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We use Ioffe's method of constructing (local) baryon field operators in terms of quarks to derive

an effective chiral Lagrangian with U(3) &&U(3) symmetry consisting of the J =
z baryon octet,

the J =
2 baryon nonet, and the pseudoscalar-meson nonet. This formalism leads to a set of gen-

eralized Goldberger-Treiman relations of the form F g~~ ~ -(M++M+), F g~~

-(M+ —M ). We enumerate all nonvanishing three-point pseudoscalar-baryon couplings and use
the g„~ z couplings to study the decays B ~B+m.. We explain why the negative-parity isodoub-

let N(1535) decays predominantly into Ng, as opposed to N~, even though relatively suppressed by
phase space.

I. INTRODUCTION

It is widely believed that quantum chromodynamics'
(QCD) constitutes the underlying theory of the strong in-
teractions. Unfortunately, however, the dynamics of this
theory is in terms of quarks and gluons, and despite recent
progress in lattice gauge theories little is understood
about hadrons and their properties (e.g., masses, cou-
plings, etc. ) in relation to QCD.

In this paper we further exploit the consequences of the
underlying symmetries of QCD (e.g. , Lorentz invariance,
chiral symmetry, and parity invariance) on the physical
hadron sector. This approach leads to relations among
hadron masses and couplings, a well-known example of
which is the Goldberger- Treiman relation. " A useful
technique for implementing this program is that of effec-
tive chiral Lagrangians, which amounts to nothing more
than the construction of the most general interaction
terms (between a set of prechosen fields) consistent with
the assumed symmetries.

In the limit when L of the quark-mass parameters van-
ish QCD has a global fl var-oU( )LXU(L) chiral symme-
try. In the real world, however, none of these quark-mass
parameters vanish and the symmetry is explicitly broken.
Nevertheless, there is considerable evidence to support the
hypothesis that these symmetries are very good approxi-
mate symmetries for L =2 and 3. [We stress that QCD
has a genuine U(1) axial symmetry ' (which is contained
in the more general chiral invariance) irrespective of the
anomaly and/or any topological gauge-field configura-
tions (such as instantons). Even though the anomaly re-
sults in no explicit U(1) axial breaking it can still provide
a means by which the unwanted preanomaly current-
algebra conclusions (regarding, e.g. , g-g', mixing and the
ri~trtrsr decays) can be avoided. 8]

In this work we consider chiral U(3) XU(3) symmetry
and construct the terms of the effective chiral Lagrangian,
consisting of the lowest-lying J = —, baryons and the
J =0+— mesons, relevant to the baryon masses and the

three-point pseudoscalar-baryon couplings. The present
work extends the U(2) X U(2) case considered earlier.
Our considerations are based on the exact chiral limit, al-
though the incorporation of explicit chiral-symmetry
breaking, due to nonzero quark masses, is also possible.
The techniques used can also be extended to study other
baryons and their pseudoscalar interactions.

We begin by constructing local spin- —, baryon field
operators directly in terms of the quark fields, ' in a rela-
tivistic quantum field theory -lang-uage From. these we
deduce the chiral transformation properties of the baryons
and use them to incorporate the baryons into an effective
Lagrangian with the spin-0 meson fields. This procedure
removes any assumptions about what the chiral transfor-
mation properties of the baryons might be, as in earlier in-
vestigations.

In enumerating all possible spin- —,
' (octet) baryon field

operators we discover that there are two possible in-
equivalent configurations, which we assign to opposite-
parity baryons. Furthermore, we find that in this scheme
there exists a flavor-singlet baryon. We show that the
chiral transformations mix these fields and consequently
that a linear effective Lagrangian requires the inclusion of
both sets of parities. This is analogous to formulations
with spin-0 meson fields. This nontrivial mixing leads to
some new Goldberger- Treiman-type relations. One of
these relates the mass splitting of the parity octets to cer-
tain mixed-parity meson-baryon couplings. We also show
how these relations can be understood, in the traditional
Goldberger-Treiman relation style, by sandwiching the
axial-vector currents between opposite-parity baryon
states.

We enumerate all nonvanishing three-point
pseudoscalar-baryon couplings and use the g z ~ cou-

plings to study the decays B ~B+m. We explain why
the negative-parity isodoublet N(1535) decays predom-
inantly into Ng, as opposed to N~, even though relatively
suppressed by phase space. We predict the decay modes
and branching ratios of the parity partners of the X, A,
and the =.
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II. THE SPIN- 2 BARYON FIELD OPERATORS

The baryons are the color-singlet objects obtained from
three quarks by totally antisymmetrizing their colors

The mixed symmetry flavor-octet baryons are obtained by
antisymmetrizing in the flavor of two of the quarks. We
write

kl qa, I qb,j qc, k ~abc ~ij I (2)

where i, j, k, and 1 are flavor indices (running from 1 to
3). Note that (2) is deemed to include the possible flavor-
singlet baryon corresponding to the trace of B.

