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Vortices on the string world sheet and constraints on toral compactification
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The consistency of a bosonic string theory in flat spacetime with one of the internal dimensions
compactified on a circle is analyzed by studying the phase structure of the corresponding regularized
two-dimensional field theory. It is shown that the radius of compactification must be larger than
2++'. One can also derive in this manner the limiting temperature for strings.

Nonperturbative effects on the string world sheet have
been the subject of some recent papers. ' In particular in
Ref. 1 it was shown that an infinite perturbation series in
a' (the loop-expansion parameter) for the generalized 13

functions of the two-dimensional field theory on the
world sheet has to be summed in order to derive the equa-
tions of motion of the tachyon and other massive fields.
In this paper we study strings propagating in a space-time
manifold where one of the dimensions has been compacti-
fied into a circle. We will see that there are nonperturba-
tive effects associated with vortices on the world sheet
that give rise to constraints on the compactification ra-
dius. This could be of some interest in view of recent at-
tempts to relate bosonic and fermionic string theories. '

We start with the first-quantized action for a bosonic
string in flat 26-dimensional space-time:

S=, J do. dr(t)~"t) x„+c) YB Y),4+a'

where p = 1—25 denotes noncompact directions and
Y(o, t) is the coordinate along the compactified dimen-
sion. Note that Y is a noncompact variable but with
points Y and Y+2vrR identified. (Equivalently one can
impose 0 & Y (2mR and introduce an extra integer-valued
variable to represent the winding number. ) The mode ex-
pansion for Y(cr, r) (0&a (n. ) is
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where M and N are integers and are the quantized
momentum and winding number, respectively. The
(mass) operator for the string is usually written as
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where N, N are the number operators and —2 is the
normal-ordering constant which gives the ground-state
energy. Now in quantum field theory there is always an
implicit regularization scheme to control the ultraviolet
divergences (e.g., to precisely define concepts such as nor-
mal ordering). Therefore, we define the theory on a
lattice —since we are studying nonperturbative effects, a
nonperturbative regularization scheme is required. We

will focus exclusively on the action for Y. The point Y
being, as mentioned before, identified with the point
Y+2~R this theory is nothing but the periodic Gaussian
("Villain" ) model well known in statistical mechanics as a
low-temperature approximation to the X-Y model.

Because of the periodicity, one has to include mul-
tivalued vortex configurations for Y(o.,r). The action of
a vortex is roughly —lnR /a, where R is the linear dimen-
sion of the statistical mechanics system being studied (we
can think of it as an infrared cutoff) and a is the lattice
spacing. Clearly, this diverges as a~0 and one might
think they are irrelevant in the continuum. However, the
entropy also has the same form —lnR /a and hence above
a certain temperature there is a phase transition
(discovered by Kosterlitz and Thouless) when these vor-
tices condense. The phase diagram and the coupling-
constant flow pattern (see Fig. I) have been worked out in
Ref. 7 to lowest order and to higher order in Ref. 8 where
no qualitative difference was found. We will assume here
that this remains true to all orders. (The existence of the
phase transition, however, has been rigorously proved in
Ref. 9.)

The y axis corresponds to the fugacity [exp( —chemical
potential)] and the x axis to )t3 (=inverse temperature)
which is related to the radius of compactification by
13=R /2tra' In the pe.riodic Gaussian model there is a

2 /7r

FIG. 1. Kosterlitz flow scheme for periodic gaussian model.
The region (I) to the right of S is the low-temperature insulating
phase. The entire x axis is a line of fixed points. The initial
point must lie on the dashed curve; hence only the fixed points
corresponding to P & 2/tt can be reached. The y axis is fugacity
and the x axis is P.
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definite relation' ' between these two quantities shown by
the dashed curve in Fig. 1. If one starts at T & T„one
approaches one of a line of (trivial) fixed points on the x
axis. This is the low-temperature (insulating) phase where
there are no vortices. For T& T„one is driven away
from the x axis. It is not known whether these are non-
trivial fixed points, but the crucial observation for us is
that one cannot reach the trivial fixed points for T& T, .
What does this imply for string theories? For a consistent
string theory the action has to be conformally invariant
which in turn means that one has to sit at a fixed point of
the renormalization group. If we assume that the only
fixed points are the trivial ones then one is forced to con-
clude that a consistent string theory can be defined only in
the low-temperature phase, i.e., ~P) 2 or R &2v'a'. If
there are nontrivial fixed points, then R (2~a' is al-
lowed. However, this theory is not described at all by the
Hamiltonian (3). This is because the high-temperature
phase corresponds to a vacuum that consists of a conden-
sate of vortices. This would correspond to a string propa-
gating in a nontrivial background of the type described in
Ref. 1 for which the action (1) is not the correct one.
Indeed, in such a background, winding number is not well
defined and the expression (3) for the Hamiltonian is not
appropriate. To summarize, while naively one expects the
entire line of fixed points along the x axis to represent
consistent vacuum states for the string, in fact we find
here that only the half-line R &2&a' is allowed. For
R (2/n' we do not know if these are nontrivial fixed
points (and therefore consistent string theories). If there
are nontrivial fixed points, these are not described by the
simple quadratic Hamiltonian (3) or the action (1) since
these fixed points would correspond to nontrivial back-
grounds. As we will see below, these backgrounds, even if
consistent would contribute to the energy-momentum ten-
sor and therefore to curvature. Thus, we conclude that
for flat backgrounds, we are restricted to R & 2&a' (Refs.
11 and 12). This is the main result of this paper.

