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Non-Abelian bosonization: Current correlation functions
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We demonstrate that, in 1+1 dimensions, the effective action produced by massless fermions
moving in external gauge potentials is identical with that produced by a suitably defined o. model
which includes a Wess-Zumino term. Hence the current correlation functions of the fermion and
boson theories are identical.

I. INTRODUCTION

The equivalence of a single Dirac spinor field and a real
scalar field in (1+1)-dimensional space-time has been
known for some time. ' More recently, Witten discussed
a generalization of this Fermi-Bose equivalence to fields
which form a representation of a non-Abelian group.
Specifically, he considered on the one hand a system of X
free Majorana fermions, and on the other, a certain O(X)
o. model with a Wess-Zumino term. Witten demonstrated
that the chiral O(%) &O(X) currents of both models obey
the same level-one Kac-Moody algebra, which implies
that the two models have the same spectrum.

One might attempt to go further and ask whether or
not this equivalence extends to more general groups of
multiplets, and whether the correspondence can be shar-
pened by showing the identity of the effective actions-
the generating functionals for the perturbations caused by
externally introduced gauge potentials. These questions
have been addressed by several authors. Nonetheless, a
number of issues remain unclear; in particular, it has been
claimed ' that the two theories do not have the same
current correlation functions.

In this paper we provide a careful discussion of the gen-
erating functionals of the two models for a general gauge
group. We emphasize that the two functionals are indeed
equal, provided that the models are constructed in a
manner that preserves (i) vector-current conservation and
(ii) the duality of the vector and axial-vector currents,
( j~s ) =e" (j ). Alternatively, a left-right-symmetric
scheme is also possible. From the equality of the Fermi
and Bose generating functionals, it follows that the two
models have the same current correlation functions. In
this way we augment Witten's program of non-Abelian
bosonization. We hasten to add that our analysis is based
on many results that were previously derived by Polyakov
and Wiegmann, ' Gonzales and Redlich, and by di Vec-
chia and collaborators. ' However, we believe that our
presentation clarifies much that has been done before and
corrects some previous misconceptions.

It should be noted that in this paper we consider the
Fermi-Bose equivalence of correlation functions of only

Lie-algebra-valued currents. In particular we do not dis-
cuss correlation functions of energy-momentum tensors,
preferring to treat this issue in a separate paper. It may
happen that two models have the same current correlation
functions, but different energy-momentum correlation
functions. (For instance, this occurs for certain models
with a Kac-Moody algebra with a level greater than one. )

The sets of Fermi-Bose models which have the same
current (Kac-Moody) algebra and the same Virasoro alge-
bra have been classified by Goddard, Nahm, and Olive. '

II. FERMIONIC MODEL

We consider first the fermionic model defined by the
action"

S[Q,A„',A„'+']= J d x @a"[d„A—„—,' (1——ys)

1 0
0 1

(2.2a)

and replacing the imaginary unit by

0 1

—1 0 (2.2b)

thereby doubling the number of components correspond-
ing to writing the field out in real and imaginary parts.

(2.1)

Here we take g(x) to be a Hermitian, Majorana field so
that o; =1 and a'=y y'=y& is a real, symmetrical 2&2
matrix (e.g. , the Pauli matrix cr3) The 2-s. pinor f also
carries a group index that labels some real, orthogonal
representation U of some compact, semisimple group G.
The use of real fields is no restriction, rather it is a con-
venience that encompasses all situations since a complex
field can be broken up into two real components. A uni-
tary representation of the group can be accounted for by
multiplying all real numbers by the replacement
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The Fermi field can be decomposed into left and right
components,

0+= z (I+l's)P

in the sense that for free particles g describes a left- and

ti+ a right-moving wave. In terms of these components,
the action S is invariant under the local G &&6 transfor-
mation

Indeed, it is easy to check that, under the vector gauge
transformation where a =a+ ——U,

(2.12a)

while, under an axial gauge transformation where
a = —a+ ———a,

6, Wz[A„,A&+ ]= tra[dA'+ +dA
1

P+(x)~U+ (x)P+(x), (2.4) —A'+'A'-' —A'-'A'+'] .
provided that the non-Abe1ian, left, right, skew-
Hermitian, vector potential matrices 3&+' are also gauge
transformed. For an infinitesimal operation

