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Inspired by structural similarities between the SU(2) finite-energy and the corresponding SU(3)
Wu-Yang-type monopole solutions we develop a procedure that, for the first time, provides us with
an explicit SU(3) Wu-Yang-type monopole-antimonopole pair solution. Exploiting these similarities
the procedure could hopefully be adapted to the construction of an explicit SU(2) finite-energy
monopole-antimonopole saddle-point solution whose existence is already known.

I. INTRODUCTION

The most important feature of the present theory of
strong interactions is the confinement of quarks and
gluons. Although QCD is widely believed to be the
correct theory of strong interactions, confinement has not
yet been proven a consequence of the principles of QCD.
It is of common belief that a proper treatment of confine-
ment will come about by understanding the complicated
nonperturbative structure of the QCD vacuum.

One of the possibilities to bring about permanent con-
finement is connected to a condensation phenomenon
where the vacuum closely resembles the dual analogue of
the ground state of a superconductor. Since the supercon-
ducting ground state is a condensate of charged particles
(Cooper pairs) the QCD ground state should be visualized
as a condensate of monopoles.!

Except for lattice calculations, almost all investigations
of the monopole condensation start with a classical gauge
field configuration of finite energy or with the classical
interaction between monopoles. Such configurations are
well known for a single monopole or antimonopole.?
However, it seems quite difficult to determine a proper
gauge field configuration for the monopole-antimonopole
pair. Several authors® have studied gauge field configura-
tions of widely separated monopole-antimonopole pairs;
but such configurations are rather unsuitable for the in-
vestigation of monopole-antimonopole pair condensation,
where the monopole and antimonopole are expected to be
close together. Taubes and Groisser* have proven the ex-
istence of monopole-antimonopole saddle-point solutions
in SU(2)-Higgs theories, but so far the explicit structure of
such solutions is not yet known.

It seems to us that more information about the realiza-
tion of the SU(2) saddle-point solution should be sought
by looking at other, possibly explicit, examples of
monopole-antimonopole pair solutions. In this connection
we think of Wu-Yang-type monopole-antimonopole pair
solutions which, to our knowledge, have not been investi-
gated so far. Although these solutions are singular at the
origin the manner they are constructed could yield useful
ideas for setting up a practical procedure for finding
saddle-point solutions.

In this paper we will present a procedure which pro-
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vides us with an SU(3) Wu-Yang-type monopole-
antimonopole pair solution based on the topological back-
ground found by Marciano and Pagels.’ This solution is
valid for arbitrary separations of the monopole and an-
timonopole.

An important aspect of our procedure is that it takes
care of a structural resemblance between the SU(2) finite-
energy and the corresponding SU(3) Wu-Yang-type mono-
pole solutions which becomes apparent in the so-called
“Abelian” gauge.® Exploiting these similarities most
steps of our procedure could also be used for constructing
the SU(2) monopole-antimonopole saddle-point solution.
Of course, some modifications are necessary. Apart from
smoothing out the point singularities we know from the
proof of Taubes that the relative global gauge between
monopole and antimonopole becomes important, an in-
gredient which has to be incorporate in our construction
scheme so as to find the nonsingular solution.

The paper is organized as follows. For a better under-
standing of the calculation, part of the work of Marciano
and Pagels’ is briefly reviewed in Sec. II. In Sec. III we
work out the monopole-antimonopole pair ansatz in the
“Abelian” gauge. Finally in Sec. IV we determine the
SU(3) Wu-Yang-type monopole-antimonopole pair solu-
tion by solving a system of coupled differential equations.

