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Because of the equivalence principle, a global measurement is necessary to distinguish gravity
from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument
needed for precision tests of gravity laws and for applications in gravity survey and inertial naviga-
tion. Superconductivity and SQUID (superconducting quantum interference device) technology can
be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting
gravity gradiometer has been developed for a null test of the gravitational inverse-square law and
space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting
from dynamical equations for the device, we derive transfer functions, a common mode rejection
characteristic, and an error model of the superconducting instrument. Since a gradiometer must
detect a very weak differential gravity signal in the midst of large platform accelerations and other
environmental disturbances, the scale factor and common mode rejection stability of the instrument
are extremely important in addition to its immunity to temperature and electromagnetic fluctua-
tions. We show how flux quantization, the Meissner effect, and properties of liquid helium can be
utilized to meet these challenges.

I. INTRODUCTION

Highly sensitive gravity sensors are needed to investi-
gate fundamental properties of gravitation and to improve
accuracies of gravity survey and inertial navigation. Tor-
sion balances have been used over two centuries for sensi-
tive gravity experiments. ' Spring-mass, pendulum, and
free-fall-type gravimeters have been developed as survey
instruments as well as a superconducting version of the
first type. Research to develop detectors for gravitation-
al waves of extraterrestrial origin has started over two de-
cades ago. Cryogenic mass-quadrupole-type and laser-
interferometer-type detectors are under vigorous develop-
ment. The last two decades have also seen dedicated ef-
forts to develop room-temperature gravity gradiome-
ters for moving-base survey applications. Supercon-
ducting gravity gradiometers have emerged more recently
as an outgrowth of the superconducting transducer work
for low-temperature gravitational-wave detectors.

The extremely weak nature of gravitational interaction
poses a challenge to the state of the art technology for sig-
nal transduction and amplification as well as isolation of
environmental noise. To compound the problem, the
gravitational field cannot be distinguished in a local mea-
surement from acceleration of the reference frame by the
equivalence principle. In order to separate gravity from
frame accelerations, one must resort to a second-order

measurement using the tensor nature of gravitational field
gradient or "gravity gradient. " When the platform is un-
dergoing a linear acceleration, a differential measurement
over a base line between two proof masses will cancel out
the acceleration noise, leaving gravity to be detected as the
signal. Likewise, an angular acceleration can be taken out
by combining signals from four proof masses as we will
see in Sec. II. Thus, unlike in electromagnetism, where a
single test charge can be used to determine the field
uniquely, a tidal-force sensor or a "gradiometer" is the
fundamental instrument in gravity which is capable of
measuring its field, independent of platform motion.
True acceleration measurement, in turn, requires removal
of gravity noise which again calls for the use of a gravity
gradiometer. It is therefore not surprising to find that in-
struments employed in most precision gravity experi-
ments, such as torsion balances and Weber-type
gravitational-wave detectors, have actually been special
types of gradiometers.

The acceleration difference along the direction j per
unit separation along the direction i is defined to be the ij
component of the gravity gradient tensor I:

I;~(r, t ):——r) P(r, t)
Bxl.Bx~.

where P(r, t) is the gravitational potential. A very weak
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gradient of 1 nm sec per m is equal to one Eotvos (E)
unit, defined by

1 E=10 sec

Many ground-based survey applications call for such high
sensitivity. Geodesy application in space requires even

higher sensitivity at the level of 10 EHz 'r (Ref. 10).
The extreme weakness of gravitational interaction and the

practical difficulties associated with balancing out the ac-
celeration noise to a sufficient degree have limited the sen-

sitivity of room-temperature gradiometers to a level of
1 —10 E Hz '~ (Ref. 10). Major improvements in sensi-

tivity and stability are expected of the superconducting
devices under development. It appears that a supercon-

ducting gravity gradiometer of a relatively compact
design will have a sufficient sensitivity for space applica-
tions.

Besides possessing low thermal noise and low mechani-

cal drift as direct consequences of a cryogenic tempera-

ture, the new gradiometer takes advantage of many exotic
properties of superconductivity. Quantized magnetic flux

is used as an extremely stable tool to achieve transducer
action and common mode balance. Operating at liquid-

helium temperatures, a SQUID (superconducting quan-

tum interference device) serves as the most sensitive am-

plifier of today. Superconductivity can be used to make a
nearly perfect electromagnetic shield and superfluid heli-

um can provide a stable, gradient-free temperature envi-

ronment. Flux quantization can further be used to ac-

complish stable levitation of proof masses against gravity
in a terrestrial environment and to enhance the gradiome-

ter sensitivity by means of a "superconducting negative

spring. ""
Two schemes (current dtfferencing and displacement

differencing) of a superconducting gravity gradiometer

have been demonstrated by Paik et a/. ' Error models

were analyzed by Wang. ' Mapoles' has extended the
development of a displacement-differencing gravity gra-
diometer. In this work we have chosen the current-

differencing scheme. One advantageous feature of the
current-differencing gradiometer is the remote coupling of
the two differencing acceleration transducers independent

of their separation and their respective orientations.
Therefore, three in-line (or diagonal) component gradiom-

eters can be combined together by mounting all three

pairs of acceleration transducers on the six faces of a
common cube, with the sensitive axes normal to the sur-

faces of the cube, to form a three-axis in-line component

gravity gradiometer. Construction of cross- (or off-
diagonal) component gravity gradiometer is feasible by
orienting the sensitive axes of the acceleration transducers

perpendicular to the direction of the baseline. A tensor

gravity gradiometer to measure all the six I,J components
has been proposed' as a combination of the in-line and

cross-component gradiometers.
While developing a three-axis gradiometer for precision

gravity experiments in Earth's orbit, ' we have completed,
with our colleague, a prototype single-axis in-line com-

ponent gradiometer. This instrument has been used to
perform a laboratory null test of the gravitational
inverse-square law. ' The details of this gradiometer

development are described in Ref. 18 in which the theory
of the gradiometer has been given a new formulation with

generalization and more rigor than the preliminary
analysis in Ref. 13. This paper (I) is a modified version of
this new theoretical analysis with an extended error model

of the instrument. Paper II presents the construction and

test results of the gradiometer. Although we confine our-

selves to the discussion of an in-line component gradiome-

ter with a particular superconducting circuit chosen, the
methods developed in these papers could easily be adapted
to cross-component gradiometers and different supercon-

ducting circuits.

II. PRINCIPLE OF GRAVITY GRADIENT DETECTION

In this section we briefly review the basic principle of
separating the gravity signal from dynamical variables

and set a basis for the error model developed in Sec. V.
Let the instrument platform be moving with respect to an

inertial frame with an instantaneous angular velocity Q(t)
and linear acceleration a{t). Then, the accelerations of a

proof mass observed in the two coordinate systems are re-

lated by the well-known equation'

I
dt

d I +Qx(Qxr)+2Qx dr

. p

dQ+
pl

Xr+a .

d r
g'(r, t) —=

VP(r, t) —Qx(Qx—r)

—2QX
dr
dt

, pl

dQ Xr —a(t) .
dt

(4)

The Coriolos term produces a force perpendicular to the

velocity in the platform coordinates and therefore drops
out when the proof mass is confined to move in a single
direction. The quantity g (r, t) is what is measured by an

accelerometer or a gravimeter undergoing an acceleration.
It is clear from Eq. (4) that the linear acceleration term

—a(t) can be eliminated by a differential measurement

over a spatial coordinate xz
..

d g,'(r, t) 8'p(r, t )

Bx~ Bx;Bx~

k, E

[Q;(Q.r) —Q x;]
Bxj-

d/k
dt

&
Bx~

Here the subscripts in and pl represent the inertial and

platform coordinate systems in which respective measure-

ments are made. The second and third terms on the
right-hand side are the centrifugal and the Coriolis ac-
celerations, respectively. If P(r, t) is the gravitational po-
tential in the inertial frame, the resulting acceleration of
the proof mass with respect to the moving platform is

given by
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ak(t)—:
dAk

one finds

I";j(r,t) =I;J(r, t) —(Il;QJ —Il 5;j)+ g e,~kak(t) .
k

(8)

Notice that the angular acceleration term is antisym-
metric whereas the first two terms in Eq. (8) are sym-
metric tensors. Therefore, one can further drop a(t) by
symmetrization of I,'~:

1 (; )(jr, t)=—
2 Bx, Bx;

=I;j(r, t) (I),;I),j ——0 5;j) .

The centrifugal acceleration term can be taken out in
principle by taking another spatial derivative: i.e., by
means of a third-order gravity gradiometer. In practice,
one measures Q with the aid of gyroscopes and removes
the effect of the centrifugal acceleration by actively stabil-
izing the platform or by compensating the induced error.

The diagonal component of the tensor, I ~;;~
——I,';, can

be measured by detecting the relative acceleration along
the in-line direction between two proof masses, separated
in the x; direction. The off-diagonal components 1),J)
(j&i), however, requires four proof masses because of the

symmetrization. The relative accelerations in the cross
sections in two pairs of accelerometers, which are separat-
ed in the x; and xj directions, respectively, can be added
to yield I ~;J~. Notice that one can instead subtract these
two signals to determine the antisymmetric component:

1 ~g'
I l; l(r, t)—:— (10)

2 BXJ-

Bg~
ijkek(at )

Bx;

The angular acceleration of the platform can be obtained
by inverting this equation:

ak(t)=ejkl (,j)(r, t) . (1 1)

A time integration of this vector then gives an alternative
means of determining the angular velocity Q.

A tensor gravity g radiometer with common mode
readouts is therefore self-sufficient for true gravity detec-
tion. ' On the other hand, the device can measure true
linear and angular accelerations of a moving platform by
removing gravity-induced errors. Equation (4) shows that
the gravitational field —VP remains as the fundamental
error in linear acceleration measurement after removing
dynamical error terms. The gravid gradiometer comes to
the rescue. The gradient output I can be integrated over
a spatial coordinate to determine —VP. Therefore, a true
accelerometer requires an aid from a gradiometer.

Substituting Bx~/Bxz ——6~J. , and introducing the notations
of Eq. (1) and

i),'(r, t )I,', (r, t) =
Bx~

The symmetrization technique discussed above has been
incorporated in the rotating gravity gradiometers '

whereas, in the floated gradiometer which has only two
proof masses, the angular motion of the gradiometer is
attenuated by floating the proof masses in a liquid. In the
rotating gradiometers, the common mode acceleration g'
is further rejected by its frequency characteristic. The
gradient I", being a tensor of rank 2, is modulated at the
second harmonic of the rotation frequency whereas the
acceleration g' is modulated at the fundamental frequency
by its vector nature. A side benefit of this heterodyne
detection is the translation of signal bandwidth away from
the 1/f noise region of the instrument in frequency space.
The mechanical rotation, however, brings in a penalty:
additional, dynamically induced errors. From Eq. (8) one
can clearly see, for example, the devastating effect of the
angular velocity error 6Q, which now contributes a first-
order term O(Q6Q) to the measurement.

For the prototype superconducting gravity gradiometer,
we have chosen a nonrotating configuration. The extreme
stability of the superconducting sensing circuit, combined
with the low noise of the SQUID amplifier down to low

signal frequencies, permits a very high degree of common
mode rejection without rotation. For orbital applications,
however, the superconducting gradiometer could be rotat-
ed to its advantage by spinning the entire satellite quietly.