In terms of the vector and axial-vector potentials,

(2.12b)

U~(x) =1+a~(x),
this transformation is given by

(2.5)

and

V= —,'(A I+'+A'-') (2.13a)

6+A„'+'(x) =B„a+(x)+[a+(x),A„' '(x)] . (2.6)

Functional integration defines the effective action 8'[, the
generating functional of the connected current correlation
functions:

exp(iW)[A„' ', A„'+'])

d exp iS (2.7)

Here we have normalized the measure [dtt] so that the
functional integral is unity in the absence of the external
potentials.

The functional integral produces, of course, a function-
al, Fredholm determinant that must be regulated to obtain
a well-defined result. As is well known, there is no regu-
larization scheme that preserves full gauge invariance
under the transformations of Eq. (2.6), but rather there
must be an anomalous response. Left-right-symmetric
regularization schemes yield

A = —,'(A'+I —AI-'),

the axial response (2.12b) reads

6, Wz[V„,A&]= f tra[dV —V +A ] .
2~

(2.13b)

(2.14)

Now

The vector and axial-vector gauge variations (2.12a) and
(2.12b) provide two functional-differential equations for
the effective action 8'2. If this action were a functional
of only two external field components, it would be com-
pletely determined by these two equations. To examine
the number of independent external fields that enter into
the theory, we note that, in terms of vector and axial-
vector potentials, the fermionic action (2.1) appears as

S[q,A„'
—', A„'+']= f d'x gap[d„V—„—A„y, ]—g .

2

(2.15)

(+) 15+W|[A„,A„+']=+ coz(a+, A +
) .

8~
(2.8)

a"y5 ——6' a (2.16)

Here a differential form notation is used, as will often be
done in the sequel: The vector potential is written as a
one-form (matrix)

w =~„dh~, (2.9)

~z'(a, A ) = trad A, (2.10)

For reasons that will soon be clear, it is convenient to
define a new effective action 8'z that is invariant under
vector (left+ right) gauge transformations. The new ac-
tion 8'2 yields a vector current which is covariantly con-
served (with no vector anomaly). This is achieved by add-
ing a finite local counterterm to W&

..

W [A ' A +']= W [A' A'+'] f trAI —IA'+'

(2.1 I)

in which the dx" are treated as completely anticommut-
ing objects. Then, using the differential operator
d =dx 8, the anomaly (2.8) involves the two-form de-
fined by

and so the fermionic action is a functional only of

Mp ——Vp —e„A
or, in one-form notation,

M=V —*A .

(2.17a)

(2.17b)

Thus, apparently, the effective action is a functional of
only the two field components .N (x),M'(x), and it is
therefore completely determined by the two responses
(2.12a) and (2. 12b) to gauge variations. This, however, is
contradicted by the anomaly given in Eq. (2.14), which is
not simply a functional of M alone. The discrepancy
arises because of the regularization needed to define the
theory, with different schemes giving results that differ
only by dimensionless, finite local counterterms. There-
fore, if an additional counterterm can be found which,
added to 8'2, produces a third effective action 8'3 whose
gauge variation is only a functional of M, then 8 3 itself
is only a functional of M. And 8'3 is thus completely
determined by the two gauge variations (2.12a) and
(2.12b).
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6„V=dv+[v, V],
6„A =[v,A],

(2.18a)

(2.18b)

To implement this program we first note that in form
notation, the gauge variation (2.6) transcribes into the vec-
tor and axial-vector transformations

6W3[ V„,A„]
(j."(x)&

=
6V„, x)

and the axial-vector expectation value

(2.24a)

Moreover, let us write the gauge potential matrices as
Vz

——i V&, T„A&——iA&, T„and Mz ——iM&, T, . The re-
sult (2.21) implies a simple relation between the vector-
current expectation value

5, V=[a,A),
6, A =da+[a, V] .