This leaves the Dirac structure. Before proceeding we
need to understand how to form Lorentz scalars, pseudo-
scalars, vectors, etc., from two quarks, as opposed to the
usual situation of a quark and an antiquark. Under an in-
finitesimal proper Lorentz transformation

x~~x~+ 5m"~, Ace„= —Ace „,
the quark and antiquark fields transform as

q (x)~Sq (x), q(x) ~q(x)S
where

(3)

S ( b,cu ) = 1 — o„„b.co"—
4 PV

It follows from (3) and the property of the usual charge-
conjugation matrix C = —i y y [S C =CS '] that q C
transforms in the same way as q under proper Lorentz
transformations. Combined with the parity transforma-
tion'

it can be shown that q Cq behaves as a pseudoscalar,
q Cy5q as a scalar, q Cy„y 5q as a vector, q Cy&q as a
pseudovector, and q Ccr&~ as a tensor.

Suppose now that we were to pair the two quarks' q, ;
and qb j, which are antisymmetric under the interchange
of their flavor indices, into a quark dilinear q CI q,
I =[1,y~, yz, i@&y~,o&„(p & U)]. The set of possible spin-

qa qb qc ~abc

where a, b, and c are color indices (running from 1 to 3)
and e,b, is the usual three-dimensional epsilon tensor. In
constructing the baryons explicitly in terms of quarks
there are two other indices we need to consider: the flavor
and the Dirac indices. Our considerations below are con-
cerned with the spin- —,

' baryon flavor octet(s) (plus a pos-
sible singlet) although the techniques can also be extended
to other higher-spin, decuplet and exotic baryons. We
also consider three (light or massless) quark flavors, L =3.

The possible flavor representations of the baryons are
specified by the triplet product

3/3)&3=1+8+8+10.

3= —3 T P~kl ~+B ('qa, i 1 pqb, j ) Y qc, kEabc&ijl

4 —3 T P~kl "+ 8 (qq, i CZAR] 5qbj )7 qc, k~abceljl

5 —3 T pv~kl ~+B (qaiC, OpAbj )ir qc, k ~abc ~ij I

(5)

where f z is some normalization constant having the di-
mensions of mass.

It is easily seen that 8 and 8 vanish identically be-
cause of the flavor and color antisymmetries in the first
two quarks. Of the remaining possibilities, 8 can be ex-
cluded because it can be expressed in terms of 8' and 8
by carrying out a number of Fierz transformations

8 =28' —2ygB

This leaves the only possibilities as 8' and B . [The oth-
er set of operators obtained by combining say the quarks
q, ; and q, k into quark dilinears can be Fierz transformed
into the combinations (5), so need not be considered. ]

Under parity (4)

8 1~F08 1 82~ yo82

which means that the 8' nonet field operators have posi-
tive parity and the 8 nonet field operators have negative
parity. In the nonrelativistic limit, 8 consists principally
of s-wave quarks while 8 contains terms which connect
the "small" and "large" components of q and consequent-
ly involve quark-pair p-wave excitations. There is howev-
er a problem. We know from arguments in the nonrela-
tivistic quark model that it is impossible to construct a
spin- —, flavor-singlet baryon made out of s-wave quarks
only. [Since the flavor-singlet baryon is totally antisym-
metric under the interchange of any two quark colors (or
flavors) and since the baryon must be antisymmetric
under the total interchange of any two quarks, it must
also be totally antisymmetric in spin+ space. This is
clearly impossible for a spin- —,

' baryon made of s-wave
quarks. ] This should be borne out in our formalism.

It can be shown, ' by a number of Fierz transforma-
tions, that the singlets 8, and 8, are related to each oth-
er, thus reducing the number of operators (particles) by
one:

8, = —@58, .

The parity of the remaining singlet is unspecified in our
formalism, depending on whether we eliminate 8,' or 8, ,
but we will choose it to have a negative parity, in
correspondence with the quark model. (Under the as-
sumption that our formalism corresponds to the lowest-
lying baryon states and since the mass of the most likely

single candidate [the A(1405)] is less than the —,

singlet candidate [the A(1600)] this seems a more natural
choice. )

We are then left with one positive-parity octet, one
negative-parity octet, and one negative-parity flavor-
singlet baryon. We associate the —, octet with the usual

baryon field operators (no free Lorentz indices) is given
b 15

1 —3 T
+kl "~B (q.,; 1 Sqb,j )q, k& b ~jul

2 Q —3 T
+kl ~ B ('qa, iCqbj )qck~, abc ~ijl r
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lowest-lying states (p, n, 2—+,2,:-,:",A ). The assign-
ments for the —,

' octet are not so straightforward as we
believe that some of them have not been observed as yet.
In Sec. VII we investigate the branching ratios for the de-
cay of the negative-parity baryons into a positive-parity
baryon plus a pseudoscalar meson. The results suggest
that the N(1535) and the A(1670) are most likely the pari-
ty partners to the nucleon isodoublet (p, n) and the A,
respectively. We are unable to identify the parity partners
to the X and the =. Assuming approximately equal in-

I + 1tramultiplet mass splittings in the —, and —, octets we
expect these particles to have masses of order
Mg + (Miv ( i 535 ) Miv )=1770 MeV and M= + (Miv( i 535 )—Miv )=1900 MeV, respectively.

The technique developed here for enumerating all possi-
ble baryon field operators made of three quarks is inspired
by the work of Ioffe. ' Ioffe also noticed that there are
two possible (inequivalent) representations for the spin- —,

baryons but did not interpret them, as we have done, as
two opposite-parity octets.

