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Extended solutions of an SU(2) gauge theory with fermions
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This paper explores the idea that there can exist interesting classical solutions to non-Abelian

gauge theories which represent extended systems. These solutions provide possible alternative start-
ing points for perturbative quantum field theories. For the particular case of an SU(2) gauge theory
with spherical symmetry, we find a simple example of a "vacuum" solution with a nonvanishing
chiral order parameter: P=Pg. We also find a simple set of spinors representing systems of mas-

sive SU(2) fermions in the field of a Wu-Yang monopole.

I. INTRODUCTION

and/or a nonvanishing field-strength density

G —G G&a
pv (1.2)

Such solutions could serve as starting points for quantum
calculations involving the effects on nonvanishing vacu-
um condensates;

(vac
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The necessity for an alternative to the usual perturbation-
theory approach to deal with (1.3) and (1.4) has long been
appreciated. It is not yet known whether semiclassical
techniques can be of any use in describing physical con-
densates but there are some promising indications. '

This paper builds on the work of Refs. 3 and 4 in order
to discuss some simple solutions to the SU(2) Dirac equa-
tion in the presence of gauge fields with spherical symme-
try. The Dirac fermions can, in turn, be considered as
sources for the components of the non-Abelian field-
strength tensor. The solutions we study start with partic-
ularly simple gauge field configurations. However, the

One of the tools for extending the range of quantum
field theory is a semiclassical approximation based on a
special solution to the dynamical field equations. ' Of
course, to use this method, it is necessary to find a solu-
tion to the classical field equations which provides an ap-
proximate description of the system whose properties are
to be calculated. This preliminary task can be formidable.
For non-Abelian gauge theories, only a small number of
solutions are known and most of these involve gauge
fields only —without regard for the fermions which couple
to them.

The range of possible "interesting" solutions is limited
only by our imagination. For example, it would be useful
to have a simple solution of the field equations which
could describe an extended system with a nonvanishing
chiral density

solutions can serve as illustrative examples and can serve
to test the general technique for the construction of solu-
tions of more physical interest. We consider first the case
of a single doublet of Dirac fermions in the "background"
of a vacuum characterized by A„'=0. We also look at
solutions representing ferrnions in the field of a Wu-Yang
monopole.

To fix notation for the purpose of this paper, we will
define the Lagrangian density for the SU(2) gauge theory
to be

+a
W = ——,

' G„' G," +g i g gg '— —m (1.5)

II. GAUGE AND SPINOR FIELDS WITH
SPHERICAL SYMMETRY

The dynamical equations for a non-Abelian gauge
theory such as SU(2) contain intrinsic nonlinearities
which preclude a general construction of solutions. In or-
der to make progress, it is often convenient to make the
simplifying assumptions necessary to produce a special-
ized ansatz. The type of simplification which offers the

with a single flavor of fermions and wi11 work in Min-
kowski space. The specific conventions we use are those
specified in Refs. 3 and 4. The remainder of this paper
can be outlined as follows. Section II presents a self-
contained introduction to the requirements of spherical
symmetry on SU(2) gauge fields and fermions. It also
contains a discussion of the SU(2) Dirac equation. Sec-
tion III discusses the form of the chiral density (1.1) and
the fermion vector and axial-vector currents which can be
used to characterized solutions to the Dirac equation. It
also gives expressions for the components of the SU(2)
"color" current which serves as the source for the non-
Abelian gauge field. Section IV presents the two illustra-
tive examples of extended solutions to the Yang-Mills
Dirace equation mentioned above; the first involves fer-
mions in a trivial vacuum and the second involves massive
fermions in the field of a Wu-Yang monopole. In both
cases the feedback of the fermionic currents on the gauge
field configuration provides important constraints. Sec-
tion V gives some brief conclusions.
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a ( r, t) cost@(r, t) —1+ &ia-

The tensors p;„6;„and e;, which relate spatial three-
vector indices and internal SU(2) indices in the adjoint
representation are defined to be

g T
pia rt' a ) ia ~ia pla ) ~ia axial (2.2)

A more complete discussion of the interpretation of this
ansatz and the structure of these tensors can be found in
Refs. 3, 4, and 7. In the framework of this ansatz, it is
often useful to introduce the "gauge-dependent" tensors

most clear-cut interpretation involves underlying space-
time symmetries. For example, in an SU(2) gauge theory,
it is common to assume time independence, spherical
symmetry, " or both.