II. MAGNETIC MONOPOLES IN THE
PURE SU@3) YANG-MILLS THEORY

If we want to associate a magnetic charge with certain
types of solutions of pure SU(N) gauge theories we have
to introduce a gauge-invariant electromagnetic field tensor
F,, in terms of the parent fields. This is possible because
we can construct from the SU(N) field tensor an octet of
scalar fields

D=d,. G, P GH 2.1

where d;,. is the completely symmetric Gell-Mann SU(N)
tensor. The definition (2.1) is only valid for SU(N) gauge
groups with N > 3. Then, in analogy to 't Hooft’s defini-
tion of the electromagnetic field tensor in the SU(2)
Higgs-boson theory, F,, can be written as
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F,=8,, ¢ %fa,,c@“D,,cT)”Dv@C

—3,45™ 3,45 + 34!; Fure®0, 8%,

A _Gay a (2.2)
I mot

Here we have introduced the normalized field such that

$P9=1 and V3d¥P’P°=d% The monopole
strength M is defined by
1 r v
M=— ¢ F,dxtndx”, (2.3)

where dx* Adx” denotes the exterior product and F v the
dual of F,,. In a nonsingular gauge (where 4" has no

xz —yz —xy z2—y?
A, = —yz M+ | —xz |A3+ [x2=22 | Mg+ | xp
y2—x? 2xy vz —xz
— —z 0
+ | x [A+ |0 |As+ |—2z |24 1_7‘/52,
0 x y g\/gr
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singular Dirac string) the contribution of the first two
terms in F, of (2.2) to the magnetic flux vanishes and M
is only given in terms of @ ¢ alone. Instead, if we choose
the singular “Abelian” gauge’ where all but the three and
eight components of ® ¢ vanish, F,,, is given by

Fl,=3,45" —8,45"

(2.4)
AT =—5V3A4,+354,,
and the monopole strength M is only determined by the
Dirac-type string structure.
A static monopole solution of the pure SU(3) gauge
field equations that belongs to the SO(3) subembedding in
SU@3) is®

V3yz .
A —V3xz|A
S I G PRV

(2.5)

where 3,4%%=0 and A4,°=0; g is the universal coupling constant of the theory. For the normalized scalar field one ob-

tains, with (2.1),
V3
4

~ 1 V3 1
b, = (zAy—yAs+xA;)——— -
r 8 r

The corresponding antimonopole solution is simply given
by charge conjugation: A,,=—(A,,)* and ®,, =(D,,)*.

Of course this solution has a point singularity at the
origin which leads to infinite energy; this is in agreement
with the Coleman-Derrick theorem according to which
there exist no finite-energy stable solution to the pure clas-
sical gauge field equations. But since the monopole
strength is nonzero the solution will be topologically
stable. This means, in the sense in which Coleman de-
fined topological stability,® that the solution does not dis-
sipate.

III. THE MONOPOLE-ANTIMONOPOLE PAIR
ANSATZ IN THE “ABELIAN” GAUGE

In order to study the mm interaction we need an ansatz
for the mm gauge field configuration which is consistent
with the required asymptotic properties of magnetic flux.
In the gauge valid for the monopole solution (2.5) these
constrains refer only to the normalized scalar field which
renders the search for a proper gauge field ansatz more
difficult. There fore we will switch over to the singular
“Abelian” gauge’ which is defined by the requirement
that the normalized scalar field is constant in coordinate
space and diagonal in group space. The advantages of
this gauge are that (a) all topological considerations can

2xy A+ (x2—p2) A3+ 2xzh s+ 2pz A+ L_(xz—f—yz—zz))\.g
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directly be carried out in terms of the gauge fields and (b)
the formulas will be simplified, facilitating the search for
the mm solution.

In our case the “Abelian” gauge can be realized by the
by the gauge transformation

U =exp i%kl exp( —iOAs)explidA,) ,

where 0 and ¢ are the spherical angles. Applying this
gauge transformation to (2.5) and (2.6) we obtain

A \/_
d>’=U<I>mU—1=—T3k3+%A8, (3.1a)
A;,,:UA,,,U_I—é(iVU)U_l

I, — (A +AsP) (3.1b)
—gpr3¢ 2gr 4€y 5€9/ » .

where x =pcos¢, y =psing, z=rcosf, and p=rsinf.
The corresponding antimonopole formulas are simply
given by charge conjugation which is equivalent to gauge
transforming the antimonopole solution by U* instead of
U:
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&':@;..)*:——‘;—gkﬁﬂs, (3:22)
AL=—(A})"
2 38— (A8, A8y (3.2b)
.__gpr 3¢y 2gr 4€ ¢ 5€6/ - :

In both cases the electromagnetic field tensor is given by
(2.4) with

Aem—ﬁiaﬁ and A"

g8 pr g pr
for the monopole and antimonopole, respectively.

