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Production of spin-one resonances in yy' collisions
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The decay of a J =1++ resonance into one real and one virtual photon is studied in a qq
bound-state model. The decay rate is proportional to Q~/M~ if Q2, the mass squared of the virtual

photon, is small compared to M', the mass squared of the resonance. The cross section for produc-
tion in e+e collisions of a resonance with J = 1++ is derived in terms of the partial width of the
resonance to decay into one real and one virtual photon. The angular distributions for the three-

body decays of 1++ and 1 + states produced by the two-photon process are presented.

I. INTRODUCTION

Reports' of the observation of a resonance seen in
e+e ~e+e X only when, in addition to the hadronic
system (X=EEtr), a final e+ or e is observed away
from the forward direction, are strong evidence for a
spin-one particle with even charge conjugation. Such a
resonance could be produced by the two-photon mecha-
nism only if at least one photon were virtual since Yang's
theorem prohibits the production of a spin-one particle by
two real photons. Observation of a final e+ or e with
substantial transverse momentum guarantees that one of
the bremsstrahlung photons is quite virtual.

The possibility of such production has been considered
earlier, especially by Renard, who gave a prediction for
the hypothetical decay into one real and one virtual pho-
ton of a spin-one resonance composed of a nonrelativistic
quark-antiquark pair in a P

&
state. The present recom-

putation of the rate is in partial disagreement with the re-
sults of Renard. A derivation of the result is presented in
Secs. II and III. The production cross section of a spin-
one resonance in e+ and e collisions via the two-photon
mechanism is calculated in the equivalent photon approxi-
mation in Sec. IV and without approximation in the Ap-
pendix. Estimates for the partial widths of spin-one reso-
nances to decay into one real and one virtual photon are
presented in Sec. V.

The possibility that the state observed by the TPC Col-
laboration' and the Mark II Collaboration has J =1 +

has been raised by Chanowitz. Assuming that the effect
reported' is indeed a spin-one resonance we note in Sec.
VI a simple test to determine the parity of the state.

final factor in Eq. (2.1) arises from the relation between
the normalization of the S matrix and the invariant am-
plitude. The relation between the configuration-space and
momentum-space wave functions is

P(p)= f,~, e '~ "P(r),

d3
P(r)= f,~,

e'~ "P(p) .
(2.2)

More explicitly, we write

P(r) =~L, (r)XLst(r), (2.3)

where XLM(r) is the angular part of the wave function for
total angular momentum J, orbital angular momentum L,
and J,=M. The spin dependence is not displayed. The
radial wave function is normalized as

drr RL r =1 (2.4)

2~Bs——
M

(2.6)

while the decay rate is

(2.7)

and the momentum-space wave function is

(b(p) =~I, (p)XLM(p) .

It is easy to derive the relation between the decay of a
qq s-wave bound state and qq the cross section at thresh-
old into the same final state. From Eqs. (2. 1) and (2.2)

' 1/2

II. PRELIMINARIES and the threshold behavior of the cross section is

The matrix element ~Bs for the decay of a nonrela-
tivistic bound state is obtained by calculating the matrix
element ~„„for the corresponding free-quark process to
the same final state. The precise prescription is

(2m ) (2M) '
~BS= d p p ~scat 3/2 1/2 2 ~ 2. 1

[(2m. )
~ (2m)'r )

where P is the momentum-space wave function, M is the
bound-state mass, and m =M/2 is the quark mass. The

o(p~o)~
16~M2 p

(2.8)

r= 4p
~y(0) ~' (p o)

M

=
~
P(0)

~

vcr(p~o), (2.9)

where pf is the final-state c.m. momentum and p is the
initial-state c.m. momentum. Thus
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where v =2p/m =4p/M is the relative velocity of the
quark and antiquark in the bound state. The product
vo.(p) is nonzero as v,p~O.