In this paper, we will be considering SU(2) gauge fields
and fermion fields which are consistent with a spherical
symmetry. For objects which transform nontri vially
under both rotations and gauge transformations, con-
sistency of the theory requires that the effect of a gauge
transformation can be compensated by an appropriate ro-
tation or that the effect of a rotation can be compensated
by a gauge transformation. Symmetries, therefore, re-
strict the form of the fields.

For the vector gauge potential A&, the assumption of
spherical symmetry leads to the form-' ~

g A o Ao(r, t——)r, ,

(2.1)

gA =A, (r, t)p;, + ' since(r, t)6;,
a(r, t)

where
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and l, m =0, 1. In this equation the elements of A
&

in Eq.
(2.1) enter in the form

E( ——0l A —(3 Al, Dl ——0l —ieAl

with e = 1 an imbedded U(1) charge and

&&=a (r, t)e'

(2.7)

(2.8)

(2) 2 (2)
glm ~ elm (2.9)

which specifies a curved two-dimensional manifold.
Finally, it is worth noting that the imposition of spheri-

cal symmetry preserves the important topological proper-
ties of the original (3+ 1)-dimensional SU(2) gauge
theory. To see that we have not lost any crucial features
of the original theory, we observe that imposing vacuum
boundary conditions at infinity in the Euclidean two-
dimensional theory involves the maps

M:(S'~U(1)),
while, in the four-dimensional theory, it involves

(2.10)

The time and radial components Ao and A
&

of the SU(2)
vector potential in (2.1) are seen to play the role of a two-
dimensional vector potential while &P(r, t), which specifies
the transverse degrees of freedom in (2.1), becomes a
charged scalar. The Lagrange density (2.6) differs from
that of the usual two-dimensional Abelian Higgs model
only in the factors of r which are associated with the dif-
ferent terms. These factors can be absorbed in the metric

e;, (co) =5;, cosco(r, t) —e;, sin~(r, t), M:(S ~SU(2) } . (2.1 1)

e;,"(cu) =6;, since(r, t)+e;, cosco(r, t),
(2.3) The reduction specified by (2.1) and (2.6) is safe topo-

logically since the two homotopy groups coincide

47rr jo ——Jo(r, t)r, ,

4~r j =J, (r, t)p;, +Js(r, t)e;, (co)+J, (r, t)e;,"(cu),

(2.4)

where the coefficients Jo, J&, J~, and Jz are gauge-
invariant functions of r and t. A radially directed rota-
tion or gauge transformation merely serves to rotate the
tensors (2.3) and leave the coefficients alone.

One of the most useful properties of the spherically
symmetric ansatz defined above is that it forms an analog
two-dimensional Abelian gauge theory. ' Using the an-
satz (2. 1) we can see

where co(r, t) is the gauge angle in the expression for the
vector potential (2.1), while 5;, and e;, are defined in (2.2).
Using these tensors, a spherically symmetric gauge-
covariant object which transforms as a vector under rota-
tions can be written using gauge-invariant coefficients.
For example, the gauge-covariant current j& can be writ-
ten

II, (U(1))=113(SU(2))=Z, (2.12)

trt 4 =+Et I,J=1,2, (2.13)

and

~g gg ——+gq) A, B=1,2, (2.14)

where o' and H are, respectively, the 2&(2 Pauli matrices
in three-space and group space.