Note that if we transform the antimonopole solution
with U and the monopole solution with U* the resultant
gauge fields belong to another SO(3) subalgebra character-
ized by A¢ and A; instead of A4 and A5. As a matter of
fact @ is the same for all the gauge fields belonging to the
same SO(3) subalgebra because the gauge transformation
“transfers” all topological informations from the scalar
field to the gauge fields. The A; part of the gauge field
carries the topological string which comes solely from the
term (iVU)U ~!; the absence of other contributions due to
UAU ! and proportional to A; and Aq is related to the
condition V-A =0 of the original gauge.’

Just as the monopole and antimonopole solutions (3.1b)
and (3.2b) so the m solution must belong to the same
SO(3) subalgebra; thus we make the following ansatz for
the mm solution:

A;nm = S}\,} + A4}\.4+ A5)\.5 > (34)

where s stands for the topological string function result-
ing from the (iVU)U ~! term of the corresponding singu-
lar gauge transformation for the mm solution. The elec-
tromagnetic gauge field is then simply given by

A =3A =35, (3.5)

On the other hand the electromagnetic gauge group is

_ |

r_—(z—a) 1 z—a

A, = A€y — (cospA,—singAs)e, —
m gpr_ 3€4 2ar_ by dAsley 2gr_2

and

+(z +b) 1 z+b

A_= A4+ (cospA,—sindAs)e, —
m gpr . 3€4 287, DAy dAs)ey 2gr+

U(1) and the electromagnetic gauge field of the mm pair
must therefore be the sum of A} and AZ"; thus for a

monopole sitting at z =a and an antimonopole at z=—b5
we obtain, from (3.3),
V73 _
Am Y3 | z=a z3b |, (3.6)
g pr— pr—

]1/2 and r ___[p + +b)2]1/2_
and (3 6) it follows 1mmed1ately that

where r_ =[p?
Comparing (3.5

z—a z+b

s= [—
gpr_  gpry

8y - (3.7)

Consequently we are left to determine A4 and A;. To
that end we discuss the following two limiting cases: (i)
b— o for which A’ _ should describe a monopole and
(i) @ — o for which we should be left with an antimono-
pole solution. Given s by (3.7) we obtain, from (3.4),

ro—(z—a)
(l) lim A it )»3e¢
gpr_

—+ bhm (A4)\,4+ As)hj) »

(ii) lim Al _ =
a—ew T gpr 4

+ lim (Aghs+ Ashs) .

a— oo

Apart from the different locations of the monopole and
antimonopole on the z axis we notice that the string func-
tions of (i) and (ii) are not those of the monopole and an-
timonopole solutions given by (3.1b) and (3.2b). But the
difference between the corresponding string functions is
only a relative Abelian gauge transformation
X =expli¢A;) which leaves @’ invariant. Thus
the monopole and antimonopole gauge fields we have to
identify with (i) and (ii) are

(singA4+cospAs)é, + 2—"’—2(sin¢x4+ cosdAs)e, (3.8a)
gr_
(singA4+cospAs)e, + —L (singAs+cospAs)e, ,  (3.8b)

g+

where, for further purposes, we switched over to the cylindrical coordinates p, ¢, and z.

Note, that upon the replacement @ — —b and b— —a the monopole and antimonopole gauge fields given by (3.8a) and
(3.8b) are not related via charge conjugation. Apparently, the string function s fixes the so-far unrestricted relative local
gauge between the monopole and the antimonopole of the m configuration in a definite way. What is still left free is a
relative global gauge which would become important when we consider finite-energy configurations.