For bound states with L & 0 we have, from Eqs. (2.2),
(2.3), and (2.5),

RL(r)= 3/2 & 4~ji. (pr)RI. (p),dpp (2.10)
(2m. )

so that for small r

2p. k, —k1 -2m —2p k1 ——,(k1 +k2 )

2p. kl=D 1— (3.4)

After integrating over dQ- [see Eq. (2.12)] there will be
P

an explicit factor of p in the amplitude. It suffices to ex-
pand Eq. (3.3) in powers of p/m, retaining the linear
terms. Thus we write

i r 4n. dp p (2.11) with

D =2m — kl — k22 & 2 1 2
2 1 2 (3.5)

Thus Eq. (2.6) generalizes to
1/2 L

2 (2L + 1)!! d
Bs M L! dr

dip
gL~ PMP

r=0

(2.12)

Retaining only terms that will survive the angular integra-
tion,

1/2

where we have ignored an overall phase and written ~
for lim~ 0(M„„/p ).

III. THE DECAY RATE FOR P) —+yy*

The scattering amplitude for qq ~y*y' is

2 2 e2k 1E1 2P e112-m„„=e'( eq') V(p')
2kl P —kl

e1Jg2g2 2P e2e, —+, u(p),
2k2.P —k2

(3.1)

where e is the charge of the positron and (e~ ) is the ef-
fective quark charge squared in the bound state in units of
e . Thus for an ss state (ez ) = —,', while for an isoscalar
(uu+dd)/~2 state it is 5v'2/18, and for an isovector
( uu —dd )/v 2, (e~ ) =v'2/6. The initial quark and anti-
quark momenta are p and p', with p'= —p, while the
photons have polarizations and momenta (e1,k1) and
(e2, k2). We allow k1 &0 and k2 &0, but in any event

el k 1
——e2-k2 ——0.

The appropriate choice of spinors depends on the values
of J, L, S, and M. The spins of the quark and antiquark
are combined in the usual fashion to make a state of fixed
S and S„ then coupled to the appropriate spherical har-
monics to produce the required state. For L, =1, S=1,
J= 1, M =0, we have, up to an inconsequential phase,

1/2

2p @1&2
XTr mg D

0 2mgp k1+ (82k 1E1 2m e—1e2) D2
P X)'08

D

+ (1~2) (3.6)

2
E2 E1XZ

kl +k2
D

( e1e2 —e2e1 ) 'z X k1

(3.7)

It is easy to check that Eq. (3.7) satisfies gauge invari-
ance by substituting el~kl, kl ——0 and verifying that
the result vanishes. Inserting Eq. (3.7) into Eq. (2.12)
gives the decay amplitude for Pl ~y*y*:

1/2
8 2( 2)

' 1/2

3R'(0)
3D

3
16m

2

M

Carrying out the traces and averaging over the orientation
of p gives

8e'(e, ')
scat angular 3D

u (p) v(p') = 3

16~
(p+m)yo(pXz y) . (3.2)

From Eq. (3.1) it is clear that the term proportional to m
in Eq. (3.2) does not contribute to the bound-state decay
amplitude. Denoting by g" the four-vector that is
(O, p X z) in the c.m. , we have

2m
6'2 6'1 X Z

k 1 +k 2 o P

D
( eE12 e261)'z X k1 (3.8)

1/2

m„„=e'(e ') Trpyoy
16m.

If photon 1 is real,

2e'(eq')
~as= R (0)

D ~M

1/2
k 2

2m
g2&1g1 2P e1g2-

+(1~2)
2P.k 1

—k 1

(3,. 3)

The angular dependence on p is contained in Eq. (3.3).

X ( —&1 z Xe2+ e2&1 z X k1 ) .

