB approximation to obtain a sim-
ple analytic formula that determines the normal-mode fre-
quencies of black holes. In the case of the Schwarzschild
black hole, the agreement with other methods is excellent
for the low-lying modes. In future papers in this series
the WKB approximation will be applied to Reissner-
Nordstrom and Kerr black holes.
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