(2.18c)

(2.18d)
6W3[ V„,A„]

6A&, (x)
(2.24b)

It is now a simple matter to verify that the desired new ef-
fective action is given by'

namely,

(j"„(x))=0'"(j„.(x)) . (2.25)

(2.19)

6, W3[V„,A„]=0 . (2.20a)

On the other hand, a little calculation shows that under an
axial-vector gauge transformation

[The integration of the two-form *HA is, of course, just
the ordinary d x integration" of A"A„. This notation,
together with the relations between one-forms
"ab =*ha = —a*b and **a=a (which imply that
ab = —*a*b), simplify the subsequent calculations. ] The
additional counterterm is invariant under vector gauge
transformations and so the vector gauge invariance is
maintained:

This is a key result which was engineered by our choice of
the counterterm in Eq. (2.11). The freedom of redefining
the effective action by adding finite local counterterms is
completely fixed by the two conditions: (i) vector-current
conservation Eq. (2.20a), and (ii) the duality of the vector
and axial-vector currents Eq. (2.25). This fact has been
known for some time. ' The invariance under vector
gauge transformations (2.20a) can be reexpressed as

683
6„W3[V„,A„]= f d x 6, V„,(x)

6 V„,(x)

6, W3[V„,A„]= f tra(dW —M ), (2.20b) (2.26)

which is indeed a functional of .V alone. In fact, this re-
sult is identical to the axial-vector gauge variation of the
previous Wq form of the action, Eq. (2.14), if the axial-
vector potential is taken to vanish, A =0, and the vector
potential V is replaced by V. Hence we conclude that

Using Eqs. (2.18) and (2.25), this implies that

~„(j")=&„(j")—[~„,(j")]=0, (2.27a)

where j"= —(i /2)j,"T,. Similarly, the axial-vector gauge
response (2.20b) implies that

W3 [ V„,3„]= W2 [W„,O] (2.21) e" M~~„(j„)= e""~„1

4n
(2.27b)

with W2[.cl&,0] completely determined by the two gauge
variation conditions.

We should emphasize that the sequence of finite local
counterterms that we have introduced to arrive at this re-
sult is a consequence of having started with a regulariza-
tion that was left-right symmetric. Starting instead with
a regularization that preserves the conservation of the vec-
tor current would yield immediately W2[v&, 0], and no
further counterterms would be needed for the construction
of Eq. (2.21). Moreover we should also emphasize that
the anomaly shown in Eq. (2.20b) follows from this type
of regularization: it can, in fact, be inferred from the
Abelian case' by simply replacing the Abelian field
strength dVby the non-Abelian generalization d V—V .

Let T, be Hermitian (imaginary, antisymmetric) gen-
erators, which satisfy

where

a„=d„M, r) M„[W„,W—] . — (2.28)

As observed long ago for the Abelian case, ' these two
divergence equations completely determine the current
and thus the effective action. The extension to the non-
Abelian case has been recently performed by Polyakov
and Wiegmann.

We shall solve the two divergence equations, or,
equivalently, the variational statements (2.20a) and (2.20b)
coupled with the condition that the effective action in-
volve only the vector potential combination V, by show-
ing that they are obeyed by a certain o. model. But before
doing this we should note that in terms of the left and
right chiral potentials [see Eqs. (2.13)]

[ T~i Tb) =ifab~ T (2.22)
) (g( —)++g( —))+ ' (g(+) +g(+)) (2.29)

and are normalized by

trT, Tb ——26,b . (2.23)

Thus the left-hand potential A' ' appears only in a self-
dual combination, the right-hand potential A'+' only in
an anti-self-dual combination, with these potentials there-
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fore coupling only to anti-self-dual and self-dual currents,
respectively. In (1+1)-dimensional space-time, these
quantities have only one component. This is made expli-
cit by going to light-cone coordinates x+ = ( I /
&2)(x +x'). In these coordinates, only A' ' and 3'++'
enter into the theory, and they couple to j+ and j
respectively. 5 S(x)=a (x)S(x) (3.1a)

and

choose the cr model to contain the same representation of
the group G &G. Hence it is described by a matrix field
S(x) of the same dimensionality as that of the U+(x)
matrices, with S(x) obeying the chiral transformation
laws