For the polarizations of photon 1 we take

(3.9)
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a ZXk1

f
zX&|

f

~b
Q1 —k1 +61 e

For the polarizations of photon 2 we take

(3.10)

~=M(o, k2 )k2~e~prskig ed&2. (4.3)

The partial decay rate if the virtual photon is longitudinal
1S

where we have chosen to display explicitly the v 3 arising
from color. The partial decay rate for the axial vector
into one real photon y1 and one virtual photon yz is ob-
tained from Eq. (4.1):

b b
E'2 =E'1

(k i, —k2kl)

(k 2)1/2

(3.1 1) k fk fW(ok )
rTS

12m

while if it is transverse, the result is

(4.4)

The various decay amplitudes are

e (eq )R'(0)
m(e„, ) =

mk

1/2

(k ')'"
f
z~l, f,

k'fk 'fW(Ok ')' fk 'f
12' M

(4.5)

b~(ei, e2 ) =0,
~a ~a b b~(e, ,e, ) =0= P/(e»e2),

a~b b a~(e, , ez) = —M(e, , ez)

R'(0)
mk ~m

1/2
k

Z k1,
2m

(3.12)

where k =k |= (4m —k2 ) /(4m) is the momentum of
each virtual photon in the rest frame of the decaying reso-
nance. The decay rate for P, ~yy *(kz ) from ~(e„ez )

alone is

where we have indicated by k =(M —kq )/(2M) the mo-
menta of the virtual photons in the rest frame of the reso-
nance. With the ansatz Eq. (4.3) there is only one in-
dependent amplitude so I zs and I zz- are necessarily re-
lated. Since I rs dominates at small values of

f
kz f, it is

sensible to regard it as the independent quantity. In prin-
ciple, I z-s and I z-z can be measured separately. In prac-
tice, this is not likely to be achieved since it would require
the determination of the detailed dependence of the cross
section on the kinematic variables.

The partial widths I rs and I rr are functions of k2 .
It is convenient to introduce related quantities that are in-
dependent of kz,

r('p, —
(3.13)

Mr„= w(0, 0)'=r„,
96~

so that, for small kz,

(4.6)

where we have included the factor of 3 arising from the
color wave function, (Tr6;~/v 3) =3. For kz not too far
from zero,

I v-s=
f

kz'f—
TSr

(4.7)

~re=
M

~re .

(3.14)

which is a factor of 3 larger than the result of Ref. 4.

IV. PRODUCTION OF A 1++ STATE
IN PHOTON-PHOTON COLLISIONS

IN THE EQUIVALENT-PHOTON APPROXIMATION

The coupling of the J = 1++ particle given in Eq.
(3.8) may be written as

We can use these results to predict the cross section for
e+e ~e+e R, where R is the spin-one resonance, using
the equivalent-photon approximation. Alternatively, we
can do a complete Feynman-diagrammatic calculation.
This is done in the Appendix. For an electron beam of
energy E, the flux of equivalent transverse photons of en-
ergy co and virtual mass q is

d 67 dq cx co co
T

M q2 ~ E 2E2

~(1++ ) *, y,*)

=W(ki, k2 )e~prs(k2 k, —ki k~ )g eifq . (4.1)

dX dq
1 —x+

X q
(4.8)

Here g indicates the polarization vector of the spin-one
resonance, and e1 and ez are the polarization vectors of
the final-state photons. For the bound-state model of the
previous section dns= (1 —x) .

dX dq CX

X q 7T
(4.9)

where x =co/E. For longitudinal photons, the result is

e (eq )R'(0)
D2

1/2

v3, (4.2) The cross section for the resonance production can be tak-
en to be the narrow-width limit of a Breit-Wigner form;
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(2S] + 1)(2Sz+ 1)

(4.10)

where k is the c.m. momentum of the photon in the decay
R~yy*. For the case when y' is longitudinal, we take
2S1+ 1 =2, 2Sz+ 1 = 1. For the present, both k1 and
kz will be treated as small quantities. This limitation is
removed in the Appendix. If the incident electron and

positron momenta are p1 and pz, the virtual-photon mo-
menta can be written

k1 =x1p1

kz ——xzpz .
(4.11)