The symmetric nature of I;J has been used to construct
a gravity gradiometer. Further, the trace of this tensor is
constrained by the Poisson equation:

g I;;(r, t) = V'P(r, t—) = 4trGp(r, t ), — (12)

g I i;;)(r,t)= 4vrGp(r, t)+20—(t) . (13)

It is therefore important to suppress or separate out the
centrifugal acceleration term carefully in such an experi-
ment.

III. DYNAMICS OF THE SUPERCONDUCTING
GRA VITY GRADIOMETER

The superconducting gravity gradiometer consists of a
pair of superconducting acceleration transducers and a su-
perconducting inductive load which is connected to a
SQUID amplifier. The coupling between the transducers
and the output load is provided by flux quantization.

The principle of one acceleration transducer element is
first discussed and its equation of motion is then derived.
Each transducer communicates to the rest of the super-
conducting circuit only through one current component

which is a consequence of the inverse square law of the
gravitational force. This leaves fi Ue independent com-
ponents for the gravity gradient tensor I;j. With a three-
axis diagonal component gravity gradiometer, the validity
of Eq. (12) could be tested by summing the three outputs
and comparing the result with the local mass density p.
This experiment has been proposed as a precision null test
of the inverse square law and an early result of such an
experiment has been reported. ' In an actual experiment,
the measured quantity is the trace of I (';~-~.

.
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that flows through the transducer. In a coupled circuit of
a pair of transducers and a load, flux quantization im-
poses constraints to the superconducting circuit. For
detection purposes, the currents at the load, rather than
the current through the transducers, are the observable
quantities at the output. The complete dynamical equa-
tions are then linearized and expressed in terms of these
currents, the respective displacements of the proof masses,
together with the applied common and differential ac-
celeration signals. ' Because the gradiometer is a differen-
tial accelerometer over a finite baseline, the gradiometer
must reject common acceleration signals. The conditions
for a common mode balance is derived. The parameters
used to accomplish the balance are the persistent, but ad-
justable, currents stored in various superconducting loops.
Further, a sideband common mode balance is shown to
be possible by iteratively adjusting at least two current
components. After balancing the common accelerations,
only differential acceleration will be detected at the load.
The transfer function of an applied differential accelera-
tion to the corresponding current output at the load is de-
rived.

Throughout the remainder of this paper, a variable with
time or frequency dependency will be written explicitly as
such functions, whereas the average values of these vari-
ables will be denoted by the same notation as the function,
but with the functional dependency deleted.

A. Principle of a superconducting acceleration transducer

The principle of the superconducting acceleration trans-
ducer is illustrated schematically in Fig. 1. Analysis of
this device as a resonant transducer for a gravitational-
wave antenna and as a sensitive accelerometer has been

given previously in a different format. A superconduct-
ing proof mass, which is suspended by spring and is con-
fined to one linear degree of freedom, responds to an ac-
celeration signal with a displacement relative to sensing
coil. The inductance of the coil is then modulated, due to
the Meissner effect, by the superconducting plane of the
proof mass. The coil is connected to an output inductor
through a superconducting path and a quantized magnetic
flux is stored in the superconducting loop formed by the
sensing and output inductors. The current flow through
the output inductor is modulated as a result of the induc-

tance modulation of the sensing coil. The persistent
current provides the stability of the transducer scale fac-
tor. A low-noise SQUID amplifier is then used as a dc
current-to-voltage power amplifier to produce a readout.

B. Analysis of a single acceleration transducer

The transfer of mechanical energy to electrical energy is

accomplished at the sensing coi1. In order that the sens-

ing coil converts a displacement to a current more linearly
within a transducer, a symmetrical pair of "pancake"
coils are utilized. The coils are located on the opposite
faces of the proof mass and are connected in parallel (Fig.
2). Each having winding density nl and area Al, the
coils are at mean distances of d, and db from the respec-
tive superconducting planes of the proof mass. If the dis-

placement of the proof mass from its average position is
x (t), the inductances of the coils are given by

L, (r) =A[d. +x (t)]=L, +Ax (r),

Lb(t)=A[db —x(t)]=Lb —Ax(t) .

Here

A =ppnL
2

where pp is the permeability in free space and

L, = (L.(r) ), L„=—(L,(t) ),

(14a)

(14b)

(15)

(16)

However, in order to make the analysis simpler, a dif-
ferent choice' of the two current variables can be made
with the aim that the expression for the electromagnetic
energy has as simple a denominator as possible. Such a

way of choosing variables is a classical analog of the re-

normalization procedure in quantum field theory.
Before making the choice, we make two observations.

The first observation is that the series inductance of the
sensing coils is a constant:

as was noted earlier concerning notation.
Two current components are needed to characterize the

electromagnetic state of the two sensing coils. One obvi-

ous choice of variables '' are the currents I, (t) and Ib(t)
which flow through each of the two coils, so that the elec-

tromagnetic energy in the two coils is

VEM = , L.{t)I.(r )'+—,L, (r)I, (r )' .—

WEAK SUPERCONDUCTING SENSING
SPRING PROOF MASS COIL

QUANTIZED
MAGNETIC

FLUX

SQUID
AMPL IF IER

ACCELERATION DISPLACEMENT INDUCTANCE = CURRENT
MODULATION RESPONSE

= VOLTAGE
OUTPUT

FIG. 1. Principle of the superconducting acceleration trans-
ducer.

FIG. 2. Superconducting circuit and its current variables of a
single acceleration transducer.



35 SUPERCONDUCTINCz GRAVITY. . . . I. 3555

L, (t)=L~(t)+Lb(t)=L, +Lb L——, .

Consequently, the current I through the superconducting
loop of these two inductors in series is also a constant be-
cause the trapped flux N, b in this loop is quantized. The
second observation is that the parallel combination of the
two sensing coils has a constant denominator in the ex-
pression for its inductance:

L, (t)Lb(t)
L~(t) =

L, (t)+Lb(t)

1 L, (t) L—b(t)
FEM ——A I+- i(t) i(t) .

2 L~ +Lb
(23)

The total force acting on the proof mass consists of this
magnetic force together with a restoring force of the
mechanical spring suspension of the proof mass and any
externally applied force f ( t) on the proof mass relative to
the platform of the sensing coils. We will ignore the ef-
fects of the damping term for the time being. When the
proof mass m is approximated as a point mass located at
its center of mass r, the external force becomes

[L,Lb —(L, Lb)Ax(—t) —A x (t)] .
L, +Lb

(19)
f (t) =mn. g'(r, t), (24)

In fact, even the numerator of this parallel inductance will
also be a constant up to the first order if the mean spac-
ings d, and db are matched so as to make I,=Lb. The
nonlinearity of the inductance modulation is exhibited by
the second-order term in Eq. (19).

Expressed in terms of one parameter N, b and one
current variable i (t), which flows through the parallel
combination of L, (t) and Lb(t), the electromagnetic ener-

gy has a constant denominator and has thus acquired a
"renormalized" form:

2+b
VEM ——— + L(t)i (t) . —

2 L, +Lb 2
(20)

It is straightforward to show that the expressions in Eqs.
(17) and (20) are equivalent to each other. '

The only variable i (t), once the parameter I or N, b is
fixed, possesses all the dynamical information in the elec-
tromagnetic system of the transducer. As the inductances
L, (t) and Lb(t) are modulated by the displacement of the
proof mass, the current i (t) must always split between the
two inductors according to the inverse ratio of the respec-
tive inductances in order to produce equal and opposite
magnetic flux contributions to the superconducting loop
formed by the series inductor L, +Lb. The net currents
I, (t) and Ib(t) through L, (t) and Lb(t) are therefore the
following linear combinations of I and i (t):

where n is the unit vector along the direction of the sensi-
tive axis and g (r, t) is the specific force given by Eq. (4).
The equation of motion for the proof mass in the plat-
form frame can now be written as

, I,, (t) Lb(t)—
x '(t)+coM x'(t)+ —I+ —, i (t) i (t)

m L +Lb

= n g'(r, .t), (25)

x'(t) —=xo+x (t),
g'(r, t)=—gE(r)+gt (r, t),

into Eq. (25), we find

gF. cosOn A L, —LbI+
Et'~ m AM 2 Lg +Lb

(26a)

(26b)

(27)

where AM is the angular resonance frequency of the
mechanical spring. An alternative derivation of this equa-
tion, in which an electromechanical Lagrangian approach
is used for the superconducting transducer, is found in
Ref. 18.

The dc component of Eq. (25) defines the equilibrium
position xo of the proof mass. This position is shifted
from the relaxed position of the mechanical spring by
Earth's gravity gz and by a dc magnetic force. Substitut-
ing

Lb(t)I, (t)= t (t) I, —
L, +Lb
L, (t)

Ib(t) = i (t)+I .
L, +Lb

(21a)

(21b)
gz(r) = —VQF(r) QF X [Q~ X (Rb—+r)], (28)

in the general case where i:—(i(t))&0. Here 8„ is the
angle that the sensitive axis makes with the upward verti-
cal. The local vertical is defined by Earth's gravity vector
which is found from Eq. (4) as

The force due to magnetic field pressure on the proof
mass is given by

(t) 4'b (t)
FEM =— +

Bx 2L, (t) 2Lb(t) e. , e,

where P~(r), QF, and Rz are, respectively, Earth's gravi-
tational potential, spin angular velocity, and the geocen-
tric position vector of the coordinate origin.

The linearized equation of motion for the ac part, after
Fourier transformation, can be readily shown as

(22)

Ai—CO +COM +
mL,

AI' .x (co)+ i (co) =g(co), (29)

where g(co) is the Fourier transform of
where @,(t) and 4b(t) denote magnetic fluxes in L, (t)
and Lb(t), respectively. In terms of I and i (t), this force
can be rewritten as and

g(t)=—n gp(r, t) (30)
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L, +LbI':—I+
L, +Lb

(31)
" i2(t)

There are two independent superconducting loops in the
circuit. The flux quantization condition in the loop
L, (t)+L~(t) has already been used in representing I as a
constant. An additional constraint in the dynamical equa-
tion comes from the flux quantization condition in the
loop Lt, (t)+L p

Ib( L 20
I,

2b( t)o 2

Lg(t)Ig(t)+Lpi (t) = kgp . (32)

The first order -equation becomes, after Fourier transfor-
mation,

FIG. 3. Superconducting circuit of the current-differencing

g radiometer.

AI'x(cp)=(Lp+Lp)i(cp) . (33)

Simultaneous equations (29) and (33) determine the
dynamics of a single transducer completely. In particular,
the acceleration-to-current transfer function can be shown
to be

Hg, (cp) = 1 AI'

~o —~ Lo+Lp
(34)

Here, coo is the resulting angular resonance frequency of
the transducer due to the addition of spring constant
mcoM by the superconducting circuit:

2= 2
P2 ~ 2 g2I t2

~o:—~M + +
mL, m(Lp+L )

(35)

C. Dynamical equations for the gradiometer

The gradiometer, shown in Fig. 3, consists of a pair of
the above acceleration transducers and a superconducting
inductive load. The coupling among these elements is
through flux quantization in the superconducting circuit
which has four independent superconducting loops.

