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Black-hole normal modes: A WKB approach. I. Foundations and application
of a higher-order WKB analysis of potential-barrier scattering

Sai Iyer and Clifford M. Will
McDonnell Center for the Space Sciences, Department of Physics, Washington Uniuersity, St Lo.uis, Missouri 63130

(Received 19 May 1986; revised manuscript received 14 November 1986)

We present a semianalytic technique for determining the complex normal-mode frequencies of
black holes. The method makes use of the WKB approximation, carried to third order beyond the
eikonal approximation. Mathematically, the problem is similar to studying one-dimensional
quantum-mechanical scattering near the peak of a potential barrier, and determining the scattering
resonances. Under such conditions, a modification of the usual WKB approach must be used. We
obtain the connection formulas that relate the amplitudes of incident, reflected, and transmitted
waves, to the third WKB order. By imposing the normal-mode (resonance) boundary condition of a
zero incident amplitude with nonzero transmitted and reflected amplitudes, we find a simple formu-
la that determines the real and imaginary parts of the normal-mode frequency of perturbation (or of
the quantum-mechanical energy of the resonance) in terms of the derivatives (up to and including

sixth order) of the barrier function evaluated at the peak, and in terms of the quantity (n+ —,),

where n is an integer and labels the fundamental mode (resonance), first overtone, and so on. This
higher-order approach may find uses in barrier-tunneling problems in atomic and nuclear physics.

I. INTRODUCTION

For a number of years, the normal modes of oscillation
of black holes have been of great interest both to gravita-
tion theorists and to gravitational-wave experimentalists.
These modes are the resonant, nonradial perturbations of
black holes, analogous to those of the Sun or Earth, that
can be induced by external perturbations. They are
characterized by a spectrum of discrete, complex frequen-
cies, whose real parts determine the oscillation frequency,
and whose imaginary parts determine the rate at which
each mode is damped as a result of the emission of radia-
tion. For a given kind of physical perturbation (scalar
field, neutrino field, electromagnetic field, or graviational
field), the complex frequencies are uniquely determined by
the mass and angular momentum of the hole, the angular
harmonic index (i, m) of the deformation, and the degree
of the harmonic of the mode.

To the gravitational-wave astronomer, black-hole nor-
mal modes may be an important source of gravitational
waves emitted at discrete frequencies by a deformed black
hole left over following a supernova collapse. Recent nu-
merical calculations of rotating collapse have found that
for some collapse scenarios in which a black hole is
formed, the bulk of gravitational radiation is emitted via
normal-mode oscillations of the hole that continue after
the matter has crossed the horizon. ' The identification
of the frequencies and damping times of such waves could
aid in estimating the parameters of the black hole. Stud-
ies of perturbations of black holes by passing particles
have also shown excitation of normal modes. " Normal
modes are important in analyzing the stability of black
holes against external perturbations. Although the nonro-
tating Schwarzschild black hole is known rigorously to be
stable, the situation is not so certain in the case of the ro-
tating Kerr black hole, and a systematic study of normal

modes could contribute to a resolution of this question.
Although the fundamental equations describing the per-

turbations of black holes reduce to a single second-order
ordinary differential equation that is similar to the one-
dimensional Schrodinger equation for a particle en-
countering a potential barrier on the infinite line, the na-
ture of the potential precludes an exact, closed-form solu-
tion in terms of known functions. Thus there are several
basic approaches to the study of black-hole normal modes:
direct numerical integration of the differential equations,
the use of infinite-series representations of solutions, and
semianalytic methods based on an approximation.
Mathematically, a normal mode is a solution to the dif-
ferential equation with a complex frequency, satisfying
the boundary condition of purely "outgoing" waves, that
is waves propagating away from the barrier, at both + ~
and —op, the latter boundary condition corresponding to
waves traveling across the horizon to the interior of the
black hole. The quantum-mechanical analogue of this is a
scattering resonance with a complex energy. Because such
a boundary condition cannot actually correspond to a sta-
tionary state, the energy or squared frequency must be
complex, leading to a characteristic damping with time of
wave packets constructed from the modes.

Studying black-hole normal modes numerically requires
selecting a value for the complex frequency, integrating
the differential equation, and checking whether the boun-
dary conditions for a normal mode are satisfied. Since
those conditions are not satisfied in general, the complex
frequency plane must be surveyed for the discrete values
that lead to normal modes. This technique is time con-
suming and therefore costly, and it makes difficult a sys-
tematic survey of normal modes for a wide range of pa-
rameter values. Following early work by Vishveshwara,
Press, and Goebel, Chandrasekhar and Detweiler
pioneered this method for the study of normal modes.
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A few semianalytic analyses have been attempted. In
one approach, employed by Mashhoon and eo-workers,
the potential barrier in the effective one-dimensional
Schrodinger equation is replaced by a parametrized ana-
lytic potential barrier function for which simple exact
solutions are known. The overall shape approximates that
of the true black-hole barrier, and the parameters of the
barrier function are adjusted to fit the height and curva-
ture of the true barrier at the peak. The resulting esti-
mates for the normal-mode frequencies have been applied
to the Schwarzschild, Reissner-Nordstrom, and Kerr
black holes, with agreement within a few percent with the
numerical results of Chandrasekhar and Detweiler '" in
the Sehwarzschild case, and with Gunter in the
Reissner-Nordstrom case. However, because this method
relies upon a specialized barrier function, there is no sys-
tematic way to estimate the errors or to improve the accu-
racy. Another method by Leaver' which is a hybrid of
the analytic and the numerical, successfully generates
normal-mode frequencies by making use of an analytic
infinite-series representation of the solutions, together
with a numerical solution of an equation for the normal-
mode frequencies which involves continued fractions.