The photon momentum in the rest frame of the resonance
is k =M/2 and M =x1xzs, where s is the e+e c.m. en-

ergy squared. Combining Eqs. (4.8), (4.9), and (4.10),

dn T 1dnS 2~ TS +dn T 1dn T20 TT

dx1 dk1 dxz dkz2 2 2
2

3 3 2n(Mz —x,x,5)[-, r»(1 —x, )+ —,r (1—x +x /2)]
k, ' xz k, '

X(1—xi+xi'/2) . (4.12)

Our interest is in the case where one electron is deflected very little, so photon 1 is nearly real and collinear with the
beam. The partial widths, Eqs. (4.4) and (4.5), contain at least one power of kz . Thus the integral over kz is finite,
while the integral over k1 is rendered finite by the nonzero electron mass:

dk1j ', ln
k1

S

4m,
(4.13)

The differential cross section in terms of the observed electron's momentum is

do
2

a
ln

77

dxz dkzJ [—', r„(1—x, )+ —,
-' r„(1—,+x,z/2)](1 —,+, /2), (4.14)

4m M x k

where xl ——(M /s)/xz—=r/xz. If we integrate over a range of kz with kz
I
((M and use Eqs. (4.6) and (4.7), we

find

0 e+e ~e+e R

2

ln
s 16~ 3—

4 M

dkz
X 4[(1+v)lnl/r —(1—r)( ~ +r/4)] J

dkz'
I

kz'
I+ —, X4[(1+x/2) In(1/r) —,

' (1—r)(3+r)—] j z z
(4.15)

where in the spirit of this section we have assumed kz «M and have taken k =M/2. The factors

dk

M

and

(4.16)

dk
I

k z
I

M M
(4.17)

depend on the range of transverse momentum of the detected electron accepted by the detector. Since we have dropped
some terms of order kz /M, the portion of Eq. (4.15) with an extra power of kz /M cannot be trusted. For values of
the transverse momentum that are not small, it is reasonable to expect that I Ts and I TT will depend on kz . A vector-
meson-dominance picture would suggest a form factor of the sort

F(kz )=
1+

I kz
I
/Mv

(4.18)
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cx
l

s

4m,
0 e+e ~e+e R

with the particular vector meson (p, co, P) depending on the quark composition of the resonance. This factor, squared,
would thus appear inside the integrals (4.16) and (4.17). Since, for the moment kz is assumed to be small, the form fac-
tor is ignored.

The expression in Eq. (4.15) is similar to the standard expression for the production of resonances with J~ 1:
2

8 1 R(2J + 1)
&

4[(1+v/2) ln(1/r) —
z (1 —r)(3+r)] . (4.19)

The correspondence between Eq. (4.15) and Eq. (4.19) is clear. If the produced resonance is not spin one, there are two
factors of f dk /k multiplying a nearly k -independent width, I . For the spin-one case, for the lon-

gitudinal polarization of the virtual photon, one factor of I f dk /k becomes essentially fdk (I rz/k ) where now

I z-s/k is nearly independent of k . The difference between the factors in square brackets results from the small differ-
ence between the flux for transverse and longitudinal virtual photons: (1—x +x /2) vs (1—x). Equation (4.15) permits
an estimate of the observable cross section for the two-photon mechanism. Suppose vs =30 GeV, M =1.4 GeV, so
r=2. 18&(10 . Then, from Eq. (4.15),

dk, ' dkz
o + +

——(16.3 pb)[l r~ (keV)] f + 0.53 f (4.20)

The more complete treatment given in the Appendix yields

o + +
——(16.3 Pb)[I rz (keV)] f F(kzz) 1+0.53 +0.23 1+

dkz'
[

kz'
f [

kz M
ln M'+

(4.21)

where E is the form factor of Eq. (4.18). This result, and
the similar equations such as (4.14), (4.15), and (4.20),
must be multiplied by two if the detected lepton is allowed
to be either the electron or the positron. For comparison,
a spin-zero resonance of the same mass and at the same
c.m. energy with no electron tagging, Eq. (4.19), gives

o + +, ,
——(120 pb)[I (8 yy) (keV)] . (4.22)