Finally, if we assume cylindrical symmetry around the string axis and note that for a— o or b— o« the resulting
gauge fields (3.8a) and (3.8b) have exactly the same ¢ dependence it seems reasonable to use this ¢ dependence also for

the m ansatz; thus (3.4) goes over into

(5)

A, p,z) e¢+

Aa
cosd)a p p, )7 —singa 4

Ay
sm¢a(4)(p,z)——+cos¢a(5) ,Z) e+

3

)2
(p,z )

(N

(4) Ay (5) As |
singa,”’(p,z )7+cos¢a p,z)T e, (3.9)
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with
— b
s(p,z)=2 _Z—a  zZ40
gpr_  gpry
Here a¢ R a;,”, az(”, i =4,5, are still unknown functions which we have to determine from the gauge field equations and
the fact that @' given by (2.1) must have the “Abelian” gauge form, namely, &= —(V3/4)r A+~ kg

IV. THE MONOPOLE-ANTIMONOPOLE PAIR SOLUTION

We consider the static case and take 4,=0; therefore the gauge field equations are given by

0=0,0; A/(x)—8;0; A(x) +&f ape { A7(x)

Furthermore, we obtain, from (2.1),

Gij3(x)Gij”(x) ‘/3
which guarantees that @’ has the “Abelian” gauge form.
Here, we have already used the fact that our ansatz has
only A3, A4, and As components.

Inserting the ansatz (3.9) into (4.1) and (4.2) a lengthy
but more or less straightforward calculation leads us to a
system of differential equations that must be solved. First
of all one derives from (4.1) a useful relation between the
coefficient of A4 and A5: namely,

—=Gj; 8(x x)G;j%x)=0, a=4,5 (4.2)

a¥p.2) aPpz)  a Sz
?4)(10 ): {)4)(;0 )_ ad : 4.3)

ag (p,z) a, (p,z) a;"(p,z)
This encourages us to use the notatlon ai®(p,2)
—f p, a(p,z) for i=p q&z and ay'(p,z)=al(p,z)/
p.ay? (p, z) = h(p,z)a(p, )/p, p,2) = k(p,2)alp,2)/ p,
(p, )=5(p,z)/p. We thus obtam the followmg set

of equations:

(9,519, —(8,5)9,f =0,
of 4 (4.4a)
(9,5)8,a —(3,5)9,a =0
apaz(l—%fs”)ha/p,
1 (4.4b)
d,a =(1—5fSka/p ;
9;h —3,k =—k/p; (4.4¢)
3,5 =2fha’/p, 3,5=2fka’/p ; (4.4d)
Opf = TSh(fP—1/p,
(4.4¢)
3./ =35k (f*—1)/p;
3, | La5|+La, =0 (4.40)
?1p oS p .

For simplicity we temporarily suppress the arguments p
and z.

[23;45(x)—3; Af(
+8 fabeSeen ALALX)AN(X), a=1,2,...,8, i=123.

X)]+[0;470)]45(x)}

Although this system of differential equations looks
quite complicated it can be solved step by step. The gen-
eral solutions of (4.4a) for any § can be written as
f=F(5) and a = A(5) where F and A are arbitrary func-
tions of 5. Injecting F and A into (4.4b) and solving these
equations for 4 and k yields

pA'd,s
(1—~+FA

pA'd,S

h = ]
(1—1F)A

and k =

Here the prime denotes differentiation with respect to 5.
By a simple calculation we can convince ourselves that
(4.5) is consistent with (4.4c). Next, we insert (4.5) in
(4.4d) and obtain

(A" =—(1—1F5) . (4.6)

If we now impose f=F =+1 which, as can readily be
seen, satisfies (4.4¢) as well as (4.4a), Eq. (4.6) can easily be
integrated leading to

A’=F5— 1 (F5)*+C, 4.7)
where C is an arbitrary integration constant. Note that
(4.7) is valid only if

—VI14C <+F—1<V1+C . (4.8)