III. BOSONIC MODEL 5+ 9 (x) = —S(x)a+ (x) . (3.1b)

In this section we construct a o. model which corre-
sponds to the fermionic theory. For convenience we

As has been discussed in detail in Ref. 16, the fermionic
anomalies are reproduced by the Wess-Zumino action

(3.2)

Here N is a three-dimensional manifold whose boundary
is the two-dimensional space-time. A variation of the
three-form in Eq. (3.2) produces an exact form (a "total
derivative") that results in a two-form integral over the
two-dimensional space-time. Using this fact, it is a
straightforward matter to verify that the S(x) transfor-
mations (3.1a) and (3.1b) together with the vector poten-
tial transformations (2.6) do indeed produce

5+I [S,A„',A„' ]=+ f coq(a~, A'+I) .
8~

(3.3)

These are exactly the chiral anomalies (2.8) of the fer-
mionic model.

The fermionic theory has no parameters that carry di-
mensions and so the bosonic theory can contain only di-
mensionless constants. Thus, the most general bosonic ac-
tion consists of the Wess-Zumino action, plus all possible
chiral-invariant, dimensionless terms, of which there is
only one:

which is invariant under vector gauge transformations.
Again we reexpress the action in terms of vector ( V„) and
axial-vector (A„) potentials, and add a further counter-
term, to obtain

Sg[$, V„,A„;a]=Sz[S,A„,Ap+, a]
1 tr*AA .

4~
(3.7)

By the analysis of the previous section we see that the new
action is invariant under vector gauge transformations,

5„S&[9,Vz, A&', a]=0,
while under an axial-vector transformation

(3.8a)

We now follow the arguments of the previous section
and add to S~ a finite local counterterm, to obtain a new
action

Sq[S,A„',A„+;a]

=S,[S,A„',2„'+;a]+ trA' '3'+I, (3 6)
1

(3.4)
5,Sq [S,V„,A„;a]= f tra [d M —W ] .2' (3.8b}

Here

(3.5)

is the gauge-covariant derivative one-form. We shall soon
see that the dimensionless parameter o. is fixed by the
Fermi-Bose equivalence.

That is, Sz correctly reproduces the variations of the fer-
mionic effective action IV& under both the vector (2.18a)
and (2.18b) and axial-vector (2.18c) and (2.18d) transfor-
mations for all values of the parameter a.

To determine this parameter, we use the simple rela-
tions between one-forms noted before to write out the fi-
nal version of the action as

S [+ V„,A„;a]=— f tr(S 'dS) + f tr(S '*d9'}(W 'dP)
24m 16~

1
tr[(A '+a*A )dS S ' —8 'dS(A'+' —a*A'+')

8m

(3.9)
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We see that the value a = 1 is uniquely selected by the re-
quirement that the left-hand potential occurs only in the
combination A ' '+ *A ' ' and the right-hand potential
only in A '+ ' —*A '+'. As discussed at the end of the pre-
vious section this is equivalent to having the action de-
pend only on the field .V& given by Eq. (2.29), and we
infer that

S [S,V„,A„;1)=S [S,W, O;I] . (3.10)

Wq [Vp, Ap] = Wg[Vp, A~] . (3.12)

This is the Bose-Fermi equivalence. Similar results were
first obtained [for the case of fermions in the fundamental
representation of O(N) or U(N)] in Refs. 3—6.

The quantum theory is described by the bosonic effec-
tive action defined by

exp(i W& [ V„,A&]) = J [dS]exp(iSq[$, V„,A„;1]) .