Bispinors of the form

(2.15)

where Z is the group of integers under addition.
The relationship between (3+ 1)-dimensional SU(2)

gauge theory with spherical symmetry and the (1+1)-
dimensional Abelian Higgs model is very valuable in es-
tablishing general properties of the non-Abelian tneory.
The correspondence can be strengthened further by the in-
troduction of fermions in the fundamental representation.
It is instructive to see how this occurs. Following Ref. 4
we can parametrize r-directed spinors gt in three-space
and similar spinors gz in group space such that

f d x Wz 4rr f dr dt(r Wg), —— (2.5) with one spatial index and one SU(2) index form ap-
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Per~ = lL+(" t)Xs~++L (" t)Xr~ 1r
(2.17)

In terms of these functions, the SU(2) Dirac equation can
then be decomposed

&g~( (t'R a ™Mrs'.
A

(2.18)

(T ()p —lgA py JB = —m fR
A

Combining the parametrizations (2.16) and (2.17) of the
spinor with the ansatz (2.1) for the gauge potential leads
to the set of equations

L+, (2.19a)

1 N* ~ rn—(D() —D, )R ~ R+ = L—
r r2 r

(2.19b)

—( —D() ~D„)L+~ L1

r 2
(2.19c)

propriate objects for describing a set of spherically sym-
metric SU(2) fermion fields in the fundamental represen-
tation. They play a role similar to p;„6;„and e;, in the
description of gauge-covariant vectors. Following the
pattern of the pure gauge theory, we therefore seek to con-
struct spinors in which an r-directed rotation can be com-
pensated by gauge-transformation and vice versa. This
suggests that we parametrize a Dirac spinor in terms of
two Weyl spinors:

[R—+(r, t)X++ g+R (r, t)X J~], (2. 16)
1

r

Using this representation of the Dirac matrices we can
then introduce the two-spinors

R- L+
—R+ ' L— (2.25)

and the pseudoscalar field

=a (r, t)e (2.26)

We can, using (2.20)—(2.26), transcribe Eq. (2.19) into the
suggestive two-dimensional form

(
(2)D I~ (2)q&(2) )R

( 'D + ' '0& '*)L = —mR

(2.27a)

(2.27b)

Note that the new two-dimensional chirality operator yz
'

acts on the internal charge space in the original 3+1 for-
rnulation and that the original four-dimensional spinors
do not appear. There are other convenient alternatives to
the identification of the pseudospinors (2.25) and y ma-
trices (2.22) and (2.24) in two dimensions which lead to a
different appearance for (2.27). However, the substance of
this "dimensional reduction" involves the observation that
the transverse degrees of freedom of the SU(2) vector po-
tential, characterized by the potential 4(r, t) couple to the
spinors (2.16) and (2.17) as a charged scalar while the ra-
dial and time components of the four-dimensional SU(2)
vector potential couple as a two-dimensional vector Abeli-
an potential. The usefulness of the two-dimensional ana-
log theory represented by (2.5)—(2.8) is therefore rein-
forced by the introduction of fermions.

It is important to keep in mind that the trivial SU(2)
"vacuum" state is characterized by

—(D() )-D„)L ~ L+ =1

r r2
(2.19d)

while the state

(2.28)

In writing (2. 19), we have taken a clue from (2.7) and used
a two-dimensional Abelian covariant derivative

D~ = (3~ —leA~ (2.20)

+ J +en~=+ pa~ . (2.21)

It is clear that the fermions defined by (2.16) and (2. 17) fit
snugly into the two-dimensional analog mentioned earlier.
We can display this feature by introducing a convenient
basis for the two-dimensional y matrices

0 1, 0 —1

(2.223

such that

(2) (2) (2)
~7m } =2g(m

and introduce the new "chirality" operator

(2.23)

1 0
0 —1

(2) (2)
0 1r ' (2.24)

and have made the corresponding identification of an im-
bedded Abelian charge such that

(2.29)

corresponds to presence of a Wu-Yang monopole. There
are thus two cases where further simplification to the
equations in (2.19) or (2.27) is obviously possible, the
chiral limit when m =0 and the monopole limit when

~

4
~

=0. We will be dealing with some simple illustrative
examples of solutions of the equations in these limits in
Sec. IV.