V. ESTIMATED PARTIAL WIDTHS

Renard has used the measured width for fz~yy to es-
timate the yy* widths of the P] quark-antiquark state
with the same quark content. If we suppose the fz(1270)
and the f, (1285) [formerly the D(1285)] to have the same
quark content and the same radial wave functions, then,
in the nonrelativistic bound-state model of Sec. III,

z z z I

&'(0)
I

'
M

, (5. 1)

I (f)~yy*(kz ))=192a (eq )
Z'(0) ~

'
I
kz'

I

quark content. The ratios of partial widths to yy* for the
corresponding isovector [(uu —dd)/V2], nonstrange iso-
scalar [(uu+dd)/V2], and strange isoscalar [ss], are

1 25 1

I 8
'

I 62: 8 ~
Thus the nonstrange isoscalar has the largest

width, if there is ideal mixing.

VI. ANGULAR DISTRIBUTIONS FOR SPIN-ONE
PARTICLES PRODUCED IN yy COLLISIONS

A resonance seen in yy* collisions but absent in yy col-
lisions is quite probably spin one. The production mecha-
nism requires it to have C=+1. Bound qq states with
J= 1 and C = + 1 have P =+ 1. There is, however, the
possibility of states outside the qq model. '' It is of in-
terest, therefore, to have a means of distinguishing 1++
from 1 +.

Consider the yy' collision in the rest frame of the pro-
duced resonance. It the virtual photon has momentum
squared k2 «M, the production is dominated by the
collision of a transverse real photon and a longitudinal
virtual photon. With the photon direction chosen as the z
axis, the polarization of the resonance is

Using the average value I (fz~yy)=2. 70 keV cited by
the Particle Data Group,

1 (x+iy) .
2

(6.1)

I (f) yy*) = —, X (2.70 keV)
I

kz'
I

= (4.50 keV )
M

(5.2)
(a p, +b pz) g= wg . — (6.2)

Suppose the resonance has J =1++ and decays into
three pseudoscalars, with momenta p&,p2,pz. The decay
amplitude in the rest frame of the resonance has the gen-
eral form

Of course, the prediction depends dramatically on the For a fixed position of the normal to the decay plane
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PI Xp2

I pi X pa I

(6.3)
APPENDIX. PRODUCTION OF A I++ STATE

IN PHOTON-PHOTON COLLISIONS
WITHOUT APPROXIMATION

d w. ~ nX (6.4)

and a fixed relatiUe orientation of pl and p2, w takes on
locations azimuthally distributed about n; and The results of Sec. IV can be compared with a complete

calculation. The production amplitude is

Summing over the polarizations g,
dN ~1+cos 0,

d cosO
(6.5)

Mt'=e u(p3)y„u(p~ )u(p4)y„u(p2)

X M(k), k2 )e "(k2 k, ~ —k, k3~)g)3

(Al)

dN 2~1—cos 0.
d cosO

(6.7)

VII. SUMMARY

Photon-photon collisions provide an effective means of
studying spin-one resonances. Their spin-one character is
signaled by their presence in events with one rather virtual
photon and their absence in events with two nearly real
photons. The angular distribution of the normal to the
decay plane for a three-body decay separates the 1++ case
from the 1 +.

The partial width for a 1++ to decay into one rea1 pho-
ton and one virtual photon can be computed in a nonrela-
tivistic qq model of the spin-one resonance. On the basis
of the measured width of f2 (1270)~yy, the width of
fl(1285)~yy'[D(1285) —+yy*] is predicted to be (4.5

keV) (
~

k2
~

/M ), where M is the mass of the f (1I28 )5,

assuming the quark content of the fI(1285) is the same as
that of the f2(1270). The partial width of an ss state in
this mass range would be much smaller if it were part of
the same multiplet.

The production cross section of a J =1++ state via
the two-photon mechanism in e +e collisions can be
computed in the equivalent photon approximation or, al-
ternatively, by a full Feynman-diagrammatic calculation.
The full calculation contains corrections of order k2 /M
where k2 is the mass of the virtual photon and M is the
mass of the produced resonance.