We have developed an alternative technique for deter-
mining the normal-mode frequencies semianalytically, us-

ing the WKB approximation. Even though it is based on
an approximation, we believe this approach will be power-
ful (a) because the WKB approximation is known in many
cases to be more accurate than one has a right to expect a
priori (see Ref. 11, pp. 487—492 for examples), (b) because
the method can be carried to higher orders, either as a
means to improve the accuracy or as a means to estimate
the errors explicitly, and (c) because it will allow a more
systematic study of normal modes than has been possible
using outright numeriea1 methods. In a previous paper,
Schutz and Will' described the basic elements of this
method at lowest WKB order, and applied it to a simple
test case: the fundamental normal-mode frequencies of
the Schwarzchild black hole. The result was a simple an-
alytic expression for the complex frequency, that, for the
fundamental quadrupole mode agreed with the numerical
results of Chandrasekhar and Detweiler "within 7% for
the real part and 0.8%%uo for the imaginary part.

The motivation for using the WKB approximation is
the similarity alluded to above between the equations of
black-hole perturbation theory and the one-dimensional
Schrodinger equation for a potential barrier. This similar-
ity has been emphasized and exploited by Chandrasekhar
(Ref. 13, Secs. 27 and 28), for example. In both cases the
central equation has the form

d Pldx +Q(x)Q(x)=0 .

In the black-hole case, P represents the radial part of the
perturbatiori variable, assumed to have time dependence
e ' ', and angular dependence appropriate to the particu-
lar perturbation and black hole under study. The coordi-
nate x is linearly related to the "tortoise radial coordi-
nate" r, , which ranges from —co at the event horizon to
+ cc at spatial infinity. The "potential" —Q(x) is con-
stant at x=+ ~, although not necessarily the same at
both ends, and it rises to a maximum at x =xo (Fig. 1).

Region III I I
1 Region II

~
Region I

I I

Xq Xp Xp

FIG. 1. The function —Q (x).

Et depends on the nature of the perturbing field, the mass,
and angular momentum of the black hole, the angular
harmonic indices, and the frequency. This includes per-
turbations of Schwarzschild, Kerr, and Reissner-
Nordstrom black holes.

For example, for gravitational pert urbations of
Schwarzschild, x =r, , and the central equation can be ex-
pressed in the "Regge-Wheeler" form

d P/dr, + [au —(1 —2M/r)[l(l +1)/r
—6M/r ]}tt(r,)=0, (1.2)

where M is the mass of the black hole, and the radial
coordinate r and the tortoise coordinate r~ are related by

dr/dr~ =1—2M/r . (1.3)

For formulas for r„and Q for Kerr black holes, for ex-
ample, see Ref. 7(a), Ref. 14, pp. 90 and 91, and Ref. 15.

In quantum mechanics, —Q (x ) = (2m /A' ) [V(x ) E], —
where E is the energy of the particle of mass m and V(x)
is the potential barrier.

The field g in regions I and III of Fig. 1 is approximat-
ed by linear combinations of incoming-wave and
outgoing-wave WKB functions with real frequencies, car-
ried to third order in the WKB expansion. These func-
tions must be matched through region II. However, for
reasons to be described in more detail below, the lowest-
lying normal modes or resonances are expected to occur
for values of the frequency such that the "classical turn-
ing points" x

&
and x2 are close together, near the peak of

the barrier. In this case, the usual WKB approach involv-

ing a matching of the solution in region III across x
&

to a
WKB solution in the interior region II, and a similar
matching at xz, is no longer valid; the two turning points
are too close together to permit a valid WKB approxima-
tion to the interior solution. Our method, which is based
on the technique described by Bender and Orszag (Ref.
11, pp. 531—533), circumvents this difficulty by match-
ing the two exterior WKB solutions across both turning
points simultaneously. In region II we expand the func-
tion Q(x) about its maximum at x =xo in a Taylor ex-
pansion, up to and including terms of order (x —xo) (in
Ref. 12, only the constant and quadratic terms were kept).
The quantity xo will depend explicitly on the frequency.
We then obtain an asymptotic approximation to the gen-
eral interior solution and use it to connect the two WKB
solutions.
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The result is a pair of connection formulas, relating the
amplitudes of the incoming and outgoing solutions on ei-
ther side of the barrier. For a black-hole normal mode, the
boundary condition of only "outgoing" waves leads to a
constraint (to be derived in the next section) on the values
of the coefficients in the Taylor expansion of Q(x) about
xo, given by

'Qo/(2go ) —A(n) —Q(n) =n + —,',
0, 1,2, . . . , Recg) 0,—1,—2, . . . , Rm) (0,

where

(1.4)

A(n)=

A(n)=

288 Qo

1 1 Qo 1

(2ggl ))/P 8 Qtl 4
—+o.

n+ —,

(77+ 188a )—
2Q() (

6912 Q()' 384

(7+60a )

g iii2Q (4)

g II 3

(4)

(51+100a') + Qo 2

2304 go'
(67+68a )

(1.5a)

1

288

(5) (6)

(1.5b)

co =[Vo+( —2Vo')' A(n)]

i(n + —,
'—)( —2V'o )'~ [1+0(n)], (1.6a)

where

Here the primes and the superscript (n) denote the ap-
propriate numbers of derivatives of Q, evaluated at xo
(Qo'~0), and a:n+ ——,'. Since Q(x) in general depends
on the frequency (o, Eqs. (1.4) and (1.5) can be solved for
the normal-mode frequencies by analytically continuing
Eq. (1.4) into the complex frequency plane.

In the special case in which Q (x) has the form
Q(x)=co —V(x), where V is independent of frequency,
Eq. (1.4) for the normal-mode frequencies simplifies to

of physics than black holes is currently under investiga-
tion.