We should further point out that the "physical" 't

Hooft-Polyakov monopole is to be understood as a solu-
tion to an (imbedded) SU(2)-Higgs theory in 3+1 dimen-
sions. ' '" The fermion masses in (2.19) are assumed to
arise in a more complete theory from the Yukawa cou-
plings to the Higgs field. At values of r large compared
to the assumed grand unified scale, the Eq. (2.19) with

~

&0
~

=0 and m =const are sufficient to describe the
semiclassical behavior of fermions. However, solutions
can depend sensitively on the boundary conditions at the
origin where to be compatible with the hidden dynamics
we must consider

(2.30)
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We will not be dealing with the full complications in-
herent in (2.30) as these involve considerations beyond the
semiclassical limit.

III. FERMION CURRENTS AND THE SU(2)
MAXWELL'S EQUATIONS

The parametrization of the SU(2) Dirac spinor given by
(2.16) and (2.17) in terms of the four functions R+ (r, t)—
and L+ (r, t) -allows the explicit characterization of fer-
mionic currents. These currents characterize the observ-
ables which determine the interactions of the fermions
with hypothetical external forces. The SU(2) current also
serves to complete the classical dynamic system by acting
as a source for the gauge fields. It is instructive to have
concrete expressions for the various currents. Because of
the introductory nature of this paper, we will for simplici-
ty be considering only one "flavor" of fermion. We will
be interested in the chiral density

(3.1)

O'Qt ——0, (3.8)

while the divergence of the axial-vector current is ulti-

mately related to the presence of topologically nontrivial

gauge fields through the Adler-Bell-Jackiw" ' anomaly.
With our normalization, the anomaly of the two-
dimensional current gives

2 2
5 g ~ w a aag, = G„vG„„.4~

(3.9)

Eo ——(a —1)A, —a2

Br

(3.10)

It is not within the scope of the classical approximation
to deal with the field-theoretic loop corrections which lead
to (3.9). However, there are dynamical consequences asso-
ciated with structure in the axial-vector current which ap-
pear in the classical approach. To see this we observe that
there is another topological current involving the gauge
potential (2.1) with a divergence which can be written in
terms of (3.9) (Ref. 14). If we define

as well as the "quark" vector current

and the "quark" axial-vector current

5q„=A'pl's4 .

(3.2)

(3.3)

K, = —(a —1)20+a2 2 BCO

at

it is easy to verify explicitly that

glK & g2&2G +aGapv (3.11)

Within our classical approximation 7 is a scalar order pa-
rameter and using the forms (2.16) and (2.17) we have the
simple expression

This current is not gauge invariant and transform as the
dual of a vector potential. In dealing with quantum ef-
fects, it is important that the combination

X= (R *L —R+*L++L *R L+*R+) .—1

r2
(3.4)

5
Qt

KI ——Ki—
277

(3.12)

We see that 7 vanishes if both charge states of either L or
R are zero. The presence of a nonzero value of 7 is asso-
ciated with the Nambu'' ' realization of a spontaneously
broken chiral symmetry.

The currents defined by (3.2) and (3.3) provide an im-

portant description of physical states. In terms of the
two-dimensional analogy of Sec. II, the currents q& and

q& are two-vectors with time and radial components:

4rrr q„=(g go&r;), 4rtr q„=(go, g&ri) . (3.5)

The components of the quark-vector current are found to
be

Qo (R+*R++R —*—R +L+*L++L *L ),
(3.6)

Q, =( —R+*R++R 'R +L+*L+ L'L ), —

while the components of the quark axial-vector current
are

Qo ——( —R +*R + —R *R +L +*L++L *L ),
(3.7)

Qi ——(R+*R+—R *R +L+*L+ L'L ) . —

Consistency of the formalism obviously demands the con-
servation of the vector current

be divergence-free. From the dynamical point of view, it
is also significant that the current Kt defined in (3.10), ap-
pears explicitly in the definition of transverse components
of the field-strength tensor as we shall demonstrate below.