The technique can easily be extended to other higher-
spin, decuplet and exotic baryons. Consider for instance
the spin- —,

' decuplet. These states are totally symmetric
under the interchange of any quark flavors. There are
only two nonvanishing possible operators. Eliminating
one of these by a Fierz transformation leaves the only pos-
sibility

—3 T.
(qa, i Cj pqbj)qc, keabc

pemlutations of (i,j,k)

It is interesting to note that the spin- —,
' decuplet does not

have a set of parity partners in the same way as the spin-
—, octets.1

III. CHIRAL TRANSFORMATION PROPERTIES

Consider the two spin- —, baryon nonet operators [for
the moment we do not impose the constraint (7)]:

the U(3) axial-vector transformations mix the opposite-
parity baryon nonets B' and B . [This should be com-
pared with the two-flavor case where only the U(1)
axial-vector transformations mix 8' and 8 . In this case
the quark dilinear ( q Cy5q)ee is a SU(2) singlet. ]

Instead of (9) it proves more convenient to use the left
and right transformations [qL R

———,
' (1+y5)q]

U(3)L qL e 'qL = UL'qL qR qR

U(3)R qL ~qL qR ~e qR = URqR

and the left and right components of the baryon fields

BL,R ~B ( qLCqL +qR CqR )qL, Ree1 —3 T T

BL,R ~B (qL CqL +qR CqR )qL, R ee2 —3 T T (12)

The combinations (B'+B )L R transform homogene-
ously:

(BL+BL)~UL(BL+BL ) URe'

(BL BL )~UL—(BL BL ) ULe—1 2 1~61

(BR +B„)~UR (B„+BR ) UR e'

(BR BR )~—UR(BR BR ) ULe—1 2 i ~61

(13)

Note that certain combinations in (13) transform as
(3,3')+(3*,3) and others as (1,8) + (8,1). These transfor-
mation properties should be contrasted with those as-
sumed in earlier investigations. " There is also the subtle-
ty of the additional U(1) phases in (13) which will be of
some importance later.

The chiral transformation properties of the J =0+-
meson fields

1 —3 T
Bkl ~B (qa, I y5'qb, j )qc, k eabceij I

2= —3 T.
kl ~B ('qaiCqbj )q,c, k eabc eij I

Under infinitesimal U(3) vector and U(3) axial-vector
transformations' (a, /3 « 1) are given by

'qj(1 —y5)q; = (o'+i vr')
2

(14)

U(3) v.. q~(1+ia A, )q, .

U(3)„: q (1+ P Ay5)q,
1,2 1,2 1,2 1, 2

BkI' Bki +ia-Akk Bk'I —ia-i, l &Bki

+ i 3 6a Bki + i P'~kk y 5Bk'I
1,2 1,2

iP A, iBki +i—y 6P B. ki
2, 1 -. r 2, 1

(9)

(10)

m~U, mU, ,

+ei~6(1 —r )de

IV. EFFECTIVE CHIRAL LAGRANGIAN

(15)

The second and fifth terms on the right-hand side (RHS)
of (10) arise on transforming the quark field q, k in (8).
The other terms arise from the chiral transformations on
the quark dilinear (q Cy5q). The minus sign in the third
and sixth terms can be understood by the fact that, in
many ways, the quantity (q Cy5q)ee behaves like an anti-
quark except for the U(1) (vector and axial-vector)
transformations whose phases add coherently. Notice that

It is clear from Eq. (13) that one cannot construct
chiral-invariant baryon mass terms of the form B&BL and
BLB~ directly. Instead they arise, from possible 8~8-
type terms, after assuming spontaneous chiral-symmetry
breaking (SCSB) with (~)&0. Keeping those terms in
the effective Lagrangian which contribute to the baryon
masses after SCSB,
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W,rr=tr(8 'i BB ')+tr(8 i r)B )+g [tr[(81 +8 L )Mi'(Bz +8~ )]+tr[(BI B—L )M(Bz B—z )]

+tr[(B z+B „)~(BL+Bl )1+tr[(B~ —8 z )~ (BL BL—)]I

+K~ [ (de~ )tr[(B I B—r )~(B~ +BR )~ ]+(de~ )tr[(B ~ +8 R )~ (Bz' BI—)M] ]

+K2 I (de~)tr[(B ~ Bz—)~ (BI.+BL ) 4& ]+ (de~ )tr[(8 I. +8 I, )~//(Bz B—R )M] ]

+K3I (de~ )tr[(8 I, +8 I, )M]tr[(B+ Bz—)~]+(de~)tr[(B z Bz—)~ ]tr[(BL +BL )M ] I + (16)

The traces in (16) are over flavor indices. The determinant factors are required to take into account the extra U(1) phase
factors in the baryon transformation properties (13). Terms such as (det 6')tr(81 Bi )tr—(B++Bz) are excluded be-
cause (8&+8+ ), =0=(BI' BL ),—by virtue of the constraint equation (7). Kinetic energy cross terms coupling 8' to 8
have been eliminated by appealing to the diagonalization theorem of Feinberg, Kabir, and Weinberg. '

We assume SCSB with

(w/, , ) =(w/, ', ) =— (17)

This corresponds to the usual scheme ((qq }&0)with chiral U(3) &&U(3) symmetry spontaneously broken down to U(3)
vector symmetry. The quantity F„appearing in (17) can be identified with the pion decay constant (=93 MeV in our
normalization) defined by