The structure of this paper is as follows. In Sec. II we
review the manner in which the master equation (1.1)
arises from black-hole perturbation theory and establish
the proper normal-mode boundary conditions. Black
holes will rarely be mentioned from that point on. Section
III applies the WKB approximation to the master equa-
tion and obtains the connection formulas. In Sec. IV, we
impose the normal-mode boundary condition and obtain
the equation for the normal-mode frequency. Section V
presents concluding remarks. In an appendix we outline a
method for extending the results to higher order without
explicitly obtaining connection formulas, and give the re-
sult to fourth WKB order.

A =A/i, I—I—:II/(n + —, ), (1.6b) II. BLACK-HOLE PERTURBATION THEORY

where Q and its derivatives are replaced by —V and its
derivatives in A and Q. As we noted in Eq. (1.2), this is
the case in perturbations of Schwarzschild black holes.

The lowest-order contributions to the real and imagi-
nary parts of co in Eq. (1.6a) correspond to the first-order
WKB results of Ref. 12, with Q truncated at quadratic
order. Contributions through second WKB order, and
through (x —xo) in Q yield the correction term A (Ref.
16) while contributions through third WKB order, and
through (x —xo) in Q yield the term Q.

Equation (1.4) applies to any physical problem
governed by Eq. (1.1) and the normal-mode boundary con-
ditions. In particular, it applies to the determination of
quantum-mechanical resonances near the tops of one-
dimensional potential barriers (with the restriction
Re(o & 0 corresponding to ReE & 0). Furthermore, the
connection formulas derived below (Sec. III) can be used
to determine reflection and transmission coefficients in
quantum-mechanical tunneling near barrier peaks. Appli-
cation of this higher-order WKB approach to other areas

A. The master radial equation for black-hole perturbations

The stationary, axisymmetric solutions of Einstein s
equations corresponding to isolated black holes
(Schwarzschild, Kerr, and Reissner-Nordstrom) can be
perturbed in a variety of ways, by adding dynamical non-
vacuum test fields to the black-hole spacetime, such as
scalar fields, neutrino fields, electromagnetic fields, or by
perturbing the spacetime directly with gravitational per-
turbations (for reviews, see Refs. 13 and 14). The vari-
ables describing these perturbations can be complicated
and numerous (six for electromagnetic perturbations, ten
for gravitational), and lead to coupled differential equa-
tions in general. However, it turns out that for each case,
appropriate linear combinations of the variables can be
found for which the equations decouple. The result is a
single hyperbolic partial differential equation for a vari-
able 0", where s is a parameter whose value depends on
the field under study. The parameter s, known as the spin
weight of the field, has the value s =0 for a scalar field,
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where W is a second-order linear differential operator
that depends on s, the mass, angular momentum, and
charge of the black hole, on the coordinate system [such
as (t, », 9,$)], and on the particular choice of null-tetrad
basis. The quantity T is a function of the source of the
perturbing field. In a vacuum, T=0.

Equation (2. 1) can be solved by separation of variables.
Setting

I OO

J d~ &]' (»)S]' (0)e™e
1=0m = —1

(2.2)

leads to ordinary differential equations for each variable.
The eigenfunctions of the angular differential equation
S]' (9) e' ~, depend upon the black hole under study,
and upon the spin weight of the perturbing field. They
may also depend upon the frequency. For example, for
Kerr, they are known as "spin-weighted spheroidal har-
monics" (generalizations of tensor spherical harmonics)
and are complete and orthonormal on the unit oblate
spheroid. The radial differential equation for R can be
transformed by defining a new radial function

=f (»)R and by converting from the usual radial
coordinate r to a so-called "tortoise coordinate" r, related
to r by the equation

s = + —,
' for a neutrino field s = +1 for an electromagnetic

field, and s =+2 for gravitational perturbations. For a
given value of s, the field 0"' is a function of particular
components of the field under study on a tetrad of null
vectors in the background black-hole spacetime: for elec-
tromagnetic perturbations, they are components of the
Maxwell tensor, for gravitational perturbations they are
components of the perturbed Weyl tensor, and so on. The
decoupled equations take the general form

(2. 1)

and mass m in a potential V(», ) given by

V(»„)=E—(fi /2m)Q]'~ (»„), (2.5)

where ]]1 is Planck's constant. Thus the function —Q(», )

plays the role of V E.—Because —Q for Schwarzschild
typically attains a maximum value for some finite r, be-
fore decreasing to its values at r, =+ ~, the problem is
equivalent to quantum-mechanical scattering off a poten-
tial barrier. In other black-hole situations, the effective
"potential" V may be energy or frequency dependent (and
in some representations of the equations may be explicitly
complex), so the quantum-mechanical analogy may not be
so clear-cut. Nevertheless, since the WKB method we
develop in this paper is nothing but a problem in matched
asymptotic expansions, the results should apply to all "po-
tentials. "

B. Normal-mode boundary conditions

The boundary conditions to be applied to the function
at »„=+co can be determined by studying the flux

of radiation detected by physical observers at infinity and
near the event horizon. At infinity, observers can detect
incoming and outgoing radiation, while at the horizon,
only radiation propagating into the black hole is present.
These physical conditions can be translated into condi-
tions on the radial functions P'] at », =+ co, whose
specific form depends on the field or spin weight and on
the coordinate system being used (Ref. 14, Sec. 6.10).
Throughout this discussion we will use a timelike coordi-
nate system, in which t is the time associated with the sta-
tionary nature of the background spacetime, as opposed to
a null coordinate system.