We will also be considering the SU(2) "color" current
generated by the spinor field. Unlike the currents Q„and
g&, the SU(2) current can have transverse components as5

specified in (2.4). Using the form of the spinors in (2.16)
and (2.17) we can write Jz 4vrr j &

in term——s of its invari-
ant components

Jo(r, t) = —,( —R+*R++R 'R L+*L++L *—L ),
J)(r, t) = —,(R+*R++R *R L+*L+ L*L— ), —

(3.13)

Js(r, t)= 2
(R+*R e' +R *R+e

+L *L+e ' +L+*L e' ),

Jg(r, t) = (R +*R e'~ R—*R+e—
2

+L +4I — ld) L —4L + —Eco)

As indicated in Sec. II, the transverse components Jz and

Jz are invariant under radial gauge transformations since
under a gauge transform U= exp(iOr-/2)
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R+~R =R+e+' i (3.14)

a a(arEs)+ (a»B~ ) =Q J—s(r, t),
at Br r

(3.22c)

a (a —1) a2 2

l2la —"(Es B—z )— =Q—J„(r,t),2
7

&„'jr=0.
When we apply this constraint to (3.13) we observe

(3.15)

Notice that the current j„' is not conserved. It is, howev-
er, covariantly conserved and obeys

(3.22d)

where the charge Q absorbs the normalization of the
currents. The generalization of the Bianchi constraints
gives

d Jl(r, t)= Js(» t) .
Za (r, t)

r
(3.16)

(a»E& ) — (arBs ) =0,
Br at

(3.23a)

This constraint follows from the form of the Dirac equa-
tion (2.19). Because of the connection between spin and
color built into the ansatz (2.16) and (2.17), we observe a
relation

1 5 1 5Jp 2Ql Jl 2Qp (3.17)

a 1
Es ——— (Btp /r)t —3p ), Bs—————Ba /Br,

r r
(3.19)

1 aE„=——Ba /'dt, B„=— (des/Br —3, ) . —
r 7'

Because of the existence of the "topological" current Kl,
it is sometimes convenient to explicitly display the topo-
logical content of Es(r, t) and B„(r,t) by writing

1Es(r t)= (El —Ap) Bg(r t)=
ar

1
(KP+A l ),ar

(3.20)

Equation (3.17) can be understood by observing that the
condition on the compensation of gauge transformation
and rotations inherent in (2.16) and (2.17) enforces a rela-
tion between the "color" and the "chirality. " The com-
ponents of the axial-vector current then enter the dynam-
ics since the SU(2) current given by (3.13) serve as sources
for the non-Abelian field-strength tensor. The electrical
and magnetic components of the color field-strength ten-
sor can be written

gE =EL(r, t)p;, +Es(r, t)e;, (to)+Ez (r, t)e;",(tp),

(3.18)

gB =BL(r, t)p;, +Bs(r, t)e;, (tp)+Bq(r, t)e;", (tp) .

As indicated in Sec. II, the components are gauge invari-
ant. In terms of the ansatz (2.1) these components are
written

a —1
2

EL ——a~ p/a. "r)/I, /dt, BL =—
r

—EL+ (arEs)+ (ar—B„)=dlKa a I

Br c}t

gr G—„*„'G'"". (3.23b)

In writing (3.22) and (3.23) it is convenient to continue to
use a (r, t) as defined in the vector potential instead of the
equivalent quantity [r BL (r, t)+ I]'i . More details about
these equations can be found in Ref. 3.