(3.1 1)

Again, the measure is normalized so that the functional
integral is equal to unity in the absence of the external po-
tentials. Since the Haar measure [dS] is invariant under
the chiral transformations (3.1) of 9', we find that, in
view of Eqs. (3.8), the bosonic effective action
W~3 [V„,A „]satisfies the same gauge variation equations
that are obeyed by the fermionic action Wq[V&, A&].
Moreover, the bosonic action is a functional only of the
combination M of V and A, just as is the fermionic ac-
tion. We conclude, therefore, that the two actions are
identical

It appears that our proof holds for any representation
of any chiral G &(G group. However, we must address the
question of a possible topological obstruction. The Wess-
Zumino term I involves an integration of a three-form
over a three-dimensional manifold whose boundary is the
two-space. The result must be the same for any such ex-
tension. The difference of two different extensions gives
an integration over a closed three-dimensional
manifold —a manifold with no boundary. Therefore, the
Wess-Zumino term is unambiguously defined only if the
integration over the closed three manifold —a topological
invariant —is an integer multiple of 2~, which does not
alter the value of the functional integral. The coefficient
of this topological term is, of course, uniquely determined
by the fermionic anomaly. It is a remarkable fact that
this determination by the anomaly does indeed provide a
Wess-Zumino term which is well defined. The proof of
this fact is provided in the Appendix.

We should also note that the equivalence of the Bose
theory to a free-fermion theory requires that the highly
nonlinear Bose theory itself be free. This occurs, of
course, only in the presence of the Wess-Zumino term,
and only for the special value o.= 1 which relates the
strength of the usual "kinetic energy" term to the topolog-
ically quantized strength of the Wess-Zumino term. This
is the phenomenon of "geometrostasis" which has been
discussed recently. '

It is worthwhile to present our results in an explicit
form, particularly for the work of the next section. Some
algebraic effort can be employed to reexpress the bosonic
action as

(3.13)

This is the action for a o. model with a Wess-Zumino
term, with only the left+ right transformations gauged.
The quantum expectation values of the current operators
in the presence of the external potentials are just the
functional-integral average of their classical counterparts.
The classical vector current is defined by

equation of motion for S is

or, equivalently,

( g" +d' )N „(S '& 9 ) =d' w „

(3.17a)

(3.17b)

which, according to Eq. (3.13), gives

1 [(g" —6' )M~„8 S
8~

—( g" +d' ) P 'N~ S],
where

(3.14)

(3.15)

The classical equations of motion hold under the func-
tional integral —they are just the statement that the func-
tional integral of a total functional derivative vanishes.
Using (3.15) and (3.17), we immediately obtain

(3.18a)

and

(3.18b)

u„=a„ (3.16)

and j" —(i I=2)J',"T,. It can be shown that the classical

which, we see, also hold for the quantum expectation
values. This confirms our previous results, Eqs. (3.8).

To conclude this section, we note that in Ref. 9, a
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closed if formal expression was obtained for the effective
action Wq [V&,Az]. For the sake of completeness, let us
show how this solution is obtained in the context of our
methods. Since only the self- or anti-self-dual com-
ponents of the vector potentials (which have only one
component) enter into the theory, one may write them as
effectively pure gauge terms:

'+*2 '= L(d—+*d)L (3.19a)

and

3'+~ —*2'+~= —R(d —*d)R (3.19b)

If the bosonic model were perfectly gauge invariant, there
would be no effect of the gauge potentials since they
would be completely removed by the change of variables

%~9'=L SR (3.20)

This, however, is not the case since the response to gauge
transforrnations is anomalous. One can, with some labor,
explicitly compute the change in the bosonic action
Sq[P, V&, A„;I] under the transformation (3.20) to find
the anomalous terms. But there is no need to do this.
Indeed, from Eqs. (3.19) we see that the gauge transfor-
mations (2.6) of the chiral potentials 3' ' and 3'+' cor-
respond to

(4.2)

To derive commutation relations, the currents must be ex-
pressed in terms of the canonically conjugate variables P,
and ~, . In terms of these variables, we reexpress the vec-
tor current j"=—(i l2j),"T,, given by (3.1S), as

.p 1j.= —
~—~i4. f.b. ~b0.—+ .