&0
I ~ps(x)

I

~ (q)) =iq„F o,be

where M&5 is the axial-vector current [in QCD, ~&5 ——qy&yq(A, '/2)q]. In the presence of (17) we redefine the meson
fields so that

~,J ——(M,z. ) +M;J. —— 5;z + (o'+ i n')
lJ ~~2 fJ &2 (19)

ff—tr(B 'ielB')+tr(B ie)B )+tr (8 ' 8 ) —Yys M —X

Substituting this into (16) and keeping only the baryon mass terms and the three-point pseudoscalar-baryon couplings,

M +X Yys

l 'TT+ tr
M +X Yys
—Yy5 M —X

—Y —Xys
tr (8 ' 8')y»F Vs

gl
2

L

9

+ F tr (8' 8 )y, Fs

Xps
g2

—Xs 8'
+Z tr[(8 ' 8 ')]

1
tr

3's

a
+Z tr[(B ' 8 )]y,F„ 7s

—3's gl
tr 2 A.

' +Z tr[(B ' B')A,']y,F Ps

gl
tr

where

~ 9 —1

+Z~6 tr[(B ' 8 )]y,F
'Vs

tr B2 + ~ ~ ~ (20)

F F„F
M =&2gF~, X= (~~+~2), Y= (x

~

—K2), Z =K3
4 2 4 2 4v'2

We write

(21)

(22)

where M ' and M are traceless 3 && 3 matrices which represent the octet parity-even and -odd baryons

and 8,' and 8, are the Aavor-singlet baryon fields.
Substituting (22) into (20) and expressing 8,' and 8, in terms of C =(I/v 2)(B, y58,') [note that th—e combination

8, +yqB, ' vanishes by (7)]
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ff—tr(Ã 'i/A ')+tr(A i'% )+CiQC+tr (A ' A' )

M +X Yy5
—Yy5 M —X

a M +X Yy5
+( Y —X —6Z)CC+ tr (A ' A )A, 'ygF 3 5

a —Y
tr (Ã' X')y»

75

—Xzs ~ 9

+ V'2/3( —Y+X+6Z) Cy, C

~ 9
+&6 tr (Ã' Ã )y,F„ —X@5 —Y

17r C(M+2X —2Y+6Z, (M +2Y —2X —6Z)y, )tr
6F

i-~ —M —2X +2 Y —6Z
+ ~ tr[( ~ )~ ] (M+2Y —2X —6Z)y C+ (23)

The sum over a runs from 1 to 9. The additional baryon couplings for the ninth pseudoscalar meson [eighth and ninth
terms in (23)] are a consequence of the determinant factors in (16):

3

de~= [1+~6(o +in)+ . . . ] .
2 2

The effective Lagrangian (23) contains y&-dependent A'A mass terms which should be removed. The baryon mass
squared matrix in (23) is diagonalized in terms of the new fields A'+ and A, defined by

where

=U ~2, (A+ A )=(A ' A )U,

sgn( Y)
Y

[2(M2+ Y2) 2M(M2+ Y2)1/2]1/2 [M —(M + Y )' ]y5

[—M+(M + Y )' ]y5

(24)

(25)

Note that A+ has positive parity and A has negative parity. In terms of these new fields W,ff (23) becomes [for sim-

plicity we use the shorthand notation p=(M + Y )'/ ]

p+X
ff —tr(A+i8A+)+tr(A i&A )+CiBC+tr (A'+ A )

p —X

~ Q

+( Y —X —6Z)CC+ tr (A A )A,'yq
p —X

~ Q

+ tr(X+ A )y,

XY—Y—
p 9

+&2/3( —Y+X+6Z) Cy, CF

~ 9
+~6 tr (A+ K )y~F

p
MXy5 XY—Y+

p

a

+ C(M +2X' —2Y+6Z, (M +2Y —2X —6Z)y&}U tr
v 6F

i ~' — — —M —2X+2Y —6Z+~ t[(~+ ~-)A]U (M 2Y 2X 6Z) C+ (26)
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V. BARYON MASSES AND COUPLINGS

There are two distinct pseudoscalar-baryon (octet) in-
teractions in (26) "orresponding to the two ways of
forming an SU(3) singlet from three octets:

ff—g cgiV 2tr(AP pm& )

We can use these equations to express the four Lagrangian
parameters M, X, Y, and Z in terms of M+, M, Mc,
and a=—a ~ ~ . Taking ' M+ ——M& —1190 MeV,
M =M& —1770 MeV, M~ ——MA(~405) —1405 MeV, and
a=0.5, 0.6, and 0.7 we find that

~g„'~~i v 2tr(%$9Fn. ) ~ . (27) X = —,(M+ —M )=—290 MeV, (31a)

where A is a traceless 3 X 3 matrix representing a baryon
octet (even or odd parity)

b
Al

gJ
77jf1T

p = —,(M+ +M )=1480 MeV,

Y = ——,
' (M~ +M )(2a —1)

(31b)

is a 3)&3 matrix representing the pseudoscalar octet (or
nonet), and g'=y& or 1 depending on whether or not the
two baryons are of the same parity. These interaction
terms can also be written in the form

ff—g cg~t b iÃ'gn.