The solution of the classical dynamical system
represented by Eqs. (2.19), (3.22), and (3.23) can be ap-
proached in a manner similar to the analogous systems in
electrodynamics. The chief difference involves the non-
linearities inherent in (3.22) and (3.23). An iterative varia-
tional approach was suggested in Ref. 3 and we will be us-
ing some of these ideas below. Because of the nonlineari-
ties, we have no superposition principle and it is not possi-
ble to build up solutions involving complicated current
configurations from a set of more elementary solutions.

Still, there does exist a promising variational algorithm
for dealing with the system. Given a starting configura-
tion for the vector potential (2.1) which is a solution of
the source-free field equations (3.22), we can solve the
linear equations (2.19) to find a set of fermion fields. The
next step in the construction is to calculate the SU(2)
currents due to these fermions. We then assume that the
current thus found is proportional to a small parameter
k«1:

Jt(r, t)

=Ajar

(r, t) (l=0, 1),

Js(r, t)=adjs(r, t), Jz(r, t)=kj„"(r,t) .

(3.24)

We can then formulate a linearized set of equations for
the variation of the field-strength tensor associated with
these currents in terms of a (r, t) and e(r, t)=r EL by ex-
panding

where ICI is given by (3.10).
In the generalization of Maxwell's equations to the

spherically symmetric SU(2) system, the equations

(3.21)

e( r, t) =ep(r, t)+ keg(r, t)+

a (r, t) =ap(r, t)+Ra~(r, t)+
(3.25)

become
a 2(r EL )+2arEs ——QJp(r, t),
Br

a 2(r Et )+2a»B& ——QJl(r, t),
at

(3.22a)

(3.22b)

given the fact that ep and ap were solutions to the source-
free equations. The form of the linearized equations de-
pends explicitly on the starting point ep, ap. For example,
with E'p=O and ap ——1, we assume that there exists a solu-
tion to (2.19) with a nonzero value of JI but with Jz ——0.
We then arrive at the linearized equations
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2ei„(r, t)z,~t,(r, t) —,=Q~™atJ
the stage for possible chiral-symmetry breaking. At large
r, (4.2) gives

(3.26) L+= —L +0 (4.3)
2a~(r, t)

2a~- =0
2

(where 2 is the two-dimensional Laplacian) which re-
place the nonlinear equations (3.22) in this limit. The par-
tial differential equations can now be solved with stand-
ardized techniques such as Green's functions. The
remaining components of the field-strength tensor are im-
plicitly given by

1 1(J,+a~/ar), &s= aa/a—r,
2ar r

(3.27)

E„=——Ba /at, 8„= (Ji+Be/Bt) .
1 1

r ' 2ar

We can then iterate the process by solving the Dirac equa-
tion (2.19) in the presence of the new vector potential.
There is no guarantee that the approach will converge to a
consistent set of gauge fields and fermions but the initial
steps can prove very restrictive.

IV. SOME SIMPLE SOLUTIONS

Et is interesting to investigate some of the very simple
solutions which emerge from the spherically symmetric
Dirae equation (2.19) in order to become familiar with
their basic properties. These can provide an introduction
to the possible range of solutions with more physical sig-
nificance.

We will start with the most trivial vacuum configura-
tion of gauge fields, given by setting Ap =A ] =0, a =1,
and co =0 in (2.1). The fermion mass will also be assumed
to vanish m =0. The set of equations (2.19) then reduces
to

( —Bo—B„)R++—R =0,1

(a,—a„)R-+—R+ =o,1

r

&=2( —C~Ct. —Ct*. CR) . (4.3')

It is nonvanishing whenever both CL and Cz are nonzero
as that according to the usual arguments it is possible to
have "spontaneous" chiral-symmetry breaking starting
from a classical solution to (4.1). It is also interesting to
look at the currents (3.6), (3.7), and (3.13) for this case.
The components of the quark-vector current are found to
be

Qo 2r (——C~ C~ + CL Ct ), Q, =0,
while the axial-vector quark current is given by

Qo ——2r ( —C„C~ +Ct CL ) ~ Q i
——0 .