For this discussion we will focus on frequencies whose
real part is positive (Rect ~0), corresponding to the posi-
tive half of the Fourier integral in Eq. (2.2). In the limit
r~ ~~, spacetime becomes asymptotically Bat, and

d»„/d»=h (»), (2.3) (2.6)

where h (») is a positive function that tends to unity as»
tends to infinity, and becomes singular as r tends to its
value at the event horizon [see Eq. (1.3) for the case of
Schwarzschild]. Thus»„runs from —oo to + ao as»
runs from the horizon to infinity. As a consequence of
these transformations, the equation for P'] can be writ-
ten

&'q']~~/«', +Q]'~ (», )q']~ &]'~—— (2.4)

where T]' is defined from T as in Eq. (2.2). The func-
tion Q]' (», ) tends to constant values as~»+ co,
though not necessarily the same at each end. This equa-
tion is the "master radial equation" for black-hole pertur-
bations. Equation (1.2) gives an example for
Schwarzschild; for master radial equations for Kerr, see
Ref. 7(a), Ref. 14, pp. 90 and 91, and Ref. 15; for
Reissner-Nordstrom, see Ref. 13, Sec. 42.

For vacuum perturbations ( T =0) of Schwarzschild
[Eq. (1.2)], the master radial equation is exactly of the
form of the one-dimensional Schrodinger equation of non-
relativistic quantum mechanics, for a particle of energy E

=z,„A„+z.„,q.„„»„ (2.7)

where Z;„and Z,„, are complex amplitudes for incoming
and outgoing waves, respectively.

Near the event horizon, in the limit r ~ ~—~,
(Qs )]/2 (2.8)

where k is a constant that depends on co, s, and the pa-
rameters of the hole. The physically correct boundary
condition at the horizon corresponds to the solution pro-

—ikr~
portional to e *. If we denote the solution with this
behavior by gh, ]„ then the general solution valid as
r~~ —~ cs

S
1m co ho]e Ao]c 4 + 00 (2.9)

where we consistently choose the positive square root.
Then incoming and outgoing radiation at infinity corre-
spond, respectively, to the radial solutions proportional to—I Q)Tg +ECOf +e * and e '. lf we represent solutions with these
asymptotic behaviors by the notation 1(;„and 1(,„„then
the general solution valid as r, ~ ao can be written
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It is important to note that it is possible for the real part
of k to be negative. This occurs in perturbations of Kerr,
for example, where Rek =co —mm+ where co+ is the an-
gular velocity of the horizon, and m is the azimuthal
quantum number. When Rek &0, the energy flux down
the hole, while positive according to local observers, is ac-
tually negative as seen from infinity, and the outgoing en-

ergy flux exceeds the incident flux. This phenomenon is
called super-radiance. Nevertheless, with our convention
for choosing the square root of Q, the correct boundary
condition in all cases is that of Eq. (2.9).

For frequencies whose real part is negative (Race &0),
the identification of the incoming and outgoing parts of
the radial functions is reversed. However, the overall
analysis is unchanged, and this case can be handled at the
end by suitable interchanges of the incoming and outgoing
variables.

Given an amplitude Z;„of incoming radiation, it is
possible to solve Eq. (2.4) (with T =0) for f'I to deter-
mine Z,„, and Zh, ],. Generally speaking, the ratio

~

Z,„, ~

/
~
Z;„~ will be a smooth function of the fre-

quency ~, except in the neighborhood of a set of discrete
values cop, where it may have the behavior

(r/2)'
(~—~,)'+ (r/2)' (2.10)

This is the usual Lorentzian response appropriate to a res-
onance in a damped harmonic oscillator, where coo is the
resonant frequency, and I /2, the half width at half max-
imum of the Lorentzian curve, determines the damping
rate of the oscillation. Such an occurrence corresponds to
a resonant normal mode of the black hole, a mode whose
response to an external perturbation is a maximum. An
alternative way to characterize the resonance is to analyti-
cally continue Eq. (2.10) into the complex frequency
plane, and to write

Zout

in

I /2
co —Q)p+1 I /2

(2.1 1)

The resonance then corresponds to a pole in the function
Z „,/Z;„, at the complex resonant frequency
co& coo i I /2 ——In t—he vacu. um differential equation for

, we therefore seek solutions with complex co subject
to the boundary conditions Z;„=0, with Z,„,&0 and

Zh, I,&0. [For a discussion of normal-mode boundary
conditions from a different point of view, see Ref. 8(b).]

From this point on, the discussion need no longer refer
to black holes; it will be equally relevant for quantum-
mechanical tunneling, or for any other physics governed
by the above mathematics. Therefore it will be most con-
venient to discuss the problem in terms of tunneling and
resonances near the peaks of potential barriers.

III. TUNNELING NEAR THE PEAKS OF POTENTIAL
BARRIERS: A THIRD-ORDER WKB ANALYSIS

A. The WKB approximation

Qur goal is to use the %'KB approximation to find
normal-mode or resonant solutions to the master equation

(1.1). Initially, the procedure follows the standard text-
book approach. " We first rewrite the master equation
(1.1) in the generic form

e d Itjldx +Q(x)It(x)=0, (3.1)

where we introduce the perturbation parameter e to keep
track of orders in the WKB approximation. We then de-
fine the asymptotic approximation

Itj- exp[S (x) /e],
where S is expanded in powers of the parameter e:

(3.2)

S(x)= g e"$„(x) .
n=0

(3.3)

By substituting into Eq. (3.1), and equating like powers of
e, we find, through the third nontrivial order (see Ref. 11,
p. 487),

So(x)=+i f [Q(2))]' dr),

S,(x) = ——,lnQ(x),

(3.4a)

(3.4b)

S2(x) =+—f 5 QI2

4 g5/2
(3.4c)

Q" 5 Q'
g2 4 g3

(3.4d)