0, a =0.5,
—296 MeV, a=0.6,
—592 MeV, a=0.7,

(31c)

gig~~~f, b, i3P 'gn A'~ (28) M =(M~ ~M )v'a(1 —a)

where d,b, and f,b, are the SU(3) symbols (defined by
[A.', 1,")=2if, i„A,', Ik', k"

I
= , ogbI +2—d,b, A,') and gg~

(1) (2)—:g ~~+g~~~. A parameter which is often used to
gauge the ratio of the d to f couplings is

d (1) (2)8~a~ +R~uw
(1) 29

R~wa +f~a~ 28 ~a~

1480 MeV, a=0.5,
1450 MeV, a =0.6,
1356 MeV, a =0.7,

Z = ——,a(M~ 4-M ) ~ —,M ——,Mc

(31d)

From (26) we find that

M~ ——p+X,
Mc ——Y —X —6Z (30)

—186 MeV, a=0.5,
—235 MeV, a=0.6,
—285 MeV, a=0.7 .

(31e)

1a~ ~ —=a=-
+ +

1— Y
F p

The pseudoscalar-baryon couplings can be expressed in
terms of M+, M, Mc, and a. The results are

(32a)

0, a =0.5,
g'~ ~ =(2a —1) = 2 56, a=0 6,+ +

5. 12, a =0.7,
(32b)

(32c)

0, a =0.5,
g ~ ~ ———(2a —1) = —3 8, a=06,(2)

F —7.6, a =0.7,
(32d)

0.5, a=0.5,
a ~ ~ ——1 —a= 0.4, a=0.6,

0.3, a=0.7,
(32e)

(32f)
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(2)
gm&+A

3. 12—1
(M+ —M )&a(1—a)= 3.06,

2.86,

a =0.5,
a =0.6,
o.=0.7,

(32g)

—1a ~ ——0, (32h)

1/2 10.5,

g 9~ ~ —— — (3—4a)= 6.27,

a=0.5,
o.=0.6,
a=0.7,

(32i}

1/2 15 ~ 5,

(4a —1)= 21.7,
2

27.9,

+=0.5,
a=0.6,
a =0.7,

(32j)

2—
F7T

1/2 —5 ~ 09,
(M —M )&a(1—a)- —5.00,

2

3 +
—4.67,

a =0.5,
a =0.6,
a =0.7,

(32k)

g c~ — [(M +2X —2Y+6Z) 1'+(—M +p)(M —2X+2Y —6Z)]+ V6F [2(M + Y ) —2Mp]'

—0.948, a =0.5,
—1.03, a =0.6,
—1.09, e =0.7,

(321)

g ca =
q 2 )~~ [(M —p)(M+2X —2Y+ 6Z)+ Y(M —2X+2Y —6Z)]

6F [2(M + Y ) —2M@]'~~

13.9, a =0.5,
12.4, a =0.6,
10.8, o. =0.7,

(32m)

g &CC=
2
3

1/2
C =—12.3,F (32n)

where the couplings g &~ ~, g~c~, and g & are defined byn. CC

+g 9~ ~ in tr(A y+~A )++g &9& i9r tr(A @~A' )+g 9& ~ [iver tr(%~+M~ )+H.c.]
+ + +

+g c~ [iver'Ctr(%+A. ')+H. c.]+g c~ [iver'Cyqtr(M~ k')+H. c.]+g 9ccivr Cy5C+. . . (33}

M+
n, ~ p F (34)

A more extensive list of the individual pseudoscalar-
baryon couplings can be found in the Appendix.

VI. GENERALIZED GOLDBERGER- TREIMAN
RELATIONS

There are a number of interesting relations among the
baryon masses and couplings which follow from (26).
Many of these have already been listed in (32) and
(A3)—(A10}. Equation (A3a), for example, corresponds to
the usual SU(2) Goldberger-Treiman (CxT) relations"

G
1

pep nor n Q2 pn+n

The other set of relations can be classified as follows.
(i) The SU(3) generalizations of (34). These are listed in

(A3) and in more general terms summarized by (32a) and
(32b).

(ii) The extension of (i) to include the 9}'-baryon cou-
plings. See (32i) and (A6).

(iii) The generalization of (i) and (ii) to negative-parity
baryons. See (32c), (32d), (32j), (A4), and (A7).

(iv) Relations which involve the pseudoscalar couplings
to an even- and odd-parity baryon. See (32f), (32g), (A5),
and (AS).

(v) Relations involving the flavor-singlet baryon cou-
plings. See (321), (32m), (32n), (A9), and (A10).

All of these relations can be derived in a similar manner
as the CxT relation (34), i.e., by sandwiching the axial-
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vector currents between two (even- and/or odd-parity)
baryon states. By Lorentz invariance and SU(3) v symme-
try these matrix elements can be written in the form
fq=pf —p; ~, =qr, r (~'/2)q] .

&8+(pf)
~ ~„5~8+(p;))

= U'+(pf)[rI r5C i'++(q')+q„r5Cz++(q')]U+(pi »
(8'+(pf)

~ ~„~~8' (p;))b, (35)

= U+(pf)[rI Ci+-(q')+q„C2+-(q')]U'-(p»
where U and U are Dirac spinors. Each of the coeffi-
cients C i++, C&, etc., can be split up into the sum of
two terms "orresponding to the two ways of forming an
SU(3) singlet, i.e., of the g"' and g' ' or f and d types.
There is no sum over a, b, and c in (35).