(4.4)

(4.5)

In this simple configuration *G& 6& ——0 so that both the
axial-vector and vector currents are conserved. Finally,
the various components of the color current are seen to be

Jp ——0, J )
——r ( C~ C~ —CL CL ),

Js =r'(CRCti —CL Ct. ) J~ =0 .

(4.6)

The constraint of covariant current conservation is au-
tomatically satisfied since, with a = 1,

Of course these relations are not gauge invariant. We can
perform a simple gauge transformation by taking co~~ in
(2.1). This changes 4& = 1 to 4= —1 in (2.19), inter-
changes the roles of the R and Z spinors in (4.1), and
leads to the opposite set of boundary conditions from
those in (4.3). Taking the DR Dt ————0 case of a solution
in (4.2) provides a simple example of a solution which
represents a "medium" with uniform ferrnion density. It
is instructive to look at some of the simple properties of
this solution. The chiral order parameter X of Eq. (3.5) is
given as

(4.1) B,J, =2r ( Cg CR —CL Ct. ) = Js .
r

(4.7)

a, +a„)z++ z =0, — —1

r

(a, +a„)z —+ —z+ =o .
1

r

An obvious static solution to this set of equations exists in
the form

R =Cgr+, R =Car-
r

(4.2)

Z. +=CLr+ L, = —CL r+

We observe in the set (4.2) the simple pattern which sets

&„(r)= J, (r),
2r

(4.8)

when
l
C~

l
&

l
Ct l, with all other components of 8

and E remaining at zero. From (3.17), this component
of the magnetic field is related to Qo. Moreover, if we en-
force left-right symmetry so that all the color currents
vanish we can still have a nonvanishing chiral order pa-
rarneter

When
l

CR
l
~ Ctlsince Ji. and Js become nonzero,

the color currents will introduce new gauge fields as dis-
cussed in Sec. III. The gauge fields thus introduced have
a very simple form in this example. From (3.22) we see
that there appears a contribution to the field-strength ten-
sor form
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(4.9)

The rich content of the "vacuum" configuration is
perhaps surprising. The set of extended solutions
represented by (4.2) already has the possibility of interest-
ing structure which we can amplify by adding more "fla-
vors" of fermions.

Another simple gauge field configuration which
deserves attention involves a Wu- Yang monopole. As can
be seen from (2.1), a monopole field involves a(r, t)=0.
The gauge angle to(r, t) does not enter into the specifica-
tion of the transverse components of A& in the presence
of Wu-Yang monopole. We will assume m&0 and ob-
serve that the SU(2) Dirac equation then reduces to the set

Qi ——2(cic~ ~did~ —c'c —d*d ) .

The solutions in (4.12) therefore give an explicit value for
the divergence of the axial-vector current

8 Qt ——B,Qp ——4im [(d+c+ —d* c )e '

—(c+d+ —c*d )e 2™]. (4.16)

A nonvanishing value of this divergence must be associat-
ed with nontrivial topological structure in the gauge fields
from (3.9). With m~0, the divergence vanishes only
when

Qp =2[(d+c+ —d* c )e2™~(c+d+—c' d )e ' ']

(4.15)

( Dp D—, )R—+=mL+, (~Dp D„)R—=mL d+c+ ——d* c (4.17)

(4.10)

( Dp+—D„)L + = —mR +, (Dp+D„)L = mR—

We now choose a gauge such that the radial and time
components of the vector potential vanish and we take the
extreme assumption that the functions R — and L +— have
no spatial dependence. We then obtain the equations

—a~+=mL+, ~a~+=mR+,
(4.11)