Note added in proof The decays o. f a PI qq state into
two virtual photons has been considered by J. H. Kuhn, J.
Kaplan, and E.G.O. Safiani, Nucl. Phys. B157, 125
(1979). Corrections to the approximation given in Eq.
(4.13) are discussed by J. H. Field, Nucl. Phys. B168, 477
(1980); B176, 545 (E) (1980).
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where t9 is the angle between the normal n and the beam
direction.

For a 1 + particle, the decay amplitude is

g (p(Xp2)

Summing over the initial polarizations gives the angular
distribution

e3~(k ~ k 2)
e ~" K gtsL L',

2k 2
I 2

(A2)

K =k2 k) —kl k2,

L„=u (p3 )y„u(p I ),
L' =u(p&)y, u(p3) .

(A3)

Summing over final spins and averaging over initial spins
gives the replacements

pPpP'
gPgtr' g t3(3'+

M

L"L"~2(p', "P3 +P3 PI g PI P3)

L' L' ~2(p3 p4 +p4 p3" —g P3.P4),

(A4)

with

P=ki+k2 .

Defining

Q=k, —k3,
A=-, (k3 —kl ),
S = —,(kq +kl ),

we have

(A5)

(A6)

—A e t3 sP~L rL ' e p P~L r L 's

—2ASe ts
sP~L~L' e pr Q LrL'

S2e ts„Q~L—rL 'se
t3

~ Q ~L r L 's

S
(e p sP Q~LrL's)

(4vrct) M (k2, k~ )
X

(k 2)2(k 2)2
(A7)

We define analogues of the usual Mandelstam variables,
treating the leptons as massless:

where g is the polarization vector of the produced
J = 1++ state, p &

and p2 are the incident lepton mo-
menta, p & and p4 are the final lepton momenta,
k

&

——p I
—p & and k 2

——p 2
—p4 are the virtual-photon mo-

menta, and
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s =2p&-p2, s —2p3 p4

t = —2pi p3 = —p2 p4

u = —2p& p4, u'= —2p2.p3

(A8)

n3. n4 ——cosset . (A15)

Our primary interest is in a single tagging, where p3 is
nearly along the z axis and

These are related to the mass M of the resonance by

s +s'+t +t'+u +u'=M (A9)

The sum of the first three terms in the large parentheses
of Eq. (A7) is

tt'[(ss' —uu')(s +s' —u —u')

+ tt '(2t +2t ' 3s ——3s ' —» —» ')

+2sut'+2su't+2s'ut+2s'u't'] . (A10)

p3-(1 —x)p1,

k) xp)

t=O,
(A16)

ss ' —uu ' =tt '+ 2Vuu 'tt ' cosP, (A17)

where x is the fraction of the initial electron momentum
given to the virtual photon whose momentum is k&. We
wish to drop all terms with more than the minimal num-
ber of factors of t. From Eqs. (A8) and (A13),

p1 ——(v s /2, 0,0, U s /2),

p2 ——(V's /2, 0,0, —Vs /2)
(A 12)

The final term gives

(t+t ) ~ t1

M I 16(E pysp 1p 2p (p4 )

+ ,
' tt'[(s ——s')'+(u—u')']

) . (Al 1)

Taking the incident electron momentum p~ along the z
axis,

so Eq. (Al 1) reduces to

2tt' (su +s'u')

and Eq. (A12) reduces to
2

I4uu'tt'sin P+. ,
' tt'[(s —s'—) +(u —u') ] I

At this point it is safe to use the replacements

s'= —(1—x)u,
u'= —(1 —x)s,

(A18)

(A19)

(A20)

from Eqs. (AS)

p3 ——(2( —u' —t) IV s,n3/u 't Is, 2( —u'+ t) IV s ),
(A13)

p4 ——(2( —u —t')IV s,n4V'ut'Is, —2( —u +t') IV s ) .