Multiplying (35) by q"=(pf —p;)", the LHS's become
proportional to 8"W&5 and hence vanish, in the chiral lim-
it. This gives

U +(Pf )[qr5Ci++ (q')+q'rsCz+'+ (q')] U'+ (pi »
0= U+(pf)[qC~+ (q')+q C2+ (q')]U' (p;) .

(36)

Setting q =pf —p; and using the spinor properties

WQCD( ) WQC ( ) —2[8"P ( )]M„( ) (39)

2y 81
P

+tr 8 ~y„822
iE'

(1 —35bg) . (40)

For I'&0 we need to perform the diagonalization
transformations (24) and (25).

In the analysis of this section leading up to the g'
baryon couplings we have dehberately ignored the U(l)
axial anomaly:

2

r)"W 5=5bg~6 F F=5bg~6B"K„.P

where the W„5 are the axial-vector currents
qr„r5(A, "/2)q. W, rr is expected to transform similarly.
Starting with the baryon kinetic terms in (20) and per-
forming the infinitesimal axial-vector transformations
(13) (with r=P= —1&&1)we find that

b b

apg ——tr 8 y„y5 8 +tr 8 yy5 8~b ]. ~ 1 2 ~ 2
P P

p; U'+(p;)=M'+U'+(p;),

U+(pf )pf U+(pf )M——+,
gives

0= U+(pf )[(M++M+ )r~CP+(q )

+q r g Cp+'+ (q ) ]U+ (p; ),

0=U+(pf)[(M+ —M' )C;+ (q )

+q Cq+ (q )]U' (p;),

(37)

With the inclusion of the anomaly the LHS's of Eqs. (36)
and (37) contain a piece proportional to
5b 9 (8+

~

v 6 B„K"
~
8+ ) . Assuming that the gl' is now no

longer massless there is also no pole in the C2 terms of
Eqs. (37). It turns out however that this is a compensated
by the Veneziano pole contribution to the matrix ele-
ment (8+

~

~68„K"
~
8+ ) and that the end result is pre-

cisely the same as if we had ignored the anomaly from the
very outset.

VII. THE DECAYS B ~B+m

In the first equation above we have M+ +M+ because the
p; has to be passed through r& to act on U+ (p;), while in
the last equation we have M+ —M' . When 8' and 8'
are members of the same octet we can set M+ ——M+ and
M' =M' . We have not imposed this in (37) to allow for
the inclusion of the flavor-singlet baryon (Mc
&M+,M ).

In the limit q ~0 the second terms on the RHS's of
(37) receive a contribution from the n." pseudoscalar pole.
Therefore

(M~+M~)C)++(0)=2F g~ .

kMB
2

B —+B+~ g~B+ B x~
iYi B

(41)

where k is the center-of-mass momentum for the channel
being considered:

Assuming that the dominant contribution to the decays
8 ~8+m. occurs through the three-point interaction, we
can use the results for the g z ~ couplings (listed in the

Appendix) to determine the decay modes and the branch-
ing ratios of these decays. We have

(M+ —M' )C;+ (0)=2F g~,
(38) k = {[Mg —(Mg +m ) ]

2MB — +

These equations hold for the f and d (or g' " and g' ')
couplings, separately

The coefficients Cf++(0), C~
' (0), and C~+ (0) ap-

pearing in (38) are the axial-vector transition constants
(generalizations of gz, the axial-vector coupling constant)
and can be easily determined by finding the 8+y&y58+
and 8+r„B pieces of the effective axial-vector currents.

Under the infinitesimal local axial-vector transforma-
tions (9) [p=p(x)] WQcD is not invariant because of the
qi Bq kinetic term:

X[Mg —(Mg —m )']]' '. (42)

N~Nrl (100%) (theory) . (43a)

We consider each negative-parity baryon in turn The
p has nonzero couplings to X K+, AK+, X+K, pg, and
pg)' [see (A5)] but if the p belongs to the lowest-lying
negative-parity isodoublet, the N(1535), mass considera-
tions rule out all decay modes except pg. Therefore p de-
cays only into pg in the chiral limit. Similarly n ~n g:
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Experimentally the N(1535) decays into both Nrl and N~
with

N(1535)~Ng (40—600005)

N7r (35—50%) . (43b)

It is heartening to note that the predominant decay mode
is into Ng, even though the phase space would favor the
decay into Nn (by a factor of 2.4). We expect that the in-
clusion of gz & 1 effects and explicit chiral-symmetry
breaking (due to nonzero quark masses) generates a gI' I-

type ~B+B interaction which allows the decay N~N~.
With the relatively large phase-space factor we hope this
can account for (43b).

Similarly, using the couplings (A5) and calculating the
phase-space factors we find that

(15—35%). On the other hand, the decay modes and
branching ratios of the X do not correspond to the ob-
served lowest-lying —, candidate the X(1750)~NK
(10—40%), A~ (seen), Xn ( & 8%), Xr) (15—55 %).
Perhaps the X is one of the bumps close to this resonance.
There is no —, candidate for the =. The state "(2030)
whose spin-parity is not known is observed to decay into
AK ( —20%), XK ( —80%), :-vr (small) cannot be the =.
The = does not decay into XK in the gz ——1 chiral limit.
Secondary effects due to gz & 1 and explicit chiral-
symmetry breaking can never induce such a large cou-
pling as what is required for this identification. Further-
more the =~ branching ratio is much too small. Since the
negative-parity singlet A(1405) has a comparitively small
mass it can only decay into X~.