The dynamical equations for each transducer is analo-
gous to Eqs. (29) and (33) for a single accelerometer. An
additional subscript

k=1 or2 (36)

—CO +COkM +2 2
+2' 2

Ek

mkLk,

AIk
xk(a )+ tk(cp) gk(~)

mk

(37)

Here the geometries of the sensing coils are again assumed
to be identical so that they can be represented by a single

is now used for the respective variables and parameters to
distinguish between the two transducers. With this sub-
script, the linearized equations of motion for the proof
masses in the transducers, being similar to Eq. (29), are
written as

parameter A defined by Eq. (15). Also, the two flux
quantization constraints in the superconducting loops
Lk, +Lk& have again been used in deriving Eq. (37). Two
more constraints, similar to Eq. (33), are obtained by us-
ing flux quantization conditions in two other independent
superconducting loops such as Lkt, (t)+Lp. However, a
generalization from Eq. (33) is needed here because the
current through Lo is now the sum of the current outputs
from each transducer. The linearized constraints are
therefore given by

AIkxk(cp) =Lkj, lk(cp)+L p[~ i(cp)+'z(cp)] . (38)

gk(cp) =( —1)"—,gd(cp)+g, (cp) . (40)

Notice that id(cp) is the actual current flowing through
L p and detected by the SQUID.

With the change of variables in Eqs. (39) and (40), the
dynamical equations (37) and (38) become

Notice that these two equations are coupled through i ~(cp)
and i 2 (cp ).

The dynamics of the gradiometer, governed by the four
coupled equations (37) and (38) in the four variables xk(cp)
and ik(cp), has 2 degrees of freedom. Each of the two
transducers couple to the rest of the circuit through one
single current signal: i ~(cp) or i2(cp) Depend. ing on the
signature of the applied acceleration components, these
current modulations can add or subtract at the output in-
ductor Lo. It is therefore convenient to use a new set of
current variables id(co) and i, ( )cpdefined by the sum and
half of the difference of the two transducer currents. In
terms of id(cp) and i, ( ),cpthe transducer currents i~( o)c
and iz(cp) can be expressed as

ik(cp) = 2id(cp) + ( —I)"t, (cp) .

Likewise, the applied accelerations g, (t) and gz(t) at the
proof masses m& and m2 can be expressed in terms of
their differential and common accelerations, gd(cp) and

g, (cp), as

—CO +COkM +2 2
Ai k

mk Lks

AIk k AIk
xk(cp)+ id(cp)+( —1)"— i, (co) =( —1)",' gd(cp)+g, (cp), —

mk 2 mk
(41)
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Lkp+2Lp 1,Lkp .
xk(co) = —id(co)+( —1)" i, (cu) .

AI, 2

Upon eliminating the displacement coordinates we obtain

2 Lkp+2Lp Lkp
( co—+cokd ) —id(co)+( —1) ( —co +rok, ) i, (co)=( —1) —,gd(co)+g, (co)=gk(co),

AII, 2 AIk

(42)

where of these separated model accelerators are given from Eq.
(43) as

2= 2 1
~kc =~kM +

mk

Ai A I''+
Lk Lkp

(44a) ld

~gk

( —1) AIj,
2 22L p +Lkp

(47a)

2= 2 1
~kd =~kM +

Vl I

Ai A I''+
Lk I.kp+2L p

(44b)
( —1)"AIj

Lkp COkc —CO
2 2

' (47b)

Hg, (cu) =

AI2
2 2 r 2 2 r

CO —CO 2 CO —CO

2Lp+L2p co)d —cu 2Lp+
2 2 r 2 2

602 —CO L 2p CO~c —CO L
&p

—AI j

(46a)

Hg, (co)=

—AIiAI21 1
2 2 r 2 2

C02c —CO L 2p CO ~c
—CO L ]p

co2d —ct) 2LP+I 2p co&d —co 2LP+L ]p
2 2 2 2

2 2 r + 2 2
co2c —co L2p cole co L )p

(46b)

The four parameters cokd and cok, are, in general, not
the two resonances of the gradiometer. Nevertheless,
comparing the expressions for these parameters with Eqs.
(34) and (35) suggests intuitive meaning to these nonob-
servables. Thus, cok, can represent the angular resonance
frequencies that the two transducers would separately
have if they were each connected to a short-circuited load.
A short-circuited load arises in these models because,
when id(co) =0 in the gradiometer circuit, the two trans-
ducers are driving the current i, (co) in a push-pull
manner, contributing zero impedance to each other. Like-
wise, ~kd can represent the angular resonance frequencies
that the two transducers would separately have if they
were each loaded with an inductance of 2LO but were oth-
erwise decoupled from each other. The appearance of
2Lp here is due to the equal contributions of currents
,'id(ro) to —the signal at Lo. Thus, under the restriction
i, (co) =0, the flux modulation produced by each transduc-
er at L p as seen by the transducer itself is doubled by the
presence of the other transducer. The transfer functions

Solving Eq. (43) for the signal current we find

id(~) =Hg/(~)gd(~)+Hg, (~)g, (co), (45)

where Hg, (co) and Hg, (co) are th. e transfer functions from
gd(co) and g, (co), respectively, to id(co) These . transfer
functions of the gradiometer are given by

D. Common mode balance and gradiometer transfer function

For operation as a gradiometer in the presence of com-
mon accelerations, the transducers need to be tuned such
that Hz, (co) =0. N. o common acceleration signal will then
appear at the output load L p, and the coupled acceleration
transducers are said to operate in a "gradiometer mode. "
On the other hand, parameters can be chosen such that
H~;(co) vanishes instead. Then, the output will respond
only to common accelerations and the system is said to
operate in an "accelerometer mode. " The accelerometer
mode operation is a powerful means of obtaining a precise
calibration of the gradiometer. A detailed discussion of
the accelerometer mode is found in Sec. IV B of paper II.
From Eq. (46b) the common mode balance is obtained
when

—AI i AI2

(~), —co )L)~ (co2, —co )L2p
2 2 2 2 (48)

CO)c =C02c (49a)

AI I

L)p

AI2

L2p
(49b)

are simultaneously satisfied. However, direct matching of
cok, is not practical because these equivalent resonances

This balance condition can be satisfied at any single fre-
quency by adjusting only one persistent current parameter.
Balancing over a small frequency range near dc appears
sufficient for normal low-frequency use of the gradiome-
ter in which co &~~&„co2,. In the terrestrial environment,
however, the environmental vibrations occur in a wide-
band and are very large compared with the extremely
weak gravitational signals. A sideband balance will help
to immunize the gradiometer against such environmental
vibrations.

The four current components I&, I2, i &, and i 2, do pro-
vide more than sufficient degrees of freedom to tune for
wideband balance. In principle, Eq. (48) becomes an iden-
tity if
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are observable only when the output load is shorted and
when the two transducers are also decoupled mechanical-
ly. ' In the experiment, a wideband balance can be
achieved instead by iterating the balance at two frequen-
cies. Tuning I& or I2 to balance out an applied common
acceleration at a high frequency (co » to &„co&,) will
achieve the condition (49b). This adjustment is followed
by tuning of i] or i2 for balance at a low frequency
(co &&co&„co2,), yielding

1 AI& 1 AI2
2 7 2 7~1c L

&p ~2c 2p

(49c)

The latter operation wi11, in general, affect the previous
balance (49b), and iteration between the two balance pro-
cedures is needed. When the conditions (49b) and (49c)
are both satisfied, condition (49a) follows. This
frequency-independent balance has been applied in the ex-
periment and is reported in paper II.

Upon substitution of Eq. (48) into Eq. (46a), H~;(to) as-
sumes a simple form:

1Lp+ —,L)p
[Hg, (co)] '=(co)d —co ) —AI'i

current. Such a representation involves identification of
the gradiometer transfer function with the parameters of a
single accelerometer, as discussed in Sec. III B. These pa-
rameters include a resonance frequency, a mass, and the
parameters of a superconducting circuit.

The two normal mode resonance frequencies of the gra-
diometer are some weighted average of the parameters cu~,

and ~2, for the common mode and also some other
weighted average of to&d and tozd for the differential
mode. In the particular case of wideband balance, co&,

and co2c are equal to each other and hence equal to the
common mode angular resonance frequency, denoted by
co, . The differential mode angular resonance frequency,
denoted by coo, is then defined from the singularity of
H~;(to) in Eq. (50). In practice, the gradiometer need only
be balanced at a limited frequency band of the signa1.
Then Eq. (50) is only valid in this limited frequency band.
Therefore, the exact differential mode resonance is deter-
mined from the singularity of Hg, (to) in the more general
equation (46a). Yet, as far as signal transduction within
the limited signal frequency band is concerned, we can
still use Eq. (50) to define to~.

By defining equivalent circuit parameters to satisfy

1Lp+ —,L2p
+(co2d —co )

AI2
(50)

Lp+Lp
I'

I 1LP+ —,L )p LP+ —,L2p+—I] I2
(52)

AI 2
—AI'i

Notice that the transfer function of a balanced gradiome-
ter becomes the harmonic mean of the transfer functions
of the two separated model accelerometers, given by Eq.
(47a).

When the common mode balance is not precise,
H ( s)&to0 constitutes an error coefficient. This error,
which will be discussed in Sec. V, is obtained from Eqs.
(46) as

we can convert Eq. (50) into the form of Eq. (34):

AI' 1
Hg, (to) =

Lp+Lp ~o —~
(53)

1

Lp+L, , Lo+ —L
COpI'

1Lp+ 2L2p
~&d + ~2d

I2
(54)

where the effective resonance frequency cop is related to
~kd

2

Hg, (to) =Hg, (to).2 2 7
C02c —CO ~ 2p

1 AI2
+

2 ~2c ~ L

1c co L )p
2 2

r—AI ]

2 2
Q)~c —M L

&p

While there is freedom in defining the individual circuit
parameters which appear on the left-hand side of Eq. (52),
one natural choice is to identify Lp with the load induc-
tance and Lp with the output inductance of the supercon-
ducting circuit:

(51)

In the foregoing analysis, the transducer has been approxi-
mated as a linear system. The dynamical equations (25)
and (32), however, are nonlinear in nature so that the
response current id(to) must contain nonlinear terms in

general, in addition to the linear terms shown in Eq. (45).
These nonlinear terms may not drop out even when

Hg, (to) =0. The scale factor nonlinearity therefore consti-
tutes an important error source, which will be discussed in
Sec. V of this paper and in Appendix B of paper II.

E. Equivalent accelerometer representation

With two coupled acceleration transducers in the gra-
diometer, only the differential acceleration is the mea-
sured signal at Lp. The common acceleration drops out
upon balance. Therefore, a convenient representation of
the gradiometer is a single (differential) accelerometer
which converts a differential acceleration into a signal

1 1 1+L L)p L2p
(55)

Then, the current parameter I' is defined by Eq. (52).
With the aid of Eqs. (49b) and (55), this definition of I in
Eq. (52) simplifies to

1 1+—I) I2
(56)

under wideband balance condition.
The transfer function in Eq. (53) has only characterized

the overall signal transduction of the gradiometer. The
intrinsic noise of the gradiometer will be given in Sec. IV
in terms of Brownian motion noise and amplifier noise.
For a single spring-mass system, the Brownian motion de-
pends on the mass and the fluctuating force of the spring.
Therefore, once the effective mass in the equivalent ac-
celerometer representation is determined, the Brownian
motion of the two coupled acceleration transducers in the
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differential mode can be derived using this equivalent sin-

gle spring-mass model. This effective mass requires a
unique definition in order to give the correct Brownian
motion noise of the gradiometer and must therefore be de-
rived from the dynamics of the gradiometer.