The boundary conditions on Itj can be translated into par-
ticular choices of the sign of the exponent in Eq. (3.4a).
As x ~ oo, Q(x)~co, so $0~+icox, thus the positive or
upper sign in Eq. (3.4a) corresponds to outgoing waves,
while the negative or lower sign corresponds to incoming
waves. As x~ —oo, Q(x)~k, so So~+ikx, thus the
positive or upper sign corresponds to waves coming from
—oo (incoming), while the negative or lower sign corre-
sponds to waves going toward —ao (outgoing). For the
present we will retain all four solutions. Using subscripts
(+ ) and ( —) to denote the appropriate signs of the WKB
solutions, we can write the general solution in regions I
and III of Fig. 1 in the form

P-z,'„f' +Z,'„,f'+ region I,
z III /III +z III /III

(3.5)

Note that, for the black-hole case, Z,„,=Zh, ~„and

The object now is to determine formulas that connect
the amplitudes near + op with those near —~, in other
words to determine the coefficients in the linear relation-
ship given by

III
Zout

Z in

MI)

M2I

I
M)2 Z,„,
M„Z (3.6)

To do so, we must consider the solution in region II.
The WKB approximation is valid except near the "classi-
cal turning points" the points where Q(x) =0. Neverthe-
less, it is possible to connect WKB solutions that are valid
on either side of such turning points, using, for example,
asymptotic matching techniques. The idea would be to
match a WKB solution in region III across the turning
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point x2 to a WKB solution in region II, and then match
that solution across the turning point x& to the WKB
solution in region I (see Sec. 10.5 of Ref. 11 for details).
This would give the required coefficients in Eq. (3.6).
However, a consideration of the boundary conditions for
normal modes shows that this standard method wi11 not
work here. To see this, let us compare and contrast the
standard quantum-mechanical barrier problem with the
resonance or normal-mode problem.

For a wave incident on a potentia1 barrier from x = oo

with a given amplitude, it is a standard calculation in
quantum mechanics to determine the amplitude of the
wave reflected back to + oo and that transmitted to —oo.
If the function —Q (x) is positive anywhere, i.e., if the en-

ergy is below the peak of the potential, the reflected am-
plitude is generally comparable to the incident amplitude,
while the transmitted amplitude is much smaller. When
the WKB approximation is applied to such problems and
the standard matching across the two turning points
described above is carried out, it leads to an estimate for
the transmitted amplitude of e where B is a "barrier
penetration factor, " given by an integral of [—Q(x)]'
between the turning points (see Sec. 10.6 of Ref. 11).

Normal-mode or resonance problems, on the other
hand, involve a rather different set of boundary condi-
tions, namely, reflected and transmitted amplitudes that
are of the same order of magnitude, with vanishing in-
cident amplitude. At first glance, one might expect the
WKB approximation to be useless for normal modes, be-
cause it always seems to lead to the exponentia11y small
factor e relating the transmitted to the reflected ampli-
tude, rather than a factor of order unity. However, there
is at least one case in which this is not true, namely, that
in which the maximum value of —Q(x) is precisely zero.
In quantum mechanics this occurs when the energy coin-
cides with the peak of the potential V(x). In this
"second-order turning point" problem, the WKB approxi-
mation leads to equal magnitudes for the two outgoing
waves, each a factor 2 ' times the incident amplitude
(see, for example, Ref. 11, pp. 531—533). This suggests
that, if normal modes or resonances exist for a given po-
tential, then some of them exist "nearby, " in other words
for complex frequencies such that [—Q(x)],„=0. How-
ever, if [—Q(x)],„)0, the classical turning points will
in general be too close together to allow application of the
standard WKB matching approach. Nevertheless, a sim-
ple modification of the matching procedure allows a com-
plete solution of the normal-mode problem.

B. Asymptotic approximation
to the interior solution to third order

The modification of the usual WKB procedure involves
matching the two WKB solutions of Eq. (3.1) across both
of the turning points simultaneously. Outside the turning
points (regions I and III of Fig. 1), the WKB functions
will be given by Eq. (3.2), expanded to third order. In re-
gion II we approximate —Q(x) by a Taylor expansion up
to and including terms in the sixth derivative of —Q. An
asymptotic approximation to the interior solution will be
obtained, and used to match the two WKB solutions.

(6) 6+ 720 Qo (3.7)

where z=x —xo. Equation (3.1) can then be written

e d f/dz +k( —zo +z +bz +cz +dz'+fz )/=0,
(3.8)

where

k —= —,
'

Qo, zo:——2Qo/Qo',

b=
g Qo /Qo c= iz Qo /Qo

d —= 60 QO /QO' f=
36o QO /QO'

(3.9)

Now, since region II corresponds to
~

z
~

& zo = ( —2Qo/
Qo')' =e', we define a new variable t ~z/e'/ in
which to express the asymptotic solution of the interior
problem. The limit t~ oo as e~O will correspond to fi-
nite overlap regions outside the turning points where the
solution may be matched asymptotically to the WKB
solutions. We also define constants v, A, and 0, related
to zo, and rescale the parameters b, c, d, and f, as

(4k )
I /4 —i n /4 / I /2

v+ —,
' = —lk zp /2E —cA —6 0,1/2 2 2

(3.10a)

(3.10b)

b —= b(4k) ' e'— c = —c(4k) ' e' (3 10c)

i d(4k) —3/4 3im/4 7 i f (4k) —1 iw (3.10d)

Equation (3.8) then takes the form

jl +[v+ —,
' —,' t' ei/'bt3+—e(A —ct4)—

e / dt +—e (0, ft )]$=0—, (3.1 1)

where an overdot denotes d/dt. Without the terms pro-
portional to powers of e, the solutions to Eq. (3.11) would
be parabolic cylinder functions D„(t) and D i(it) (Ref.
11, pp. 573 and 574). Including the e terms, we look for a
solution of the form f(t)D„[g(t)] (Ref. 18). Substituting
i«o Eq. (3.11), and defining Q(t) to be the polynomial in
square brackets we obtain

[ fg '( + ,' .' g'—)+f+Qf]-D—.—

+ (2fg+ fg )D„=O . (3.12)

The first derivative of D can be eliminated by choosing

f=g (3.13)

Substituting for f and equating the coefficient of D to
zero, we get a differential equation for g (t):

This approach was suggested by the discussions of scatter-
ing off the peak of a potential barrier and of higher-order
WKB approximations in Ref. 11 (Secs. 10.6 and 10.7); see
also Refs. 17 and 18.