VIII. BEYOND
P =0'

62%%uo

35%%uo

3%%uo

8%%uo

48%%uo

41%%uo

3%%uo

/=10'

60%%uo

33%%uo

7%%uo

8.5%
49%
41.5%%uo

1%%uo

/=18'

58%
32%
10%

8.5%%uo

49.5%%uo

42%
0%

(theory)

(44a)

(theory)

The present work was limited to a study of the ~BB in-
teractions but the techniques can be extended to study the
implications of chiral symmetry for other interactions,
e.g. , the four nucleon interaction (NN), the hb. rr, AN~,
and ~~NN interactions, etc. In connection with the AN~
system it seems that, by sandwiching the axial-vector
currents between a 5 and a N that

gg~„—(2F ) '(Mg+M~ )—11.6 .

71%
26.5%%uo

2.5%

C~X~ (100%)

72%%uo

27%%uo

1%%uo

(theory),

73%%uo

27%
O%%uo

(44b)

(theory)

(44c)
(44d)

where p is the r1 g' mixing -angle. The A decay modes
and branching ratios compare favorable with the
A( 1670)—+Xw (20—60 %), NK (15—30 %), Ag

It would also be interesting to include explicit chiral-
symmetry breaking and go &1 effects into this formalism.
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APPENDIX: COMPILATION OF PSEUDOSCALAR-BARYON COUPLING CONSTANTS

The usual charge eigenstate pseudoscalar-meson and -baryon fields are defined by

+ 9 +v2 v6 v3

+ 9 +v 2 v'6 v'3

''+ ''
~6 +~3

(Ala)

v'2 v'6

VZ v6
—2A
v'6

(A lb)
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ro
v2

—X A
v2 v6

—2A
v6

(A lc)

1. g ~ ~ couplings+ +

Substituting (Ala) and (Alb) into the g'"-type interaction W „,in (27) gives

W (,)-iv 2tr(%+rsvp AP+)
g

=inX.+ysX+ —X ysX + X ysA+ AysX +pysp —nysnV3 3

+im+X .ysX —X+ysX + AysX + X+ysA+U 2pysn
3 3

+i~ X rsX' X'r—sX++ X rsA+ ArsX++v 2nr~
3 3

1 — 2+iK+ X ys= +v 2X +ys= + Ays= — pysA
3 3

+iK:- ysX +v2:- ysX++ = ysA — Aysp
3 3

+iK 2X @5= —X y5= + A@5= — ny5Ao —— —— —o -o 1 — -o
3 3

+iKo V2:- -r,X-—:-'r,X'+ ='y, A — Ay, n
3 3

(X ysX +X+ysX++X ysX +pysp+nysn —2:- ys= —2:" ys= —AysA)
3

+( —, )' ig'(X ysX +X+ysX++X ysX +pysp+nysn+= ys= += ys= +AysA) .
For the g' '-type interaction W (2) we obtain

g

W (,)-iv 2tr(%+ysA+m. )
g

1 Q 1=in' X y,X —X+ysX++ X'ysA+ AysX'+:- rs:- :-'rs:-'—
3 3

(A2a)

+i~+ X+rsX' —X'rsX + X+rsA+ ArsX +v2 rs:-
3 3

1 — + 1+in X ysX+ —X ysX + AysX++ X ysA+V2:- ys=
3 3

+iK pysX +v 2nysX + pysA — Ays=o 1 2

3 3

+iK X ysp+W2X ysn + Aysp — = ysA
3 3

+iK v 2pysX nysX + ny—sA — Ays=o — + o 1 2 — -o
3 3
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t

+iso v2r+ysp —r'ysn+ Aysn — ='ysA
3 3

+ (&'ys&'+&+ys&++& ys& +:'-ys: '-+:- ys:- 2—pysp —2nysn —&ys&)
3

+( —, )' '&g'(&'yP'+&+ ys&+ +& yP +Pysp+nysn+:-'ys:-'+: ys: "+Ays&) . (A2b)

From (A2a), (A2b), (32a), and (32b) we read off the following couplings:

(1)
N, nN =gp nop

—
gn, non

=
~2 p rr+n Q2 gn, n p

1 ()) (p) 2a
X, nA =g XO rrOA gA rrOXO gA—rr+X — gX+ rr+A gX —n —

A gA rr
—X+ —

~3 gnA+A+ grrA+9f + ~3 N, nN '

(1) (2)
X, Ore gy+ ~/+ g y —/y — gyp +y — gy+ +yp gy —~pyp gyp —y+ g 7TA+A+ g 7TA+A

=(2—2a)GN

(A3a)

(A3b)

(A3c)

pG- -=g~j~~ IV

1 1—g~ ~-o= —g o ~ = —g o=g at ~ =(2a —1)GN rrN (A3d)

(1) & (2) 2 3
GN KA=gp K+A gAK —

p
—g„KoA —gA Ko„= ~) (g g g 2 g~g g ) = ~—(7 —a)GN N

1 1 1 1

pK+X ~2 nK+X X,K p ~2 X,K n ~2 pK X+ nK X ~2gX+ K p X,K n

(A3e)