~BpR =mL, —BpL =mR

These equations contain the possibility of interesting phe-
nomena due to the underlying L-R asymmetry. For ex-
ample, we can choose a set of solutions to be

™+de ™—
L +(m, t) = —ic+ e ' '+id+ e

(4. 12)

We do not need (3.9) to see this structure however. The
dynamics of the system are determined by the color
currents. The transverse components of the color current
represented by Jz and Jq are decoupled in the back-
ground field of a Wu-Yang monopole. This can be seen
in (3.22) where these components are shown to enter the
dynamics proportional to a(r, t). The condition for a
Wu-Yang monopole is a(r, t)=0 and so the right-hand
sides of (3.22c) and (3.22d) vanish. The nontrivial com-
ponents of the color current which remain are

Jp ———(c+c++d+d+ —c*c —d* d ),
(4.18)

Ji ———[(d+c+ —d*c )e ' '+(c+d+ —c*d )e ' '] .

In the situation described above in (4.19) where the axial-
vector current has nonvanishing derivative, we see that we
also have a source term in the equation for e=r EI in
(3.26). That is, we have an equation

(4.19)
L (m, t) =c e™+de ™,
R (m, t) = —ic e™+ide

with

e' BtJ =BpJ, = ——,O'Qt (4.20)
where the constants c+ normalize the positive-frequency
modes and d+ fix the negative-frequency modes.

We can now proceed in the usual manner to calculate
some of the currents which appears in this limit. The sca-
lar order parameter (3.1) is given by

X= [(d+c+ —d*c )e ' '+(c*d —c+d+)e ' ') .
r

(4.13)

The two components of the quark vector current are seen
to be

Qp=2(c~c~ +d~d~ +c*c +d* d )

(4. 14)

Ql ———2[(d+c++d*c )e ' '+(c+d+ ~c*d )e ' '] .

In the presence of a Wu-Yang monopole a nonzero com-
ponent for e automatically leads to a nonvanishing value
of E B . Therefore, if we insist that the solution to (3.22)
does not generate a dyon, we must have (4.17) and the
quantum anomaly condition is satisfied. The dynamical
stability conditions which lead to this constraint can be
understood within the classical framework of our simple
approach.

Many of the interesting physics questions involving the
interaction of SU(2) fermions with a Wu-Yang monopole
have been addressed elsewhere but these analyses usually
start with the neglect of the fermion mass. ' We see here
that with nonvanishing fermion mass, the condition for
the absence of the dynamically dangerous currents lead to
(4.17). We can obviously choose to implement this con-
straint in a number of ways. For example, if we choose
c and d to be real in (4.12) we can implement (4.17) by

The corresponding components of the axial-vector current
are c+ ——e'"c, d+ ——e'"d (4.21)
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c+ ——e'"d, d+ ——e'"c

which gives

R +(m, t) =e'"L ( —m, t) =e'"L (m, t),—

(4.23)

L+(m, t) =e'"R ( —m, t) =e'"R (m, —t),
(4.24)

and exhibits some nontrivial time-reversal properties. The
exact nature of the boundary condition to be chosen obvi-
ously depends on further input. However, this simple

which leads to

R +(m, t) =e'"L (m, t), L+(m, t) =e'"R (m, t), (4.22)

or we can choose to relate opposite frequency components

analysis in terms of the massive SU(2) Dirac equation
supports the idea that there can exist large-scale structure
in the fermion fields around a grand unified monopole.

V. CONCLUSIONS

The structure of non-Abelian dynamics is nourished by
the nonlinearities which appear in its formulation. One of
the simplest known classical non-Abelian systems is that
which represents an SU(2) gauge theory with spherical
symmetry and we have examined that system in two iso-
lated simple limits. The fact that the content of the
theory was nontrivial even in these extreme limits is re-
markable. Perhaps still more remarkable is the fact that
the structure has emerged from considerations involving
only the classical limit. The full quantum field theory is
bound to be much richer in content.
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