77
(4.3a)

and then we proceed with a canonical quantization. Al-
though we shall use the language of quantum mechanics
in our discussion, because of the nonlinearities (operator-
ordering ambiguities) we shall be really working at the
classical level, with cornmutators denoting Poisson brack-
ets. In the classical theory we may go to the north pole:
We may perform a local group transformation so that the
state is described by P, =0. Thus to derive the current
algebra, it suffices to expand about $, =0. Examining
Eq. (3.13), we find that the canonical momentum w, con-
jugate to P, is related to c)~P =P by

AS'
. [W, V„,W„;I]6,

2v'7l 1
.. 0

3
fabc0b ~lac + ~a +fabc Nb +c +

77

5L(x) =a (x)L(x) (3.21a) ~ i
ja ~—~a +la+ gfabc~l~b4c+

7T iT
(4.3b)

and

5R '(x)= —R '(x)a+(x) . (3.21b)

Hence all we need do is find a functional that involves
only 3 ' +*3 ' ' and 3 '+' —*3'+' which has the
correct response to the gauge transformations described
by Eqs. (3.21). Clearly, the solution is simply the bosonic
action Sq[%, V„,A„; I], with W replaced by LR

Wg[V„,A„]=Sg[LR ', V„,A„;1] . (3.22)

&i b(y)
P"ab6 '(X——y), (4.4)

where

1
Pah ~ah (4.Sa)

We observe that j, is independent of V", and that j,' is
independent of M, which is expected from general con-
siderations. ' That is,

while

IV. CURRENT COMMUTATION RELATIONS
AND CORRELATION FUNCTIONS

w~' = exp(2i v'n @,T, ), (4.1)

We have demonstrated that a suitably quantized theory
of fermions and a o. model with a Wess-Zurnino term
have the same effective action, and therefore, identical
current commutation relations and current correlation
functions. Here we provide some further details of this
equivalence.

As a first step we derive the commutation relations of
the (.W-dependent) currents. We shall perform our calcu-
lations using the bosonic formulation of the model; later
we shall argue that the fermionic formulation yields the
same results. One approach to finding these current com-
mutators would be Witten's noncanonical light-cone
quantization scheme. Here we follow instead a more
conventional procedure: we reexpress the model in terms
of the "pion" field P, (x), which is related to the field
S(x) according to

Op 0
pab =0 pab (4.sb)

Using the canonical equal-time commutation relations

[P,(x),~b (y)] =i 5(x ' —y ')5,b, (4.6)

it is now a straightforward exercise to compute the equal-
time current cornmutators, which can be conveniently ex-
pressed in the compact form

b."(x),jX(y) ] =- i@x ' —y ')f.b,j"(x)

+i d, 5(x ' y')p.'~b, —

while, of course, the duality of the currents gives

b.'(x),jb(y)] =b. (x) jb(y) l

(4.7)

(4.8)

We see explicitly that the "Schwinger term" in the com-
mutation relation, the term involving the gradient of the 6
function, is directly related to the .M dependence of the
currents, which follows from general considerations. '

To elucidate the significance of the Schwinger term and
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the W dependence of the currents, let us examine the
two-point current correlation function defined by

1 6 6
K,"b (x,y) =- W3

i 5W,„(x) 5Mb, (y)

(Jb (V)
6

5.&,„(x)
(4.9)

[D„(j"(x)) ],=()„(j,"(x))

It measures the correlation of the two currents in the pres-
ence of an arbitrary external potential .M. First we note
that

the same effective action necessarily have the same corre-
lation functions.

Finally, we observe that explicit expressions for the
current correlation functions can be obtained by taking
functional derivatives 5/5M of the basic relations (2.27a)
and (2.27b). In particular, the two-point current correla-
tion function is given by

(4.14)

+f b, Mb„(x)(j,"(x)) =0 . (4.10) V. LEFT-RIGHT-SYMMETRIC SCHEME

Taking the functional derivative of this equation with
respect to Mb (y. ), we see that

D„K,"b"(x,y) = f,b, (j,'(x—) )5' )(x —y) . (4.1 1)

On the other hand, taking account of the .M dependence
of the current, we see from Eqs. (4.4) and (4.9) that the
two-point function has the explicit construction

Kg/ (x,y) =i ( Tj,"(xj)b(y) ),Q„„+5' '(x —y)pgb

(4.12)

DpK,"g"(x,y) = (5(x y)i [j,(x—)jb(y)])

+B )
5' '(x y)p,'b— (4.13)

which, with the current commutation relation (4.7), yields
precisely the divergence condition (4.11).