We expand Q (x) in a Taylor series about the point xo
at which —Q reaches a maximum:

Q «)=Qo+ &
Qo"z'+

6 Q o'z'++. Q o 'z'+
iso Q o

'z'
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(v+ —, ——,g )+ —,g Ig —4g Ig —Q(t)=0 . (3.14) g(t)=t+ g e"~2A„(t),
n=1

(3.16)

Now, Q (t) is an expansion in e of the form

Q(t)=v+ ,
' —,—t'+—ge""Q„(t),

n=]
(3.15)

where A„(t) is a polynomial in t. Substituting into Eq.
(3.14), equating to zero the coefficient of each order ofe', and defining the operator L, by

where Q„(t) is a polynomial, so we try a similar expansion
for g (t). At lowest order, g (t) = t, so we try

L, =d Idt +4(v+ —,
' —,' t )d—ldt t,—

we obtain a sequence of equations for the 2„:
(3.17)

L 3]+2bt =0
~ ~ ~

L,A2 ——, A, —2tA1A, +2A1 (v+ —, —, t ) ——A1A1 ——', A12 —2A+2ct4=0,
~ ~ ~ ~ ~ ~ ~ ~ ~

LlA3 —A1A2 —Al(A1 +2tA2) —tA1(A, +2A2)+4A1A2(v+ —, —4 t )+A 1(A1 —A2) —A1A 2
—3A1A2

(3.18a)

(3.18b)

+33] 3 i+2dt =0,
L,A4 ——,(2A1A3+A2 ) —2A1(tA3+A, A2) ——,(Al +2A2)(A1 +2tA2) —2tA1(A3+A1A2)

(3.18c)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~

+2(2A1A3+A2 )(v+ 3
—

4 t ) —A 1(A3 —2A1A2+A 1 )+(A 1
—A2)A 2

—A1A 3+ —,A 1 (2A2 —3A1 )+6A1A2A1

——, (A2 +2A, A3) —2A+2ft =0 . (3.18d)

From the nature of L, and the inhomogeneous terms in Eqs. (3.18), it is easy to see that each polynomial A„should have
the form

A„(t)= g a2;t" +' ' (n+1 2i )0) . —
i=0

(3.19)

When these forms are substituted into Eqs. (3.18), we find that, for n odd, the number of distinct powers of t in each
equation exactly matches the number of unknown coefficients a 2;, so we can solve for these coefficients by setting the
coefficient of each power of t to zero. But for n even, the number of distinct powers of t exceeds by one the number of
unknown coefficients, so the system is overdetermined. However, in these cases, the constants A and 0, appear in the
equations, and these can then be chosen to achieve a consistent solution. This of course was the reason for introducing
them in Eqs. (3.10). The results for A and Q are

A= , (3c 7b —)+(v—+ —, ) (6c —30b ),
Q= —(v+ —, )(1155b —918b c+67c +190bd —25f ) —(v+ —, ) (2820b —1800b c+68c +280bd —20f ) .

(3.20a)

(3.20b)

The resulting polynomials are given by

A, (t) = "
, b(v+ —,

' + ——„' t'),
A, (t) =(v+ —,

' )(3c—',"'
b ')t+ —,

' (c —", b ')t', —

+—„(v+ 3 )( 3, b —234bc+32d)t + —,( 37 b —, bc+2d)t-

+( + 1 )2( 2770843
b 4+ 3733

b 2c 77 c 2 5276
b d+10f)]

+( + I
)(

94357 b4+ 2846 b 2— 17 —2 538 b d+ 5J )t3+( 9013
b 4+ 187

b 2— ll —2 14
b d+ 1f )t5

(3.21a)

(3.21b)

(3.21c)

(3.21d)

The general solution to the interior problem then has the form

1)7-g ' [AD (g(t))+BD „1(ig(t))] . (3.22)

The overlap region with the WKB functions corresponds to large values of
~

t ~, so using the appropriate asymptotic
forms of the parabolic cylinder functions (Ref. 11, p. 132), we obtain
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&&z ~ &&4 v(v —1) v(v —l)(v —2)(v —3)0-g Ag e s 1—
Zg 8 4

s2y4 (v+ 1 )(v+2) (v+ 1 )(v+2)(v+3)(v+4)+ 4 +
2g 8 4

x/e' ~ oo,
~

t
~

~ oo, argt = tr/4—, (3.23a)

, rz (2')'"e —' ""
I (v+1)

s~g4 v(v —1)
g e ~ 1—

2g

(v+ 1)(v+2)
g e~

2g

where I (x) is the I function.

x/e'~ ~—oo,
~

t
~

~oo, argt =3m/4, (3.23b)

C. Asymptotic matching and the connection coefficients

The third-order WKB solutions given by Eqs. (3.2)—(3.4) can be matched to the interior solution in overlap regions
z —+zo following standard methods. To the necessary order, the zeros z of Q (z) are given by

z =+zo —, bzo + , (—5b 4c—)zo ——,(2b ——3bc +d)zo + „,(231b 504b c+—224bd+ 112c —64f)zo

using which, we can write Q in the form

Q(z) =k [ z'+z'+b(—z' z')+c(z' —z')+d(z' —z')+ f(z' —z')] . —

(3.24)

(3.25)

We then substitute this into Eqs. (3.4) for the WKB functions, where the integrals extend from z to values of z in regions
I and III such that z & z+ and z &z . We expand the functions in powers of z consistent with the order of expansion of
Q, and simultaneously in powers of z=O(e'~ ), with So expanded to O(z )=O(e ), S~ to O(z )=O(e ), and so on,
consistent with our expansion to third nontrivial order. The results are

So —+ik' I —,'z + ,'bz ++, (—4c b)z + ,', (b— 4bc—+8d)z—

—„,(5b 24b c+3—2bd+16c —64f)z +. . .