Dynamically, the gradiometer consists of two coupled
masses connected to the platform and to each other by
three springs. Thus, the homogeneous equations of
motion of the two proof masses are obtained by eliminat-
ing ik(co) from Eqs. (37) and (38):

~ mkxk(~) +kxk(~)++12x3 —k(~) ~ (57)

where the three spring constants Kk and K&2 are given by

A tk (ALk) (Lp+Lkp)
Lk, (Lp+Lp )(L )~+L2~)

(58)

( AI') )(—AI2 )Lp

(Lp+Lq )(L )~+L2t, )
(59)

Now, we need to find out what displacement variable,
xd(co), causes the signal current id(co). Thus, we break up
the signal transduction into two intermediate steps: gd(co)
to xq(co) and then xd(co) to id(co) From . Eqs. (41) and
(42), we obtain

( —co'+ cop')xd (co ) =gd (co),
AI'

ig(co) = xd(co),
Lo+Lp

where

(60)

(61)

Lp I2 —I)
xd (co)—: x2(co) — x ( (co)I Lqp L)p

(62)

The effective mass is therefore the inertia for the coupled
spring-mass system of Eqs. (57)—(59) toward the motion
xd(co) of Eq. (62).

We next note that a simple scaling of the two separate
displacement variables,

Lp ( —1)"Ik
xk(co) =, xk(co), (63)

Lk

IV. NOISE AND OPTIMIZATION

In the light of the equivalent acce1erometer model given
in Sec. III E, the fundamenta1 noise terms of the gradiom-
eter will be derived by treating the gradiometer as a single
accelerometer. In this section we introduce damping and
consider its effects.

A. Transducer Brownian motion noise

The fundamental noise source of a spring-mass system
at a temperature T is the Brownian motion of the har-
monic osci11ator at that temperature. The force of the
spring on the proof mass undergoes random fluctuations.
The spectral density of such force fluctuations at the reso-
nance frequency coo of the oscillator is related, by the
fluctuation-dissipation theorem, to the damping of the os-
cillator at resonance.

In applying the fluctuation-dissipation theorem, em-
phasis is made here that measurement of relaxation time
7(cop) or quality factor Q(cop): cop7(cop) —gives information
on the force fluctuations only at coo. The Langevin equa-
tion is a modification of the equation of motion in Sec. III
by including a damping term and an acceleration noise
g„(co) term:

—co + +Cop x(co) =gz (co)
7(cop)

(67)

Thus the energy of the oscillator at a temperature T,

Now, the effective mass corresponding to xd(co) of Eq.
(64) is just the reduced mass of m'& and m2. By using
Eqs. (63) and (65a), this effective mass, denoted by m, can
be shown to satisfy a simple formula:

2 L 2 L 2

(66)I' m I') m) I2 m2

In Sec. IVA the effective mass defined here will be
used in conjunction with the equivalent accelerometer rep-
resentation for finding the Brownian motion noise of the
transducer.

simplifies xd(co) into the form

xd(co)—:x2(co) —x'~(co) .

mcop (x (t)) =kgT,

(64) where

(68)

mk—=

Kp=

Xk

2
Xg

Xk

mk

Kk,

(65a)

(65b)

X)X2
K)2= K)2,

X (X2
(65c)

because, under these scaling, the dynamical equation (60)
is invariant in form and both the kinetic and potential en-
ergies (within the frequency range of common mode bal-
ance) remain unchanged.

The corresponding scaling required for the masses and
spring constants are

2

(x (t)) = f x(co)x*(co)dco, (69)

is dominated by its spectral density at resonance. Use of
Eqs. (67)—(69) gives the Nyquist formula

Sg (cop) =—kg TT =2 1

7T m 7( cop )
(70)

where S (cop) is the spectral density of the acceleration
noise g„at cop.

The force or acceleration fluctuations at a signal fre-
quency co «cop is in general different from that at cop be-
cause the noise could have a complicated frequency
dependence which is governed by the nature of the loss
mechanisms in the spring. The noise at m due to force
fluctuations in the spring is obtained from Eq. (70) with
7(cop) replaced by 7(co):
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Sg (cp)= —kgT
2 1

mr(cp)
(71)

1 1 —y —P y+ +
r(cop) r~(happ) r;(cop) rt (happ)

(72)

Here rM(happ), r;(cpp), and rt (cop) are the relaxation times
that each spring would have if it is separately resonated at
cop, and y and )33 are the transducer energy coupling coeffi-
cients via i and I' defined by

A direct measurement of r(cp) requires shifting the reso-
nance frequency from cop to cp. In principle, one can in-
crease the mass m or use a "negative spring"" so that the
new spring-mass system indeed resonates at co and there-
fore the Q factor of this new system can be measured.
From a knowledge of the new mass used or of the loss in
the negative spring, the dissipation in the original spring
can be determined.

The Q factor of the accelerometer depends on both the
mechanical and the electrical parameters because the elec-
trochemical spring of the accelerometer has contributions
from a mechanical spring and two electromagnetic
springs, in the ratio given by the three terms in Eq. (35),
for the total spring constant and hence for the stored ac
energy at ct)0. The power loss in each of these constituent
springs is then proportional to this ratio of stored ac ener-
gies in these springs divided by a certain relaxation time
at coo. Therefore, the following relationship for the relax-
ation times results from the obvious observation that, at
mo, the total ac power loss is the sum of the power losses
in the respective springs:

DOO

TRANSDUCER L y
C) L pg o)
Oi

TRANSFORMER

Sv

TRANSDUCE R

Lo
oao'

Sy

(b)

FIG. 4. (a) Transducer coupled to a SQUID through a
transformer. (b) An equivalent circuit of the SQUID noise for
an untuned SQUID input.

transformer, seen by the transducer is an inductor Lo..

L;+(1—k, )Ltt
Lo=

L;+LII
(75)

where k„LI, and L» are the magnetic-field coupling
constant, the primary and the secondary inductances of
the transformer. The ratio of the power being detected in
L; to the power sent from Lz to Lp is the forward power
transfer function H~'"(rp) of the transformer and can be
shown to be given by a frequency-independent expression

Ai
mego Ls

A I'
m cop (L p +Lp )

(73a)

(73b)

I, »Hp'

2
L

k,

+1—k'
L

(76)

In order to reduce dissipation in all the constituent
springs, choice of material and geometry, material treat-
ment, surface preparation as well as choice of electrical
parameters must be optimized.

B. SQUID amplifier noise

A SQUID can be modeled as an ideal current-to-voltage
amplifier having an input inductor L; and two noise gen-
erators for its voltage and current noise with spectral den-
sities Sv(cp) and St(cp), respectively, at the amplifier input
[see Fig. 4(a) and Ref. 23].

The optimum source impedance (S~/St)' is much
smaller than the parasitic impedance coL; unless L; is
tuned out (at one frequency) to noise match the input im-

pedance. Therefore, when the SQUID is used as a wide-
band amplifier, the noise is dominated by Sz and can be
characterized by an "input energy sensitivity":

The equivalent current noise for St(co) seen by the tran-
ducer is therefore given by

L;St(rp) 2Eg (rp)
St'(co) = 0I, II L H I„II

0 p 0 p

(77)

Sg"(rp) = (rpp ro )(Lp+L~)—
AI'

2Eg(rp)
HI, »

0 p

(78)

Now, the circuit in Fig. 4(a) can be represented by an
equivalent circuit with the transducer connected in series
with Lp and a current-to-voltage amplifier which has the
equivalent current noise St'(cp), as shown in Fig. 4(b).

The quantity of interest is the equivalent (differential)
acceleration noise at the transducer that would correspond
to the amplifier noise of Eq. (77). The conversion from
current noise to differential acceleration noise is made by
use of the transfer function of the transducer, Eq. (53):

2

E~(rp)—:zL;St(rp) . (74)
For co &&happ, substitution of Eq. (73b) reduces this amplif-
ier noise term to

In a practical gradiometer design, the transducer output
inductance Lp is usually larger than L; and a supercon-
ducting transformer is desired to bridge between Lp and
I; . The equivalent load, representing L; and the

2

Sg (cp) = Eg (cp),
4
m 2Pg

where

(79)
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H I, II

+L (80)

is the fraction of electrical energy coupled to the amplif-
ier. The product Pg represents the fraction of the total
electromechanical energy coupled to the SQUID input, or
the "SQUID energy coupling coefficient

There are three factors to optimize. The transfer func-
tion (75) is optimized when the transformer secondary is

L;
(L )II op]

( 1 k 2)]/2

yielding

k(H' ), , = [1+(1 k 2)1/2]2

(81)

(82)

From Eqs. (75) and (81) the transformer primary is
chosen according to

Lp
(LI), , =I opt

(1 k 2}1/2 (83)

2
COp =67p
2P min

when I' is chosen such that P= —, : namely,

A I'
m (L])+Lp)

(84)

(85)

This last optimization is applicable only when the amplif
ier noise is dominating.

C. Potential sensitivity

The fundamental noise of the gradiometer is the sum of
its Brownian motion noise and SQUID amplifier noise.
In terms of an equivalent gravity gradient noise I „, the
spectral density of the gradiometer noise is

Sr(co) = —2[Sg (co)+Ss"(c]])], (86)

where l is the length of the base line between the two
proof masses. Substitution from Eqs. (71} and (79) gives
the one-sided noise spectral density:

The impedance factor Lol(Lo+Lp} in Eq. (80) is maxim-
ized by choosing Lp &&Lz. Finally, the frequency factor
assumes a minimum:

Toward the lower bound, the power coupled to the
SQUID tends to zero. Toward the upper bound, the
Brownian motion noise term increases because of the rela-
tively short ~l. If the amplifier noise dominates, the
choice is made at the upper bound. If this bound is ex-
ceeded, the electromechanical spring has become so stiff
that a given acceleration signal applied to the proof mass
is producing less displacement, thus making it more diffi-
cult for the superconducting circuit to measure.

The SQUID input energy sensitivity E„(f) is usually a
white noise plus a I/f noise at very low frequencies. In
addition, a dc drift can be caused by a temperature drift
of the gradiometer. ' The drift changes the penetration
depth and hence the inductances of the superconducting
circuit. Temperature related drifts can be suppressed by
regulating the temperature or be balanced out with an im-
proved circuit. This and other errors are the subject that
will be considered in Sec. V. The noise given in Eq. (87)
represents the fundamental noise of the gradiometer
which can be reached only when other instrument errors
are suppressed sufficiently. However, having very low
fundamental noise in the gradiometer itself is a prere-
quisite for achieving the desired high sensitivity.

V. ERROR MODEL OF THE INSTRUMENT

As we have seen in Sec. II, the gradiometer measures in
general a differential gravity signal superposed with
specific pseudoforces such as centrifugal acceleration and
angular acceleration. In addition, the large dc gravity bias
is modulated by the motion of the platform, resulting in
error signals which compete with the ac signals under in-
vestigation. Thermal and electromagnetic fluctuations of
the environment can also be coupled to the gradiometer.
It is important to have a complete error model of the in-
strument because, for many applications, errors could
dominate over the gravity gradient signals and therefore
must be compensated for to recover the true signals. We
start this section with a derivation of general expressions
for the driving accelerations gd(t) and g, (t). We will then
elaborate on specific error sources. The kinematic and
dynamic error mechanisms discussed in this section are
independent of the particular electrical circuit chosen for
the superconducting gradiometer. Hence our results have
general applicability beyond the specific instrument dis-
cussed in this paper.

4 k&T ~p
Sr(f) = 2, + E~(f)ml' ~(

(87)

where a factor 2Ir has been dropped from Eq. (71) by go-
ing from the angular frequency domain to the frequency
domain. Here the numeral 4 will become 8 if m

&
is used

instead of the reduced mass m.
In the usual case when ~M )~1, the optimum value for

I' satisfies an inequality:
2 ~2A Iopi

(88)
m Lo+L,

I „„(r,t) = —(n V) ]tt](r, t) . (89)

Let r
&

and r2 represent the actual position vectors for the
centers of mass of the two proof masses m

&
and m 2, and

n& and n2 be the unit vectors representing the actual sen-

A. Geometrical metrology errors

Let us consider the case in which the gradiometer is
used to measure a time-varying in-line component gravity
gradient at r in the direction of a unit vector n fixed in
the laboratory frame:
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position error 6p.