In the context of string theories, it is possible to inter-
pret this phase transition in a different way. It is easy to
convince oneself that a vortex can be interpreted as the
emission of a soliton by the string with a concomitant
change in its winding number. R =2&o.' is the radius for
which the soliton is massless and for R & 2/cz' it becomes
tachyonic and thus tends to acquire an expectation value.
One would have thought that even though the trivial vac-
uum is unstable (for R &2&a') it should still be possible
to describe a consistent string theory in it since it is a
solution (albeit an unstable one) of the equations of
motion. In fact, one can start with a modified lattice ac-
tion for the X-Y model' in which the vortices are
suppressed, i.e., the vortices correspond to relevant opera-
tors whose coefficients can be tuned to zero. In this case
we do have a continuum theory for R ~ 2&a' at the trivi-
al fixed point. However, this is separated by a phase tran-
sition from the R &2&'a' theory. In fact, if one tried to
reach R &2&a' continuously from R & 2Va one would
expect this phase transition to show up as a singularity:
the one-loop amplitudes may be expected to diverge due to
soliton emission into the vacuum in analogy with what
happens with the dilaton in the ordinary bosonic string.

To compensate for this, one would need to give an expec-
tation value to the soliton field (in the manner of Fischler
and Susskind' ) and this takes you away from the trivial
fixed point for R &2Va'. We believe it is in this sense
that the inconsistency is to be interpreted. It should be
noted that the equation of motion obeyed by this (ta-
chyonic) soliton field is exactly the same as those of the
tachyon in Ref. 1 (restricted to a single frequency mode)
and, in particular, therefore, one expects contributions to
the right-hand side of the Einstein equations for the gravi-
tational field. ' Thus, indeed the nontrivial fixed points re-
quire curved space-time backgrounds.

If the compactified dimension is a Euclidean time coor-
dinate, then this action describes a string in equilibrium
with a finite-temperature heat bath, ' with the identifica-
tion 2~R =@=1/T Thus., the constraint R &2&a' be-
comes T (1/4~&o. '—an intriguing way of obtaining the
well-known value of the limiting temperature for the bo-
sonic string. ' ' It would be very interesting to under-
stand what a vortex or soliton corresponds to physically in
this case.

Finally, a word on the supersymmetric case. The
ground-state energy in the fermionic string is half of that
in the bosonic string and this would then give R & v'2a'.
This seems to agree with the analysis of the supersym-
metric Kosterlitz-Thouless phase transition in Ref. 18.
This also gives a limiting temperature 1/v'8~v'a'. One
can also see this in the supersymmetric sine-Czordon
theory where the operator cos(PP) of the bosonic theory is
replaced by the operator gg cos(PP). Thus, the phase
transition occurs when the anomalous dimension of
cos(gP) is one rather than two, i.e., at f3 =4~ rather than
at )33 =8~. Now in the superstring this operator has van-
ishing matrix elements between physical states because of
the Gliozzi-Scherk-Olive (GSO) projection (if the index on

P correspond to the transverse directions). Thus, there is
no phase transition and we do not get any constraint on
the radius. Another way to see this is that since the
ground state has zero mass, all of the solitonic states have
positive (mass) for all R and hence are never tachyonic.
However, if the index on P corresponds to the time direc-
tion then the previous analysis goes through and the limit-
ing temperature is 1/v 8~v'a' as in the fermionic string.

In conclusion we have shown that R & 2/a' (or
R & V'a'/2) are the allowed values of the radius for com-
pactification of the internal dimensions in a bosonic string
and R &2Va' cannot be reached continuously from this
region. However, we should emphasize that the origin of
this constraint was the existence of a tachyon. We expect
that once one shifts the tachyon field to its minimum (if it
exists at all), one would then get a bosonic theory in a
nontrivial background. This theory can presumably have
R &2va'. It would also be interesting to see whether
these ideas generalized to situations where the internal di-
mensions are compactified on group manifolds. ' '
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