It is very important to note that the functional deriva-
tive 6j/5M which was needed to obtain the two-point
function must be performed with care. It is incorrect to
take the derivative naively on the expression given in Eq.
(3.15) for the current. Rather, this differentiation must be
performed holding the dynamical variables [in particular
w, (x)) fixed, as we have done. The same result is ob-
tained in the ferrnionic formulation of the model. In that
case, naively one concludes that 6j/6 M is zero. However,
the current in the Fermi case is a singular operator. Re-
gulating the current (by, say, point splitting in a gauge-
invariant fashion) introduces an M dependence, and again
one is led' to the results that we have just obtained for
the Bose case. This, of course, must be the case. The ef-
fective action encapsulates all the information about the
current correlation functions; and hence two models with

It is necessary to work with canonical variables in order to
obtain here the ordinary time-ordered product (which we
denote by T), the product whose discontinuity at equal
times is the commutator. We should also remark that the
time-ordered product of the two currents is not Lorentz
covariant; roughly speaking, it contains time derivatives
inside rather than outside the time ordering. This lack of
Lorentz covariance is canceled by the additional
Schwinger term contribution that arises from the
dependence of the current operators. We may now see in
detail how the current commutator is related to the diver-
gence of the current correlation functions, for

5+W([A„' ', A„+ ]=+ f cop(&+, &' ')
Sm

(5.1)

under the gauge transformations (2.6).
Although the effective action W] depends on all four

gauge potential components, we can exploit the freedom
of adding finite local counterterms to define a new effec-
tive action WF which depends only on the two light-cone
components A' ' and A'++'. Indeed, consider the new ef-
fective action given by

w =w [w
-' w'+ ]— ' tr(*a'+'a'+

It is easy to check that

5 WF ——— f d xtra 8+3
4m

(5.3a)

5+WF ——— d x tra+B4' (5.3b)

Hence WF is indeed a functional of only A' ' and A'++',
and the two conditions (5.3a) and (5.3b) completely deter-

The fundamental fact that allowed us to establish the
equality of effective actions for the Bose and Fermi
models is that for each model we had the same set of two
conditions for two unknown current components. We
chose to work in a scheme in which the vector current
was conserved. Although at first it appeared that there
were four unknown current components (j" and j~~), the
reduction in the number of unknowns to two was achieved
by demanding duality of the vector and axial-vector
currents.

Alternatively, one can work in a left-right-symmetric
scheme. As before, there appear to be four unknown
current components (j„+ and j& '). However, as we shall
demonstrate, the number of unknowns can again be re-
duced to two by demanding that two light-cone com-
ponents vanish, j'++' ——j' ' =0. This approach has the ad-
vantage that the correlation function of a left-current with
a right-current vanishes.

Consider again the fermionic model (2.1), with the ef-
fective action W, [A„',A„'+'] given by (2.7). As already
noted, regulating the theory in a left-right-symmetric
fashion yields the anomalous response
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mine WF. As already remarked at the end of Sec. II, the
fermion effective action W3 also depends only on A'

and A'++'. However, one can check that WF and W3 are
not equal. Although Eqs. (5.3) are written in a noncovari-
ant form, they are Lorentz invariant since they are varia-
tions of the manifestly invariant Eq. (5.2). This Lorentz
invariance can be made explicit by introducing the factors
gP~+ gP~

Next, consider again the bosonic classical action
S)[S,A„,Az+ ', (z] given by (3.4). It has the same
response as the fermion effective action W& under the
gauge transformations (2.6) and (3.1). Consequently, the
new bosonic action

1 f tr( *A(+'A'+)
16m

++A( —)A( —))

(5.4)

satisfies

5 S~[S,A„',A„' ',a]= — f d x tra (l+A'

(s.sa)

&+Sg[&,A„,A„'+;(z]=— f d'x tra~c} A'++
4~

(5.5b)

for all values of the parameter cx. By examining the expli-
cit expression for Sz, we can see that the value o;=1 is
uniquely determined by the requirement that the action
depend only on A' and A'++'.