(9l)

Likewise, in an ideal gradiometer, n&, nz and 1=—1/l are
perfectly aligned to each other and are oriented along n.
In a practical gradiometer, however, there are various
alignment and orientation errors. The axes alignment er-
rors consist of the misalignment between the sensitive axes
of the two accelerometers,

on =ng —n) (92)

and the misalignment between the average direction of the
sensitive axes and the direction of the base line 1—:1/l:

5n -:——,(nq+n&) —I .2 (93)

These alignment errors wil1 be shown to cause coupling to
the gravity gradient output from the common linear ac-
celeration component along the 6n direction and from
the angular acceleration component along the 6n -&&n+l
direction. The gradiometer orientation error is due to the
directions I and (nz+n~)/2 being misoriented from n by
61 and 6n -„, respectively,

1—:n+ 61, (94a)

FIG. 5. Position, orientation, and sensitive axes alignment of
the gradiometer.

1
r&=p ——,

2
'

1rz=p+ —.
2

(90a)

(90b)

Ideally, one wants p=r. In general, one has a gradiometer

sitive axes of the two component accelerometers, as indi-
cated in Fig. 5. Let p and 1 represent the average proof
mass position vector and the base line vector of the gra-
diometer, respectively, so that

—,
' (nz+n~):—n+6n (94b)

and will be shown to cause coupling from the differential
acceleration component along the 61+6n - direction.
Notice that only one of the two quantities 61 and 6n - in
conjunction with the misalignment 5n - in Eq. (93) is suf-+I
ficient to define the misorientation of the gradiometer.
Introducing additional notations in Eqs. (94), however,
has the advantage of simplifying expressions for misorien-
tation errors by avoiding explicit reference to the
misalignment parameters, defined within the gradiometer
hard ware.

In order to find the specific forces acting on m
&

and
mq, Eqs. (90) are substituted into Eq. (4). After Taylor-
series expansion in 1, one finds

1 & 1g'(r, , r)= —V I — —.V + ——V
2 2! 2

2
1—.V'

3! 2
+ 0 ~ ~ P(p, &) —&(&) X

1
&(&) X p ——

2

1—a(r) X p —— —a(r),
2

1 l 1 & 1 1g'(r, , t)= —V I+ —V +——V + ——V + p(p, r) —Q(t)X Q(t)X p+—
2 2! 2 3! 2 2

1—u(r) X p+ ——a(r),
2

(95b)

where we dropped the Coriolis terms assuming a rectilin-
ear compliance of the proof mass suspension. In general,

p and 1 are also time varying due to the translational and
rotational motions of the platform with respect to an iner-

tial frame.
In Sec. IIIB, we defined as the acceleration signal the

time-varying part over the constant background gravity of
Earth. Since we are now interested in the mechanisms
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which modulate the Earth's bias to produce error signals,
we consider in this section the response of the gradiometer
to the total accelerations:

gci(p, t) = —V 1+ ——V + P(p) —a(p), (98a)/

21 2

gi(t)=nk. g'(rk, t)=gk(t)+n gE(r) . (96)

g,'(t) =(n+5n „-) gci(p. ,t)+ ,' 5n —gD,(p,.t),
gd(t) =5n .get(p, t)+(n+5n -).gDi(p, t),

(97a)

(97b)

where gci(p, t) and g o(ip, t) are the total true common and
differential accelerations acting at p+I/2:

We return at the end to the signal variables gk(t) to con-
nect back to the analyses presented in earlier sections.
With Earth's gravity vector gE(r) as defined by Eq. (28),
the last equality in Eq. (96) can be viewed as a rigorous
redefinition of gk(t). Here a point-mass (or a spherical-
mass) approximation of the proof masses has been used to
avoid volume integration of g'(rk, t) over the finite dimen-
sions of the proof masses.

The total common and differential accelerations for the
gradiometer, defined in a similar fashion as g, (t) and
gd(t) in Eq. (40), can now be shown to be

3

g' (p t)= —V (1 V)+ ——.V + P(p)
2 I

—&x(&xl)—axl . (98b)

Here a(p) is the total linear acceleration experienced at p:

a(p) =—& X(&xp)+a xp+a, (99)

and the time dependencies have been omitted on the
right-hand side of Eqs. (98) for notational simplicity.

Equations (97)—(99) are in the platform frame represen-
tation. It is straightforward to convert these equations
into the laboratory frame representation by substituting
Eqs. (91), (93), and (94). The relative uncertainties be-

tween the two frames, 5p, 6n „-, and 6l, then constitute
new error sources. Thus, it can be shown that Eqs. (97)
become

g,'(t) =(n+5n -).g'(r+5p, t)+ —5n .I '(r+5p, t).( +n51) ——5n ax (n+51)+5g, i,
gd(t) =5n .g'(r+5p, t)+l(n+5n -„).I '(r+5p, t) (n+51) —16n -,

.a X(n+61)+5gd i .

(looa)

(100b)

Here g' and I ' are the specific force vector and the specific force gradient tensor defined in Eqs. (4) and (8); 5g, i and
5gd i are the finite-size terms given in Eqs. (Al). Equation (100b) shows that the "sensitive axis of the gradiometer" can
be defined by the average of (n, +nz)/2 and l.

B. General description of errors

The accelerations in Eqs. (100) contain two types of error sources. The first type is intrinsic error sources due to angu-
lar motions as given in Eqs. (4) and (8), while the second type is in geometrical metrology. Further error sources arise
from nonideal behavior of the mechanical and electrical springs, scale factor mismatch, incorrect calibration, and residu-
al coupling of the gradiometer to temperature, and electromagnetic fluctuations of the environment, etc. Equation (45)
can therefore be generalized as

td(co) Hgi(~)gc(~)+Hgi(~)gd(co)+HGi(~) cc(co)+HGi (co)Gdd(co)+HGi(co)Gcd(co)+HTi(co)Tc(co)

+HT;. (co)Td(co) + (101)

where G„(co), Gdd (co ), and G,d (co ) are the Fourier
transforms of

G„(t)—= [g, (t)]',
Gdd(t) = [gd(t) l

G,d(t) =—g, (t)gd(t),

(102a)

(102b)

(102c)

and T, (co) and Td(co) are the Fourier transforms of the
common and differential temperature fluctuations, T, (t)
and Td ( t), over the two transducers, defined in Eqs.
(A26). The coefficients in front of these functions
represent the transfer functions for the signal variables
with which they are multiplied. The centrifugal accelera-
tion and the linear and angular accelerations, which are
coupled to the gradiometer due to its metrology errors,

g, (t) =g,'( t) —n gz(r),

gd(t) =gd(t),

(103a)

(103b)

which follow from Eq. (96). Equations (103) imply that
the errors in the unprimed variables are given by the er-
rors in the primed variables:

5g, (t) =5g,'(t),
5gd(t)=5gd(t) .

(104a)

(104b)

appear in Eq. (101) through errors in g, (co) and gd(co)
that they cause.

Notice that Eq. (101) contains the original signal vari-
ables, g, (co) and gd(co), which are identical to g,'(co) and
gd(co) due to the relationships
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g, o(co) =g,'0(co) =n [g(r, co) a—(r,co)],

gdo(co) =gdo(co) =ln. [I"(r,co) —C(co)].n,

(105a)

(105b)

where g(r, co), a(r, co), I (r, co), and C(co) are the Fourier
transforms of

g(r, t)—: Vg—(r, t) = —Vgp(r, t) —Vgz(r), (106a)

a(r, t) =ap(r, t)+ QE X [Q~ X (R~+r)],

I (r, t) = VV P(—r, t) = —VVPp(1, t) —V VPp(r),

(106b)

(106c)

It is also clear that the Fourier components of the errors
are also identifical between the two sets of variables.
Equations (100) and (103) can be combined to obtain the
unperturbed acceleration signals:

C(t) —=Q(t)Q(t) —Q'(t)I

—Ay —0,, 0 0
—Q, —0

(106d)
Here p~(r), Qz, and R~ are Earth's variables introduced
in Eq. (28); Pp(r, t) and ap(r, t) are the gravitational poten-
tial and the linear acceleration measured relative to Earth;
and C(t) is the "centrifugal acceleration tensor. " The
dyadic notation is used in Eqs. (106) to represent rank-2
tensors. The first term in Eq. (105b) is 1 times the gravity
gradient signal I „„(r,co) to be measured.

It is useful to divide Eq. (101) by IH~;(co) to obtain an
equation of the form

td(co) 1[I „„(r,co)] „,„„,d= —
d

——[I „„(r,co)],„„,+ —g 5gd;(co),
1 Hg, (co). (107)

where 5gd;(co) is the equivalent error in the differential acceleration gd(co) due to the ith-type error source. Derivation
and discussion of 5gd; for various error sources are given in the Appendix. Equation (107) can be converted into another
convenient form:

5 „„(r,co) = ge„t (co)I I (r, co)+ g e„t (co)Ct (co)+ g e'„t(co) ((r,co)+ g e„I(co)Qp t(co)+e„(co)T,(co)+
l, m l, m l 1

(108)

in which dominant error sources have been shown expli-
citly. Here the laboratory has been assumed to be station-
ary with respect to Earth and Qp(co) is the angular veloci-
ty of the platform in the laboratory frame. The first two
error coefficients can be identified from Eqs. (A6b) and
(A19):

e„"t (co)=5I„5 „5or(co)+(1—5t„)5 „(5n -+51)t,
(109a)

1 1
&',t(co) = —5t„—5(ts(co) —(1 —5t„)—(5n )t, (109c)

where 5(rs(co) is the (dimensionless) scale factor mismatch
between two constituent accelerometers. The coefficient
for the first-order angular velocity induced error is ob-
tained from Eqs. (A10) and (A12):

&.t (~)= 5t.5 .—5oc(co) (1—5t—„)5 „(5n -„+51), ,

(109b)

where 5o'r(co) and 5oc(co) are the (dimensionless) calibra-

tion error coefficients for I (r, co) and C(co), respectively.
It is assumed that the zeroth-order part of C(co) has been
measured independently and removed from the gradiome-
ter output. Otherwise, 5o, (co) must be replaced by unity.
The common acceleration error coefficient is read off Eq.
(A21): where hz;(co) is given by Eq. (A42a), or by

1 1 dE
G„(co)= 5cTs(co)gg—cosO„

1

where E ( T) is the Young's modulus of the spring materi-

al at temperature T.
In paper II we discuss the observed values or limits of

these major error coefficients. Once these error coeffi-
cients have been determined experimentally, the relevant

(109e')

e„i(co)= (1—5(„)2QE I

1
. , Q(1 5t,.)eke —(5n )kgE(r),

km

+j~ g (1 —5k. )ekt. (5n -, )k, (109(1)+'

where 6Qp ——Qp has been assumed and E'kI is the totally
antisymmetric tensor of rank 3.

Unlike in some conventional gravity gradiometers,
matching of proof masses and spring constants are not
necessary in the superconducting device because the bal-
ance is achieved by tuning persistent currents. However,
the alignment of the sensitive axes of the proof masses is
still important.