To summarize the results so far, we have expressed all
unknown functions in terms of § [see (4.5) and (4.7)] and
we have verified that this is consistent with Egs.
(4.4a)—(4.4e). What remains to be done is to verify the
validity of (4.4f) and (4.8) for the string function s(p,z)
appearing in (3.9). Since s(p,z) is nothing else but the
Dirac mm string function it, except on the string, obvi-
ously solves the Laplace equation (4.4f). Equation (4.8)
can easily be analyzed for all possible z values; the result
is that the inequality holds for s(p,z) in the case F=+1
and C >0. But since for physical reasons the gauge field
should vanish for |r|— o one finds that only C =0 is
acceptable. Finally, putting all things together we obtain
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2 b b +b |1
S(p,z)z— _z__g_’_i S a(p’z):—_t _£i+z_L 2+.Z;a+z_ s
g pr_ pr r_ ry r_ ry
2 3 3
(z—a)r > —(z+b)r_
h(p,z)= at E ] , 4.9)
ror_[—Gz—ar, +z+br_J[2r r_+(z—alr_—(z+b)r ]
p3(r_3__r+3)
k(p,z)= ,
ror_[—Gz—a)y +z+bir_J[2r r_+(z—a)r_—(z+b)r ]
and f =1. Thus in the “Abelian” gauge the SU(3) Wu-Yang-type mm solution is given by
A A A A A
A - :s(p,z)*zi?(,ﬁ-a—(&El <:osd574——sin¢>75 €¢+G—(;Lz) sind)T4 +cos¢75 [A(p,2)e,+k(p,2)e,], (4.10)
p

where s(p,z), a(p,z), h(p,z), and k(p,z) are as in (4.9).
Both signs are possible for a(p,z); the two corresponding
gauge fields are simply related via a global Abelian gauge
transformation exp(in7A;) with nE€ N .

Of course the energy of our solution (4.10) is infinite
but by subtracting the infinite self-energy of each mono-
pole we can calculate the interaction energy

Hiw= [ d*[B%, B —(BL,BL +BLBL)]. (4.11)
In the singular ‘“Abelian” gauge the magnetic field
strength B is given by!°

Bi= — VX A°—3gfm. (APX A°)—B? (4.12)

where BY cancels the fictitious magnetic field strength re-
sulting from the gauge string. It turns out that Bj _ is
purely Abelian and essentially nothing else but the mag-
netic field strength of a Dirac monopole-antimonopole
pair:

mm

BC _ =‘:—§{apaz[ps (p,2)]1—2,9,[ps (p,2)]} (V38> —57%) .

(4.13)

(Note that the magnetic field strength is not gauge invari-
ant; thus the Abelian character of B{ _ is a property of
the singular “Abelian” gauge.)

Therefore the resulting interaction energy is, as expect-
ed in the case of massless particles, the Coulomb potential

(—V3/g)V3/g)
a+b '

The same result has been obtained for widely separated
monopole-antimonopole pairs in SU(2) Higgs-boson
theories.?

Hint =4

(4.14)

V. REMARKS

We have found a monopole-antimonopole pair solution
for the pure SU(3) Yang-Mills equations. The calculation,
complicated to start with, can be simplified using the
“Abelian” gauge. This enabled us to extract the topologi-
cal and group-theoretical structure of the monopole-
antimonopole gauge field. We were then left with the
problem of solving a system of coupled differential equa-
tions. This was done only for the monopole-antimonopole
string function. But it is very likely that other interesting
multimonopole solutions can be constructed by a careful
choice of topological string functions. Such solutions will
be discussed in a forthcoming paper.

The ‘“Abelian” gauge expression for the monopole-
antimonopole pair is, except on the string, a solution of
the gauge field equations. Since the field equations are
gauge invariant this proves that the corresponding expres-
sion in the nonsingular “non-Abelian” gauge will also be a
solution of these equations over all space (except for the
locations of the monopole and antimonopole). A “non-
Abelian” gauge field configuration can be realized, for ex-
ample, via the gauge transformation

U =exp

i%kl exp(iOAs)exp(idh,) ,

where 6 is the angle between r_ and r .

Our solution is not yet suitable for the investigation of
an eventual monopole-antimonopole pair condensation in
the nonperturbative vacuum. To study such a condensa-
tion requires a consistent procedure for smeering out the
point singularities and thus producing finite-energy con-
figurations. Unfortunately such a procedure is not
presently available for pure Yang-Mills theory.
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