+z '[ ——,
' + ,' bz ,', (3b' —4—c)—z'+ —,', (5b' 12bc—+8d)z'—+ ]

+z [ ,'b z +, (3b —4bc—)z + .— ]

+z [ —,', z —
,', bz '+ „', (79—b —28c)+ „', (35b —28bc +24d)z+ . . ]

+z ( ,'bz ,—b z '+ . .—)—+z [—„z —„bz + „,(17—b +4c)z + ]

—[ —,z + z bz + 64 (3b +4c)z ++z(15b —12bc+16d)z + . ]ln(2z/z)I,

e ' —Q
'~ -k '~ z '~

I 1 —,' bz+ 3I (5b 8c—)z —„,(15b——4bc+32d)z +

(3.26a)

+z [ —,'z —
,
', bz '+ „', (9b ——8c)+ . ]+z ( ,'bz

,
', b z '—+ —)—

(3.26b)

Sq —+ , i k ' ~~
I —,z ——, bz '+ —„(b ——2c) +—„(35b 92bc +72d—)z ——,z + ,bz-
+z'[ —",z '—'„'bz '+ „(—75b' 68c)z '+—. . ]—
—[ , (7b 12c)+ ]—In(2z/—z ) ],

S3-k '[ ——„z + , bz —„(3b 4c—)z + . —] . —
(3.26c)

(3.26d)

In order to compare most simply the WKB functions in the overlap region
~

z
~

&zo with the asymptotic expansions

Eqs. (3.23), in the region
~

t
~

~ oo, it is useful to reexpress z in terms of v+ —, by inverting Eq. (3.10b):

zo ——(2e)' e' k ' [(v+ —)+eA+e II]' (3.27)
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and combining with Eq. (3.24). In the asymptotic expansions Eqs. (3.23), we substitute Eqs. (3.10a), (3.16), and (3.21).
For simplicity we illustrate the explicit matching using only the first-order solutions. The extension to higher orders is

straightforward but tedious, and we will argue in an appendix that it is not entirely necessary.
To lowest order near z = +zo, we can approximate z =zo and Q (z) =k (z —zo ); then, in the overlap region,

So/e-+ik'/ z /2e+ —,(v+ —, )+(v+ —, )ln(2z/z()), Sl ———,ln(kz ), z &z(),

So/e-+ik'/ z /2e+ —,(v+ —, )+(v+ —, )ln( —2z/zo), S, ———,ln(kz ), z ( —zo .

Substituting into Eqs. (3.2}—(3.5) gives

[ZI e
—ik z /2z( /&I/2) —(v+1)(4k) —(v+1)/4 in(v+1')/4R

inc

ik z /2z( / 1/2)v(4k)v/4 —inv/4R —1](4/ 2k in)1/8 )
[ZIII —ik z /2z( z/&(/2) —(v+1)(4k}—(v~1)/4ein(v+1)/4R

in e

+ZIII ik z /2z( / 1/2)v(4k)v/4 i nv 4R 1](4/e2ke in)1/8 z ( z

where

(V~ 1 )(v+1/2)/2e —(v+1/2)/2V~2 e

By substituting for g (I) to lowest order in Eqs. (3.23) and keeping only the leading terms, we obtain

ik / z /2E( / 1/2)v(4k)v/4 —inv/4

+Be —ik z /2z( / 1/2) —(v+1)(4k) —(v+1)/4 —i (nv +)/I4
~0

(3.28)

(3.29)

(3.30a)

(3.30b)

(3.31)

(3.32a)

)1/2 —inv/2
A+B r(v+1) e ik z /2z( Z/&I/2)v(4k)v/4e 3inv/4

1/2 i nvB,„(v+ I )/2 3. (2~) e

I ( —v)
ik z—/2z( / 1/2) —(v+1)(4k) —(v+1)/4 —3in(v+1)/4

Z Zo ~ (3.32b)

Equating the coefficients of the corresponding functions, and eliminating the coefficients A and 8, we obtain the equa-
tions

ziii l 7TV
out e
III R —2(2~)1/2/r( )

iR e' (2')' /1 (v+1)
1 'ITV zi

in
(3.33)

In the third-order match, the result is identical, except
that R now has the form

——„(v+—,
'

) '] . (3.34)

Equation (3.33) connects the amplitudes of the WKB
solutions on either side of the barrier, correctly to third
order in the expansion. The result is applicable to
quantum-mechanical tunneling near the peak of a poten-
tial barrier, as well as to black-hole oscillations. Notice
from Eqs. (3.10) and (3.20), that if Q(x) is real, as in
quantum mechanics with real energy and potential, then
v+ —, is imaginary. As a consequence,

inv)n inv R n —in(v+ I/2)/2R —I (3.35)

and the connection coefficients Mij [Eq. (3.6)] satisfy the
constraints

Mll M22 M12 M21
I
M21 I

' —
I M)1 I

= 1 (

which express the reality of the potential and unitarity of
the S matrix (Ref. 13, p. 168}. For potential-barrier tun-

neling from region I to region III, Z;„=Q, Z;„/Z „,= —M21/M22, and therefore Z,"„',/Z, '„=(M2, ) '. As a
consequence of Eq. (3.35), the transmission and reflection
coefficients T=