It is possible to define a new gauge potential .V„, whose
light-cone components are given by .V+ ——A (++ ' and

One can then show that the classical bosonic
action (for the case (2 = 1) is given by

S~ ———1 f d x[——,tr9' 'c}„SS '(}"S+(q""—e"')tr(.cP„(),SS ' —V,S '(3„S+.M„9'M„S ')]
8a

f tr(S 'd S)' . (5.6)

This expression does not include the term trMz V" which
is present in (3.13); and unlike the latter action, (5.6) is not
invariant under vector gauge transforrnations.

The corresponding quantum theory is described by the
bosonic effective action Wz defined by

(T*j.'+ (x)j' (y))"'

and

d'k
(5.10b)

exp(i W~ [A:,A + ] )

d exp iS~,A' ', A'+ ", 1 (5.7)

(5.9a)

Since W~ obeys the same two conditions (5.3a) and (5.3b)
as the fermion effective action WF, we conclude that the
two effective actions are equal

W [A ', A'+']= W [A' ', A +'] .

This is the Fermi-Bose equivalence, in the left-right-
symmetric scheme.

Writing A „'
—' =i A

&
—'T„we can define the current ex-

pectation values

i(T*j,' (x)j(',+'(y))' '=0. (5.10c)
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(Here the superscript (0) is used to indicate the absence of
all sources. ) That is, there is a symmetry between correla-
tions of left currents and corresponding correlations of
right currents, and correlations of left and right currents
vanish. It is this left-right-symmetric scheme which is
used by Witten and by Knizhnik and Zarnolodchikov.

(
.(+)( ))

5A '++, '( x )
(5.9b)

(We no longer make a distinction between WF and Wz,
since the two are equal. ) From the basic relations (5.3a)
and (5.3b), it can be shown that the two-point current
correlation functions are given by

(T ( —
)( )

( —)( ))(0)

APPENDIX

As discussed in the text, the coefficient of the Wess-
Zumino term, given by

(A1)

is uniquely determined by the requirement that 1 repro-
duce the fermionic anomalies:

(2~)
(5.10a) (A2)
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(A3)

Using the fact that locally tr~ is an exact form, with

trM =dra&(M, M )=d tr(MM + —, W ), (A4)

we see that the integral over the four-sphere S can be ex-
pressed as the sum of integrals over the upper (H+ ) and
lower (H ) hemispheres:

f dca3( or+, w+)+ f drag(M, w )
16~ . H+

Remarkably, this value for the coefficient also renders the
Wess-Zumino term well defined. This fact is contained
implicitly in Zumino's lectures. ' For completeness we
wish to present an explicit proof. To this end we continue
to Euclidean space, and recall' that the index theorem
gives

Hence we conclude that

1
tr 'd = integer .

S
(A9)

(A 10)

This is precisely the condition which guarantees that the
Wess-Zumino term is well defined. Clearly, this type of
argument holds for any representation of any group G.
[For a complex representation, such as the fundamental
representation of SU(lg, the coefficient of tr~ in the in-
dex theorem (A3) is larger by a factor of 2; corresponding-
ly, the coefficient of tr(9' 'dS) is also larger by this
same factor. ]

Finally we remark that these considerations can be gen-
eralized to higher dimensions. In particular it can be
shown' that the Wess-Zumino term I" which reproduces
the fermionic anomalies

=integer . (A5)

Here .V+ and M are the gauge potentials on the upper
and lower hemispheres, respectively, which on the equator
are related by a gauge transformation:

is given by

where

(Al 1)

'd,W .

From Stokes' theorem, we now have

(A6)
y=—, '

tr(W dS)" +, (A12)
1 i" (n —1)!
2 (2tr)" —' (2n —1)!

3 ~+ ~+ cu3 M —~ — =integer . A7
s

However, one can readily check that'

ca3(M+, W+) —ca3(W, a )= ——,
' tr(S 'dS) +da2 .

1
y = integer; (A13)

hence, the Wess-Zumino term I is well defined.

and X is a (2n —1)-dimensional manifold, whose boun-
dary is S " . The preceding work can be generalized in
a straightforward way to prove that y satisfies
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