The temperature-error coefficient can be determined
from the results of Sec. 8 of the Appendix. Depending on
the relative magnitude of the two competing thermal ef-
fects, the error coefficient can be written as

. e„(co)= —hp, (co),
1

(109e)
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dynamic variables can be measured simultaneously along
with the gravity gradient by independent instrumentation
and the respective errors can be compensated for by using
the error model derived in this section and the Appendix.
In a three-axis gradiometer, it is possible to suppress
several error sources by using the geometrical properties
of the device. '

VI. SUMMARY AND CONCLUSION

A gravity gradiometer is a fundamental instrument
which can separate gravity from frame accelerations. A
sensitive tensor gravity gradiometer needs to be developed
to carry out precision tests on gravity as well as for appli-
cations in gravity survey and inertial navigation. Since a
large common mode background has to be removed in
gradiometry by differencing signals at two or more proof
masses, extreme stability is required for the sensitive axis
orientation and for the scale factors of the component ac-
celerometers. We have shown how these challenges can be
met at low temperatures by utilizing the stability of per-
sistent currents, the enhanced mechanical stability of ma-
terials, and the sensitivity of SQUID amplifiers. An ac-
companying penalty is of course the inconvenience of hav-
ing to keep the instrument in liquid helium. The liquid-
helium environment, however, can be used further to iso-
late the gradiometer from the fluctuations in the ambient
temperature and electromagnetic fields.

In this paper we have analyzed a superconducting
current-differencing gravity gradiometer. Complete
dynamical equations have been derived from first princi-
ples. Transfer functions, common mode balance condi-
tions, and procedures, as well as a rather extensive error
model have been developed from these equations. The
complicated differential instrument has been reduced to
an equivalent accelerometer which simplifies the noise
analysis and the electronic control of the device. In paper
II we report the performance of the superconducting gra-
diometer in the laboratory, which verifies details of the
theory developed here. Although our analysis has been
confined to a specific instrument reported in paper II, the
theoretical methods presented in this paper will be a use-
ful guide in analyzing other superconducting inertial in-
struments that may be developed in the future.
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APPENDIX: DERIVATION
OF VARIOUS ERROR COEFFICIENTS

1. Finite-size effects

There are two error sources related to the finite dimen-
sions of a practical gradiometer: (1) the finite Uolume of
the proof masses and (2) the finite base 1ine of the instru-

ment. The first effect can be minimized by choosing a
nearly spherical geometry for the proof masses, whereas
the second effect is reduced when the base line length
I =

~

I
~

is shortened. The finite-base line effect has been
taken into account in Eqs. (95) by the Taylor expansion in
1. The finite-volume effect has been ignored in the previ-
ous analysis because of its high-order nature. The depar-
ture from a spherical geometry gives a nonvanishing
quadrupole moment to each proof mass or a small octu-
pole moment to the gradiometer. Since this will couple at
best to the fourth-order derivatives of P(p, t), which is
generally small except when the source is extremely close
to the gradiometer, this error can be ignored in most situ-
ations. Clearly, the finite-volume error is always smaller
than the finite-base line error.

The dominant gravity error terms arising from the fi-
nite base line are obtained from Eqs. (97) and (98):

(Ala)

3

5gd i(t)= — (I.V) p(p, t) .
24

(A lb)

When P(p, t) varies with a characteristic length R, these
errors become O(1 /R ) of the signal. Therefore, the fi-
nite base line error can also be ignored when I/R && 1.

2. Misposition of the gradiometer

The acceleration errors due to the misposition of the
gradiometer are obtained from Eqs. (4) and (100):

5g, p(t) = —n. [VVQ(r)+QQ —0 I] 5p —n.a &(5p,

(A2a)

5gd q(t) = —l(n. V)[n VViI)(r).5pj, (A2b)

to the leading order in 6p. These errors are usually negli-
gible because of the higher-order gradients involved. The
displacement 5p(t), produced by the linear acceleration
a(r, t), modulates the large dc gravity of Earth and pro-
duces errors that compete with ac signals:

5g, z(t) =0 gF.
5p(t)
Rg

(A3a)

5g (t) =0 II E
5p(t)
RE

(A3b)

3. Misalignment and misorientation of the gradiometer

The acceleration errors caused by the misalignrnents,
6n and 5n ~ and the rnisorientations, 6n -, and 51, are+l +~7
obtained from Eqs. (100):

where gz =—9.8 m sec, I z =—3. 1 &(10 E, and Az
=6.4& 10 m are the vertical gravitational acceleration,
the vertical gravity gradient, and the radius of Earth. It is
clear that these errors can be ignored in general because
5p(t)/RF « l.
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5g -(t)=5n „-g'(r, t)+ —5n I '(r, t) n I '(r, t).n
c,n+l

I——5n .a)& n,
4

(A4a)

5g -(t) =5n g'(r, t)+1 (5n -„+51).I '(r, t).n
7

—l6n - ann,+I (A4b)

to the leading order in 5n, 6n ~6n -. It follows

from the definitions (92)—(94) that, in the limits

i5n /, /5n;i, [5n -„ f, /51
/

«1,
6n, 5n -, , 5n -„, 61 l n .

+I' (A5)

Hence these errors cause the cross components of the
common acceleration and the acceleration gradient to cou-
ple to the gradiometer. Written out explicitly, Eqs. (A4)
become

gradient signal. This problem is fundamental in any
second-order gradiorneter, in-line or cross component, as
is evidenced by Eq. (9), and therefore does not depend on
the particular design of the instrument. This makes the
attitude control or detection as the most formidable task
in precision gravity gradiometry. One can easily compute
the required attitude rate (0) accuracy from Eq. (105b)
for a given sensitivity of I .

When the instrument is in a laboratory rotating at an
angular velocity Qo(t) with respect to an inertial frame, it
is convenient to define

0(t)=0,(t)+Qp(t) . (A7)

If uncertainties in 00(t) and Qp(t) are 500(t) and 50p(t),
respectively, then the error in the differential acceleration
due to centrifugal acceleration is obtained from Eqs.
(105b), (106d), and (A7) as

5g Q t) = —21 I [n ( Qp+ Qp )][n'(500+ 50p )]
d, C

5g „-(t)= —5n „-[VP(p)+a(p)]
—(00+Qp). (500+50p)] . (AS)

——5n [VV(5(p)+00].n

l+ —5n )& n.a,
4

5g „-(t)= —5n [VP(p)+a(p)]

—1 (5n -+51 ) [V Vp(p ) +00].n
+l6n -gn a .+I

(A6a)

(A6b)

If the gradiometer platform is moving with a velocity
v(t) with respect to Earth and the gradiometer is in a lo-
cal geographic orientation, then Qo(t) is given by

(A9)

where Qz and Rz are the angular velocity and radius vec-
tors of Earth, introduced in Eq. (28). In the case when the
platform is stationary with respect to Earth; i.e., v(t) =0,
Eq. (AS) reduces, after Fourier transformation, to

5g &co)= —21I(n 0~)[n 50p(co)] QE 50p(co) j,—
d, C

In Eq. (A6b) the misalignments within the gradiometer
are expressed in terms of the misalignment 5n of the ac-
celerorneter axes with respect to each other and the
misalignment 6n - between the average accelerometer

+E
axis (n, +n2)/2 and the base line direction 1. These errors
cause coupling to cross components of linear and angular
accelerations which can be large compared with accelera-
tion gradient signals of interest. The combined error

5n+-„+51 appearing in the second term of Eq. (A6b)
represents the misorientation of the gradiometer sensitive
axis relative to the theoretical direction n fixed to the lab-
oratory frame, which is used for interpreting the data.
This misorientation produces coupling to cross gradients.

The coupling to the gradiometer from the dynamic
variables of the platform, a(p, t), 0(t), and a(t), are re-

vealed in Eqs. (A6). Since 1 and 5n+ are time varying in
general due to 0(t), the large dc gravity of Earth, QE(p),
will be modulated to produce errors at the frequency of
interest. This important error mechanism will be studied
in detail in the next section.

4. Angular motions of the platform

The centrifugal acceleration appears without attenua-
tion in Eq. (105b) in direct competition with the gravity

—A=Op(t) x A,
dt

(A 1 la)

—B=Qp(t) &&n,
dt

(A 1 lb)

where A stands for 5n and 6n ~ and 8 for 5n -, and
+1

51. Equation (A6b) becomes, upon Fourier transforma-
tion,

(A 10)

where we have assumed the condition A1 (&Oz
=7.27)&10 radsec ', which is not difficult to satisfy
for a stationary platform.

In a terrestrial laboratory the modulation of Earth' s

gravity bias by the tilt of the sensitive axes is another im-

portant error mechanism, as was pointed out in Sec. 3 of
this appendix. Since the common-mode errors in Eq.
(A6a) produce second-order errors in the differential sig-
nal when multiplied by the common-mode balance error

Hs; according to Eq. (51), these errors will, in general, be
dominated by the errors in Eq. (A6b), which is multiplied

by Hg,
When the platform moves at an angular velocity Qp(t)

with respect to the terrestrial laboratory, the misalignment
and misorientation vectors are modulated according to

Qp(co) Qp(co)
5g -(co)= —5n . X gz(r) —2ln . X [I"q(r) n]+15n -Xn [jeQp(co)],

d n+E j~ jco +E
(A12)
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where gz=——Vgz, I z=——VVPz, and a(co)=j coQp(co)
were substituted. The term arising from the angular
modulation of 5n - produces a second-order effect in+l
Qp(co) and therefore has been dropped. In the case when

2lI E
/5n [)

gE

4l
RE

(A13)

the second term in Eq. (A12) can be ignored. The third
term becomes negligible compared to the first term at suf-
ficiently low signal frequencies:

1/2
6nRE

l
(A14a)

6n +I

Comparing Eq. (A12) with Eq. (A10), one finds that the
time-varying tilt noise is the dominant source of angular
motion induced errors in the frequency range

co( i5n
E

(A14b)

Qp(co)
[5g -(co)],„„,= —21n )& [I z(r) —QoQo] n

(A15)

+15n -xn. [jcoQp(co)],+l (A16)

where I E(r) is the gravity gradient tensor of (spherical)
Earth. Comparison of Eqs. (A15) and (A16) leads to a
conclusion that the centrifugal acceleration error could be
dominant in most practical cases.

One can see from Eq. (A8) that 5g Qt) has a minimum
d, C

when the gradiometer is in an inertial orientation; i.e.,
Qp =0. The worst situation for the centri fugal accelera-
tion error is the case when the gradiometer is rotated at a
frequency high compared to the signal frequency for
heterodyne detection of the gravity signal. In this case,
Qp is the spin angular velocity which is large compared to
QE. One advantage of the superconducting gravity gra-
diometer is that the heterodyne detection is not necessary,
unlike in some conventional devices, because of its 1ow
drift and excellent low-frequency noise characteristics.
The superconducting gradiometer therefore permits com-
plete freedom in orientation: inertial, earth pointing, or
spin stabilized. Hence, an optimum orientation, which
minimizes the overall error budget, is available to the su-

even when 5Qp ——Qp, the worst case for the centrifugal
acceleration error. In paper II we wi11 see that the angular
motion noise given by Eq. (12) is indeed the dominant er-
ror mechanism for our prototype superconducting gravity
gradiometer.

The foregoing discussion clearly reveals the advantage
of operating a sensitive gradiometer in space where the
gradiometer platform is freely falling. If an Earth-
pointing reference frame is chosen so that Qo(t) coincides
with the orbital angular velocity of the satellite, then Eqs.
(A8) and (A6b) reduce, respectively, to

[5g +co)],~„,= —21 {(n Qo)[n'5Qp(cu)] —Qo'5Qp(~) I

perconducting instrument although the angular motion
induced errors are fundamental.