=g g g ——(2a —1)GN(2)

(1) (2)
GA, K:- gA K+=— g= —K —

A gA Ko=o g=o KoA ~ grrA~N+ 2grr&+N+ ) ~ (3 a)GN nN

1 1
X,K= —gXo K+=— ~ gX+ K+= g= —K —X ~ g= K —X+

1 1
g X—Ko-- ——g Xo Ko=o —

~2 g =—K oX

(1) (2)Gx ~y =gyp gp gg+ y+ gy — y — gm'A' A' +g m,A A 2Gx, mdiv

(1)
g=o KoXo=g A M =GN, N

7

(A3i)

(1) (2)
N, gN:—gp, gp =gn, gn

= ~ (g ng g —2gng g ) = ~ (3—4a)GN „N, (A33)

(2) (1. )

r'yi- r'g- 3 + + + + 3

1 (1) (2) —2a
(g ~ ~ +g

(A3k)

(A31)

The g 3P+A+ couplings are listed in subsection (4). Numerical values for the couplings (A3) can be obtained from (32).

2. g ~ ~ couplings

These can be obtained from (A2a) and (A2b) by replacing all of the —,
' baryons by their parity partners. The cou-

plings are as in (A3) with a tilde placed over the baryon fields and with the appropriate g"' and g' ' couplings, i.e.,
(1) (2)g„g g and g~~ g ) e.g

(1)
NnN pnp nnon ~2 pn+n Q2 nrr p

(A4)

3. g ~ ~ couplings

As g "~ ~ =0 [see (26) and (32)], there are only mA+A interactions of the g' ' type. These can be obtained from
(A2b) (without the ys) by replacing each baryon and antibaryon field separately by their corresponding parity partners.
When an antibaryon is changed there is extra minus sign. We find that
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GX ~W gyo oh gA ~go gy+ +A. gp +Z gp X+ r ~ r o H~ gA HXo

gX+ n+A gA n+X —- gA n X-+ — gX- rr-A—

(A5a)

g ~g =g~ —~op —= —g~+ ~op+ =gg+ ~+go= —ggo ~+g —=ggo ~—g+ = —gg —~—go= —gg —~~—

=gy+ p~+ = —g~+ ~+go=ggo ~+g —= —ggo ~—y+

= =g- ~= = —g-o o=o = 1
+= —= 1 g- — —=o=

(2)=g~ —~—~o =gm~

= - . . = (2)—g= —„o-—= =gma

(A5b)

(A5c)

1 1 1 1

N, KX gp, K+Xo ~ gn K+X — gXo, K —
p ~p gX —,K rT ~p g—

p, KoX+ gn, KoXo ~p gX+ K p gXo, Kon

= —g +o= =g g ~, (A5d)(2)
p, K X

N, KA gp, K+A A, K p gn, K A A, K~rT p, K+A Q3 +
(A5e)

(2)
A, K:==gA, K+:= — g=- ,K

—
A

—g-A K-':='= =-'K'A

(2)
GX ~X gXO Xo gX — X — gX+ X+ gXO Xo ~ grrM+3P r (A5g)

= =—g-„o =o =g-„—6~7 g~
(2)—g=o =o ——g =—

7 Xf~ ~ 7 g~ 3 +
(A5h)

2 (2)
N ~g =gp, qp =gn, qn

=
gp, gp

= gn, rin
= ~ grr-rt+~ (A5i)

(2)
GA, nA= gA, RA= —gA qA= -rg-~ —8 (A5j)

g„~ ~ couplings+ +

We have

ggo „go =gg — y —=g~+ .~+ =g-o „.-o =g-, -„—=gp, g'p =gg, g'pg =gg, g'g =
3 g~~ ~ —g~~

=(—', )'~ (3—4a)GN (A6)

5. g „~ ~ couplings

%'e have

g&g1 zg (1) ~ (2)
gX, g'X gX, 'X gX+, 'X+ g:=o, '=-o g=- —, '=- — gp, qp gn, q ngAg A''T j

, '(grrA .& 2grr&

=(-, )' '(4 —l)G- (A7)

6. g „~ ~ couplings

We have

2 ~1& (2)
gX+ gX+ g o o g — — gpgp

gnawn

gAqA gXoqXo 2(T) g

(AS)

Note that the ~'A A couplings in 4, 5, and 6 do not involve any new parameters other than those of the ~A% sector
because nonet symmetry (F„=F ) has been assumed in (l4). fhis is justified in the large-~, (~, =number of colors)
limit.
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7. g~~~ couplings

We have

~+ C +~ C+ ~ ~CX ~cK+= gcK = gC 9 (A9)

gc, x gc, x+ gc, +x gc, K tT gcKD gcK+= — gcKo=o gc, gA ggo Oc 2g cM (A 10)

where g c~ and g c~ are given in (321) and (32m).
Those pseudoscalar-baryon couplings which are not listed above vanish in the chiral limit, e.g. , g —=0.
The "experimental values" of only a handful of these couplings are known. They include G& z, Gzzz, Gz

G~ ~, G& ~~, Gc ~, and Gc zz. Our chiral limit gz ——1 results are in basic agreement with these values.

B—q, (x&)qb (x2)q, (x3)

2

X Pexp ig A„(y&)dy~&
a'a
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