It follows that

which ignore the transverse components of p3. The result
1s

tt'3~'=2tt'su [1+(1—x)']+
M

X I
—2us(1 —x) cos2$+ —,

' (s +u )[1+(1—x) ) I .
(e ttrsp1pz~p(p4) = , uu'tt'—sin p, (A14)

The differential cross section is obtained from
(A21)

d'p3 d'p4 g(M' —s s' t' t' u ——u') —( ~t—r) ~—

(2~) 2E3 (2vr) 2F-4 (2~) (k, ) (k )

Substituting Eq. (A21) into Eq. (A22),

(A22)

—2su[1+(1 —x) ]do. =
3 M(0, t') 6(M —x(s+u) t')—dP3 dP4

16~ st

t

I
—2us(1 —x) cos2$+ —,(s +u )[1+(1—x) ]]

This can be simplified by noting that
(A23)

d P3

E3

d p4

=~dx dt,

du dt'dg
25

(A24)

Doing the integral over the azimuthal angle and making the usual replacement, f dk /k ~ln(s/4m, ),
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I

do = ln M(O, t') —2su+
2

(s +u ) [1+(1—x) ] .
$2 s +u 4m 2 ' 2M2

(A25)

Integrating u from —s+M —t' to 0 gives
2

a
2' ln —fdt' Z(O, t') 4[(1+x')ln(1/r') —(1—w')(7+v')/4]

4m, ' 4

I

+ 4[(1+—,
' r')'in(1/r') —(1—r')(3+r')/2]

2M
(A26)

where r'=(M t')/s-
This complete result may be put in a more practical

form. First, since in realistic situations ~'&&1, ~' can be
dropped except in the 1n(1/r') term. Second, we write,
using Eqs. (4.6) and (4.7),

1+(1—x)
p]

X

$ +u2 2

P2 2(s+u)

(A31)

M(O, t')'= I »F(t')', (A27)
where we have used s'= —(1—x)u, u'= —(1 —x)s. Fur-
ther, we have

s
ln

4me

16m. 3 ~
M3 2

"Ts

F t' 4 ln —,——dt', 2 1 7

M 4

where F(t') is a form factor. We then have
2

00 + 2 —2x
2pi =pi

X
)

—2us
2P2 =P2 (s+u)

Inserting these into Eq. (A29),

8 JP3 JP480 =
16~4st xt'(s +u) E3 E4

(A32)

I

M
1 3

ln —,——
7.' 2

(A28)
X [

—us[1+(1—x) ]o»+( —us)(1 x)rrz-cos2$—

This is in agreement with the result of Sec. IV, except
that r=M /s has been replaced by r'=(M —t')/s and a
form factor has been included.

The general treatment of the two-photon process by
Budnev et al. prescribes for the case in which photon 1

is nearly real

k& k2 d P3 d P4

16~ k& k2 s/2 E3 E4

X(4pi++p2++own+2
I
pi+ p2+

l
rn cos20

+ —,(s +u )[1+(1—x) ]or@] . (A33)

This form can be compared to the result (A23). The
two are equivalent if

4
I

8
'

M
(A34)

t

err(s) = ( t') M(O, t') 5—lM s) . —
4

'
M

where

+2p& pz o») (A29) The cross-section terms in Eq. (A34) can be compared
to the forms used in Sec. IV. From Eqs. (4.5), (4.8), and
(4.10),

2p)++ ——X '(2p). k~ —k).k2)+1,
00

pi =2pi —2 )

+ — ++

X=(ki k2)

(A30)

and similarly for p2 . In the above, k& has been set to
zero. In terms of the variables s, t, u, s', t', u', with k&

=XP))

o»(s)= ( —t')W(O, t') 5(M —s),
(A35)

I

orr(s ) = ( t') W( tO')' ( 6M'——s ),4

x(s+u)=2kM . (A36)

where p is the momentum of the virtual photons in the
rest frame of the decaying resonance. The agreement be-
tween Eq. (A34) and Eq. (A35) follows from the kinemat-
ic relation
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