In Eqs. (A10) and (A15) we considered only the first-
order errors in 5Qp(co). This is justified when 5Qp(co) is
bandwidth limited. The Fourier transform of [5Qp(t)]
down converts the centrifugal acceleration noise from
high frequencies to the vicinity of dc, the signal band-
width. A low-pass filter for angular vibrations of the
platform is therefore needed to suppress this error.

Hg, (co)
5~,(~}=-

Hg, (co)

5Hg, (co).
Hg, (cu).5o r(co) =

(A17a)

(A17b)

and for the centrifugal acceleration calibration error by
5oc(co), which is usually different from 5a.r(co) because
independent instruments, such as gyroscopes, are used to
measure and compensate the effect. The error arising
from the use of an inaccurate value of l in the recovery of
I „„(r,t) from gqo(t) in Eq. (105b) is represented by the
second term in Eq. (A17b). With the aid of Eqs. (105),
the equivalent differential acceleration errors due to scale
factor mismatch and calibration errors can be written as

5gd s(co) =5o.s(co)n. [g(r,~)—a(r, co)],

5gq c(co) =1n.[5or(~)I (r,~) —5oc(co)C(cu)] n .

(A18)

(A19)

The platform motion terms usually dominate over the ac
gravity terms in these equations. The second term in Eq.
(A19) constitutes an additional rotation induced error
which must be added to the list considered in the previous
section. The linear acceleration term in Eq. (A18) will be
discussed in the following section along with other
translation induced error sources.

Now, we briefly discuss 5crs(co) which arises from the
failure to apply the wideband balance procedure. If the
balance is attempted at a single frequency cob, Eq. (48}
must be violated in general. Substituting Eqs. (46) into
Eq. (A17a) and expanding it in a Taylor series, one finds

5. Scale factor errors

There are two types of scale factor errors in a gradiome-
ter: (1) a rela&iue error, which comes from the mismatch
of the scale factors of the component accelerometers and
(2) an absolute error, which is the error in the calibration
of the gradiometer transfer function. Since the scale fac-
tors are determined by persistent currents in the supercon-
ducting gradiometer, extreme stability is expected in the
sca1e factor match and calibration. The passive, iterative,
common mode balance procedure described in Sec. III D
allows in principle an arbitrarily precise match of scale
factors in one direction independent of signal frequency.
In practice, however, Hg, (cu) is not precisely zero in Eq.
(101), thus producing a common mode rejection error, and
Hz, (co) also contains a calibration error 5Hg, (co).

Let us define the (dimensionless) coefficients for scale
factor mismatch and gradiometer calibration error by
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6. Linear motions of the platform

Although several sources of linear motion induced er-
rors have been shown in the previous sections, it is in-
structive to combine these effects here. The linear veloci-
ty dependent Coriolis force term has been dropped in Eqs.
(95) on the assumption that the proof masses are confined
to move along the linear directions n& and n2. A nonvan-
ishing residual compliance in the directions perpendicular
to the sensitive axes would allow the proof masses to
respond to the transverse components of accelerations,
thereby contributing to a velocity-dependent error. It is
therefore important to design the suspension spring with
high stiffness for all undesired degrees of freedom while
obtaining a very weak spring in a linear direction. We
will see in paper II how this condition is met in the actual
design of the superconducting gradiometer.

It has been shown in Sec. 2 of this appendix that the
modulation of Earth's gravity by a time-varying displace-
ment error 5p(t) can be ignored because of the higher-
order gradients involved. The dominant mechanisms
which convert the linear vibrations of the platform into
gradiometer errors are therefore (1) the sensitive axes
misalignment 6n, which couples the cross-component
accelerations and (2) the scale factor mismatch 5os(co),
which couples the in-line component acceleration to the
gradiometer output. Combining proper terms in Eqs.
(A6b) and (A18), one finds

5gd, (co) = —[6n +6os(co)n] a(r, co) . (A21)

The two terms in this equation are related by the condi-
tion of the common mode balance. The balance is ob-
tained in the real instrument by requiring 6gd, (cob ) =0 for
a given applied acceleration, say, in the z direction:

a(r cob ) =a (cob )z .

Substitution of Eq. (A22) into Eq. (A21) leads to

(A22)

5crs(cob ) =—6n .z
+6&so

nz
(A23)

which can be substituted, in turn, into Eq. (A20) to obtain
5crs (co ). Notice that, even with a wideband balance,
5crs(co) =5crs(cob)&0 due to the misalignment of the sen-
sitive axes and the residual balance error 5o-&o. The im-
possibility of obtaining a balance with an applied accelera-
tion normal to (n~+nz)/2 is indicated by the divergence
of Eq. (A23), which occurs when n.z=0.

7. Scale factor nonlinearity and dynamic range

A nonlinear behavior of accelerometer scale factors
arises from departure of the acceleration response of the

2(~b —~)~b(~2, ' —~&, ')
6crs(co) =

2 2 2 2
+5o.s(cob ), (A20)

(~i, ~b )(~~, —~b')

where 5os(cob) is a residual balance error at cob. Al-
though not essential, a highly symmetric gradiometer is
convenient because co~, —co], and, therefore, the wideband
balance can be achieved with only two persistent currents
I& and I2-I& while keeping i& ——i2 ——0.

5gd ~(co)=h„(co)G„(co)+hdd(co)Gad(co)

+h,d(co)G,d(co) . (A24)

Now, in most practical situations, the gravity terms are
small compared to the platform motion terms in Eqs.
(100) so that

G„(t)=[n.a(r, t)]

Gdd (t) = l I [n Q(t) ] —II (t) I

G,d(t) = l [n.a(r, t)] I [n Q(t)]' —II'(t) ) .

(A25a)

(A25b)

(A25c)

It is clear that the Fourier transformation of these non-
linear functions of dynamic variables will down convert
the wideband platform noise to the vicinity of dc, where
the gravity gradient signal is to be detected. Therefore, it
is imperative that the vibration and jitter noise of the ap-
paratus be low-pass filtered before they reach the gra-
diometer. Detailed analysis of the noise down-conversion
process will be given in paper II.

It is difficult to determine the nonlinearity error coeffi-
cients analytically. They can however be measured from
the departures of the transfer functions Hz'(co) and
Hg;(co) from the linear behavior. In principle, the non-
linearity in the two component accelerometers could also
be matched. This would not, however, reduce all three er-
ror coefficients in Eq. (A24) to zero. A more powerful
and practical approach to the problem is the linearization
of the system by means of an electromechanical feedback.
A feedback force, which is equal and opposite to the
detected external force, can be applied to each proof mass
so that the total force, the "error signal" for the feedback
loop, is reduced by the inverse of the feedback gain. The
reduction of the driving accelerations limits the actual dis-
placement of each proof mass to a small amplitude, there-
by reducing 5gd &(co). The error coefficients h (co)'s have
therefore been effectively reduced. The average and dif-
ferential feedback forces are direct measures of g, (t) and
gd(t). The gradiometer thus measures the specific force

mechanical suspension springs from the linear behavior
predicted by Hooke's law, higher-order terms in the
modulation of the pancake coil inductances, L,, and Lb,
higher order terms in the magnetic force FEM, and, final-
ly, nonlinearity in the current-to-voltage transfer function
of the SQUID electronics. In Eqs. (14) we assumed per-
fect linearity of L, and Lb as functions of the coil spac-
ing. This assumption is clearly not rigorous because of
the grain structure of the pancake coils and edge effects.
The higher-order terms in FEM, which are apparent in
Eqs. (23) and (25), have been ignored in our attempt to
linearize the circuit equations. Therefore, even if the
mechanical springs and the SQUID electronics are con-
structed with sufficient linearity, the response of each ac-
celerometer will be somewhat nonlinear due to the inevit-
able high-order response of the electrical circuit.

In analogy to Eqs. (A17) we define the nonlinearity er
ror coefficients h„(co), hdtv(co), and h,d(co) by dividing the
nonlinearity transfer functions HG';(co), HG;"(co), and
Ho;(co), introduced in Eq. (101), by Hz, (co). Then the
equivalent differential acceleration error due to scale fac-
tor nonlinearity can be written as
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instead of the resulting displacement. The negative feed-
back comes with another important advantage, an in-
crease in the dynamic range of the device. This so-called
"force rebalance" feedback has been successfully applied
to conventional inertial navigation instruments and
gravity gradiometers, although it is yet to be applied to
superconducting gravity gradiometers.

One of the parameters responsible for the high sensitivi-
ty of the superconducting gradiometer is the low damping
coefficient of the electromechanical springs. The low dis-
sipation is necessarily accompanied with high- Q reso-
nances of the modes which tend to amplify the accelera-
tion noise at the resonance frequencies. An elegant way to
take care of this problem is an active damping method
by which the Q's are effectively lowered without increas-
ing the Brownian motion noise level. The gradiometer
response is narrowband filtered around the resonances,
phase shifted by 90', and fed back to the proof masses to
actively drive down the resonant motions. This "cold
damping" has been successfully demonstrated in super-
conducting gravity gradiometers. ' '

8. Nonmechanical noise of the environment

It has been pointed out in the Introduction that super-
conductivity can be used to make a nearly perfect elec-
tromagnetic shield. In a practical superconducting shield
with impurities, the Meissner effect does not exclude the
magnetic field completely, but instead "freezes" some
trapped magnetic field, thus providing a "perfect" shield
against time-varying fields. One can combine high per-
meability shields with superconducting shields to attenu-
ate both dc and ac electromagnetic fields as well as radia-
tion very effectively. Therefore, the electromagnetic sus-
ceptibility of the superconducting gradiometer can be
made negligible.

The thermal fluctuations of the environment could also
be shielded by immersing the apparatus in superfluid heli-

um, the Bose condensate phase of He below 2.17 K. The
nearly infinite heat conductivity and the large heat capaci-
ty of the superfluid provides a stable, gradient-free,
thermal environment. Even normal fluid helium can pro-
vide an excellent thermal environment provided its vapor
pressure is regulated. When the attenuation of the tem-
perature fluctuations of the environment is not sufficient,
one will have error terms that couple the temperature
noise to the gradiometer output, as shown in Eq. (101).
The fluctuation in the gradiometer temperature can cause
error signals through its interaction with (1) the mechani-
cal part and (2) the superconducting circuit.

In analogy to Eqs. (40), the temperature modulations of
the two accelerometers, T&(co) and T2(to), are expressed
in terms of their common and differential temperatures,
T, (to) and Td(to):

5l (co)

l
=ct(T)T, (co), (A27)

where a(T) is the thermal expansion coefficient of the
gradiometer body at the ambient temperature T. Howev-
er, a(T) is extremely small for solids at liquid-helium
temperatures so that the dimensional change 5l(co) is
negligible in any practical situation. ' For the same
reason, alignment changes 5n+(co) resulting from tem-
perature fluctuations are negligible, demonstrating the
mechanical stability of the cryogenic gravity gradiometer

There is a more subtle coupling mechanism of the tem-
perature noise through the mechanical part of the system.
It is through the temperature dependence of Young's
modulus E(T) of the mechanical spring. Since the
stiffness of the suspension spring changes as a function of
temperature, a temperature fluctuation will cause a dis-
placement modulation when the spring is under stress ei-
ther by gravity or by an unbalanced magnetic pressure.
This can be seen in Eq. (25) for an accelerometer. When
n gz(r)&0 so that xo&0, the temperature-induced modu-
lation of AM produces a first-order effect in displace-
ment. It is convenient to move this term to the right-
hand side of Eq. (25) and define an additional effective
driving acceleration:

5g (t)= —[coM (T+5T)—A@M (T)]xo . (A28)

The proportionality of the spring constant mcoM to E(T)
can be used to rewrite Eq. (A28) as

5g (t)= —AM (T)xoT = 2 1 dE
E(T) dT

5T(t) . (A29)

Substitution of Eq. (27) into Eq. (A29) and Fourier
transformation leads to

g (M ) = gEcosHn

g, (cv) =gzcosO„T, (co),

1 dE
gd (M) =gEcosOn d(&)"E T dT

(A3 1a)

(A3lb)

A 1L —Lb. . 1 dE+ —I+— i i T(co) .
m 2 L +Lb E(T) dT

(A30)

It is clear from this equation that this effect can be elim-
inated by choosing i such that the quantity in the square
brackets vanishes, i.e., by compensating the gravitational
force with a magnetic levitation force.