~
Z,'„',

j
/

~
Z;„~ and R = 1 —T are then

given by

T (1+ 2in(v+1/2)) —1

( 1 + —2in(v+ 1/2)) —1

(3.37a)

(3.37b)

This result may be of formal and practical interest in the
general question of WKB potential-barrier tunneling. '

IV. THE EQUATION FOR THE
NORMAL-MODE FREQUENCIES

The connection formula, Eq. (3.33), can now be used to
determine a condition leading to a formula for the fre-
quencies of black-hole normal modes, provided we assume
that the formula can be analytically continued into the
complex frequency plane. For black holes, the amplitude
Z;„"=0. For a normal mode, Z;„=0. From Eq. (3.33)
the only nontrivial way to satisfy these conditions is if
1 ( —v)= oo. This condition implies that v must be a
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non-negative integer. This conclusion applies to frequen-
cies with a positive real part. For frequencies with a neg-
ative real part, the identifications "in" and "out" in Eq.
(3.33) must be interchanged. The boundary condition of
no incoming waves now corresponds in Eq. (3.33) to
Z,"„',=Z,'„,=0, which can only be satisfied if
I (v+1)= oo, which implies that v= —1, —2, —3, . . . .
Together these lead to the simple condition for a normal
mode from Eq. (3.10b):

(4.1)

where

n= ' 0, 1,2, . . . , Reco~0,
—1, —2, . . . , Reer &0. (4.2)

Alternatively, this condition can be obtained by demand-
ing that the transmission coefficient [Eq. (3.37a)] be infin-
ite.

By setting e= 1 and substituting Eqs. (3.9), (3.10), and
(3.20) into Eq. (4.1), we obtain Eqs. (1.4) and (1.5). Since
Q depends in general on the frequency, these equations
will lead to a discrete set of complex values for ~, for
n =0, +1,+2, . . . . If, for example, Q is of the
Schrodinger form Q =co —V, where V is independent of
co, then the frequencies can be determined directly from
Eqs. (1.6). This will be the case, for example, in the
Schwarzschild normal-mode problem. If Q is a more
complicated function of frequency, Eqs. (1.4) and (1.5)
can be solved numerically for co, once the Qo" are known.

V. CONCLUDING REMARKS

We have used the WKB approximation to obtain a for-
mula that will determine the normal-mode frequencies of
black holes. The resulting expansion procedure can in
principle be carried to higher orders to achieve more accu-
racy. In the second paper in this series, we apply these
results to the normal modes of the Schwarzschild black
hole, and find that the agreement with other methods is
excellent (fractions of a percent) for all the low-lying
modes (small values of n). Future papers in this series
will apply them to Reissner-Nordstrom and to Kerr black
holes.

At a given order in e, the second-order and third-order
correction terms represented by A and II [Eqs. (1.5)] in-
crease with increasing n, and we thus expect the accuracy
to decrease with increasing n. This is because the value of
—Qo changes as a consequence of the changing resonant
frequency, and a polynomial approximation to the interior
potential that is cut off at a given power of z may no
longer be adequate. We hope to be able to adapt the
WKB approximation to the case of large n as well.
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APPENDIX: EXTENSION TO HIGHER ORDERS

The fact that the connection coefficients M;J- depend only on v suggests that they may be determined to higher order
simply by solving the interior problem (region II) to higher order in e, without performing an explicit match of the solu-
tions to WKB solutions in regions I and III to the same order. By finding a value of v such that the interior solution has
the form of Eq. (3.22), we guarantee in some sense that the matching to WKB solutions will be straightforward. Al-
though the coefficient R in Eq. (3.34) will change as a result of a higher-order match, its property given in Eq (3.35) w. ill

not; hence the transmission coefficient will still be given by Eq. (3.37a).
With this in mind we used the symbolic algebra computer program MACSYMA ' to extend the procedure of Sec.

III B to one more order in e, corresponding to fourth WKB order.
In place of Eq. (3.11) we write

iti+[v+ —,
' —,' t2 e)/2bt3+e(A —ct4—) e3/2dts+e2(—II f—t6) e5/2gt7+e3—(N h—t8)]$=0, — (Al)

~+ —, = —ik' zo /2e —eA —a~A, —g3+

g
) g(4k) —8/4e 5in/4 ) g(7) gg~~

' g(4k) —3/2 3im/2 g
) Q(8) ~gi

(A2a)

(A2b)

(A2c)

In Eq. (3.16), we add the polynomials As and /I6, as defined by Eq. (3.19), and generate differential equations for them,
analogous to Eqs. (3.18). In the equation for /18, we find a solution for the coefficients by setting the coefficient of each
power of t equal to zero. But as before, the equation for A6 is overdetermined, leading to a constraint on the value of the
constant 4. Here we quote only the final result for N:
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&5= ——,(202958b —263634b c+80522b c +59108b d —22668bcd

—12 110b f+ 2310bg —3078c + 1890cf+ 1107d —315h )

—(v+ —, ) (418110b —479970b c+124026b c +95460b d —29340bcd

—17 070b f+ 2730bg 34—14c + 1770cf+ 1085d —245h )

—(~+ —, ) (463020b —465 300b c+99780b c +78 120b d —19320bcd

—10 860b f+ 1260bg —1500c '+ 660cf +630d —70h ) .

This result may be useful in higher-order WKB analyses of tunneling or of normal modes. '
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