In the actual operation of the gradiometer reported in
paper II, i=0 was chosen so that the magnetic pressure
term in Eq. (A30) was negligible. The temperature effect
on the gradiometer can be found then by adding

Ti(to) =T, (cv) ,' Td(co), ——
T2(to) =T,(to)+ , Td(to) . —

(A26a)

(A26b)

The mechanically coupled temperature-induced error
could arise simply from the thermal expansion of the base
line: td ( co ) =Hf; ( cu ) T, ( co ) +H r; ( co )Td ( co ) (A32)

to g, (co) and gd(co) in Eq. (41). It is assumed here that
the two suspension springs of the proof masses have an
identical Young's modulus E ( T) The tempera. ture-
induced current output can be written as
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where

1 dF.
Hr'r(co) =Hg, (cu)gEcos8„"E(T) dT '

Hn (co) =Hg( (co)gE cosO~
1 dE

"E T dT

(A33a)

(A33b)

Notice that the common temperature fluctuation T, (co) is
balanced out to the same degree as the common accelera-
tion. For a properly balanced gradiometer, therefore, this
effect is expected to be negligible as long as i =0.

The second effect of the temperature noise, which acts
on the superconducting circuit directly, comes from the
temperature dependence of the "penetration depth" A.(T)
of the magnetic field in the superconductor:

Lk, (t) =Lk, +2A(1+/)M(Tk),

Lka +Lkb
Lkp(t)=LE+ A(1+/)M(Tk)

Lks

(A38)

sary. In Eqs. (A36), xk(t) is the dynamic displacement
produced in self-consistent response to the current modu-
lations resulting from the temperature-induced inductance
modulations. Given the penetration depth modulations,
the displacement response xk(t) and the current response
id (t) are solved from the dynamical equations of the gra-
diorneter. The dynamical equations and their solutions
are modifications of those given in Sec. III.

Modifying Eqs. (18) and (19), the series are parallel in-
ductances of the sensing coils Lk, and Lkb now becomes

A(0)

( TyT )4]1/2
(A34) Lk, —Lk

Axk (t) .
Lk,

(A39)

where To is the critical temperature for the superconduc-
tor. For niobium, A, (0)=5.0&&10 m and TO=9.2 K.
The variation of A,(Tk) of the proof mass and pancake
coils due to a temperature fluctuation 6Tk(t) of the kth
acceleration transducer,

Flux quantization through the loops Lk, +Lkb gives

2A(1+()M(Tk)
Ik(t) =Ik 1— (A40)

5A, (Tk)=A, (Tk+5Tk) —A.(TI, )= 6TI, ,
dA,

dT
(A35)

modulates the superconducting inductances of Eq. (14) ac-
cording to

Substituting Eqs. (A38)—(A40) into the flux quantization
condition for the loops Lkb(t)+Lo, which is generalized
from Eq. (32), and taking Fourier transformation, one
finds a modified version of Eq. (42):

Lk, (t) =Lk, +A(1+()M(Tk)+Axk (t),

Lt t, (t) =Lkb +A(1+g)M ( Tk ) —Axk ( t) .

Here

(A36a)

(A36b)

xk (co)+ak(1+/)M(Tk(co))

id (co)+—
( —1) i, (co), (A41)

Lap+2Lo 1 T k Lkp .T

AIk 2 AIk

where the coefficients ak are defined by0(g(1 (A37)

is the modulation efficiency of the penetration depth of
the pancake coils. An approximation is made here that
the sensing inductances are reasonably well matched so
that distinction of g for each of these coils is not neces-

ka Lkb Lkp Ik+
Lks Las Ik

(A42)

The homogeneous part of Eq. (25) generalized for k=1,2
is then solved using Eqs. (A38)—(A40) again, resulting in

—~ +~kM +2 2
p2' 2

Ik

mk Lks

AIk 1 r k AI/ r A (Ik+Ik)i
xk(co)+ id(cu)+( —1)"— i, (cu)= ( I +g)&&( T/, (co)),

mk 2 mkLk
(A43)

which are identical to Eqs. (41) with the driving gravity
signal replaced by the M, ( Tk ) term on the right-hand side.

The relationships between the currents and 6A, 's are ob-
tained by eliminating xk from Eqs. (A41) and (A43). The
resulting pair of equations are the same as Eq. (43) on the
left-hand side and have equal coefficients of i, (co) due to
the common mode balance condition of Eq. (48). There-
fore, the 1', terms are readily eliminated, yielding

id (~)=H„'(~)( 1+0)[a2(~2~' —~'»~( T~(~»
—a((co,g

—co )M,(T, (cu))],

(A44)

where

A ik A (Ik+Ik)ik
~ka =~kM + + TmkLk, mkukLk,

(A45)

The temperature-induced output current can now be ex-
pressed in the form of Eq. (A32) with the identification

Hp;(co) =Hg, (co)hr, (cu),

Hp;(co) =Hg, (co)hrd(co),

(A46a)

(A46b)

where the temperature-error coefficients are obtained
from Eqs. (A26), (A35), and (A44) as

hr, (co)=[aq(co2x co ) —a, (co~~ ——co )](1+/)T 2 2 T 2 2 dk
dT'

(A47a)
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h7g(a]) = —,[a2(co2$ —a] )+a] (co]g —co )](1+()T 2 2 T 2 2

dT

(A47b)

adjustments are iterated such that both the common ac-
celeration balance condition (48) and the common tem-
perature balance condition

~gdT(, co) hTc(~» (~)+hraTa(~) (A48)

It is appearent from Eqs. (A42) and (A47a) that the ef-
fect of T, (co) is partially balanced by the match between
pancake coil inductances Lk, and Lkb and by the corn-
mon acceleration balance condition (48). On the other
hand, Tz (co ) is usually negligible because the good
thermal conductivity of the gradiometer body keeps the
entire instrument in thermal equilibrium.

It has been pointed out' that an exact common tem-
perature balance could be achieved by adjusting the fourth
persistent current i 2 with respect to I&, I2, and i ] that are
used for the wideband common acceleration balance. The

In terms of these error coefficients, the equivalent dif
ferential acceleration error due to temperature sensitivity is

(A49)

are simultaneously satisfied. In practice, it will be easier
to couple a separate superconducting loop, which senses
only temperature, to the SQUID and adjust the persistent
current in this loop to obtain the temperature balance.
The advantage of the latter scheme is that the temperature
and acceleration balances can be performed independently.

A slowly varying temperature of the environment, if
uncompensated, can be an important source of a dc drift
of the gradiometer. Such a drift, however, does not pro-
duce a random walk of the output, but the error is bound-
ed because the dc level of the output is locked to the tem-
perature of the gradiometer which is self-regulated to a
large extent by the liquid helium itself.

'Present address: AT%T Bell Laboratories, Whippany, New
Jersey 07981.

~For a historical review of torsion balance experiments, see C.
W. F. Everitt, in Proceedings of the First Marcel Grossmann
Meeting on General Relativity, edited by R. Ruffini (North-
Holland, Amsterdam, 1978), p. 548.

For a historical introduction of room-temperature gravimeters,
see J. E. Faller, in Proceedings of the 1983 International
School and Symposium on Precision Measurement and Gravity
Experiment, edited by W. T. Ni (Chuan Wen Book Co., Hsin-
chu, Taiwan, 1983), p. 466.

3J. M. Goodkind, Tectonophysics 52, 99 (1979).
4J. Weber, Phys. Rev. 117, 306 (1960).
5See a review by J. A. Tyson and R. P. Giffard, Annu. Rev.

Astron. Astrophys. 16, 521 (1978).
6R. L. Forward, in Proceedings of AIAA Unmanned Spacecraft

Meeting (AIAA, Los Angeles, California, 1965), p. 346.
7E. H. Metzger and D. R. Allen, Bell Aerospace Co. Report No.

9500-92044, 1972 (unpublished).
sM. B. Trageser, in Proceedings of the First International Sym

posium on Inertial Technology for Surveying and Geodesy
(Canadian Institute of Surveying, Ottawa, Canada, 1977).

H. J. Paik, J. Appl. Phys. 47, 1168 (1976).
' Spaceborne Gravi ty Gradiometers, edited by W. C. Wells

(NASA Conference Publication No. 2305, 1984).
J. W. Parke, H. J. Paik, H. A. Chan, and M. V. Moody, in
Proceedings of the Tenth International Cryogenic Engineering
Conference, edited by H. Collan et al. (Butterworth, Guild-
ford, 1984), p. 361.

]~H. J. Paik, E. R. Mapoles, and K. Y. Wang, in Proceedings of
Conference on Future Trends in Superconductive Electronics,
edited by B. S. Deaver et al. (Charlottesville, Virginia, 1978),
p. 166.

I3K. Y. Wang, Ph. D. thesis, Stanford University, Stanford, Cal-

ifornia, 1979.
E. R. Mapoles, Ph. D. thesis, Stanford University, Stanford,
California, 1981.

~5H. J. Paik, J. Astronaut. Sci. 29, 1 (1981).
H. J. Paik, IEEE Trans. Geosci. Remote Sensing GE-23, 524
(1985).

' H. A. Chan, M. V. Moody, and H. J. Paik, Phys. Rev. Lett.
49, 1745 (1982).

'8H. A. Chan, Ph. D. thesis, University of Maryland, College
Park, Maryland, 1982.

' K. R. Symon, Mechanics, 2nd ed. (Addison-Wesley, Reading,
MA, 1961), p. 278.

H. J. Paik, Phys. Rev. D 19, 2320 (1979).
'The term "acceleration signal" hereafter refers to the specific

force g'(r, t) defined in Sec. II.
The term "spectral density" refers to a one-sided spectral den-
sity in papers I and II unless specified otherwise.
J. N. Hollenhorst and R. P. Giffard, J. Appl. Phys. 51, 1719
(1980).

24M. V. Moody, H. A. Chan, H. J. Paik, and C. Stephens, in
Proceedings of 17th International Conference on Low Tem
perature Physics, edited by U. Eckern et al. (North-Holland,
Amsterdam, 1984), Vol. 2, p. 407.
H, A. Chan, M. V. Moody, H. J. Paik, and J. W. Parke, in
Proceedings of 17th International Conference on Low Tem
perature Physics (Ref. 24), p. 927.
H. J. Paik, Bull. Geod. 55, 370 (1981).

27C. Broxmeyer, Inertial Navigation Systems (McGraw-Hill,
New York, 1964).
C. Kittel, Elementary Statistical Physics (Wiley, New York,
1958), pp. 141—156.

J. W. Parke, H. J. Paik, E. R. Mapoles, W. M. Fairbank, and
D. DeBra (unpublished).


