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CP violation and Yukawa couplings in superstring models: A four-generation example
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We present a detailed discussion of the pattern of Yukawa couplings and CP violation in a super-
string E6 model built on a CP -based Calabi-Yau manifold, with Z5&Z5 discrete symmetry.
Embedding the two Z5's into the E6 group leads to a drastically different pattern of Yukawa cou-
plings. The model is presented more as an illustration of the steps involved in the calculation of Yu-
kawa couplings in a generic Calabi- Yau manifold rather than as a realistic model of quarks and lep-
tons.

I. INTRODUCTION

Superstring theories' have, during the past year,
raised the exciting possibility" that an ultimate theory of
everything (TOE) including gravitation and quark-lepton
interactions may be at hand. These theories arise from a
fundamental heterotic string theory and lead, in the
zero-slope limit, to an cV = 1 locally supersymmetric
Yang-Mills theory based on the E8&E8 gauge group in
ten-space dimensions. On compactifying the extra six di-
mensions on a Kahler manifold with SU(3) holonomy
(known as the Calabi- Yau manifold), an N = l supergrav-
ity model with an E6XE', grand-unified-theory (GUT)
group emerges with Xg number of chiral multiplets
transforming as I27I-dimensional representations of E6
and a certain number of I 27) =

I 27] representations. The
main euphoria stems from the fact that in addition to giv-
ing rise to a massless I27I-dimensional representation of
E6 which has the right quantum numbers to incorporate
all the known quarks and leptons (plus more) per genera-
tion, there exists a natural mechanism to implement
breaking of E6 down to the standard model. A great deal
of attention has therefore been rightly focused on the
phenomenological analysis of these models to see whether
or not they can be candidates for a realistic description of
quarks, leptons, and their interactions.

An added advantage of the superstring model is the
possibility that one may be able to calculate the Yukawa
couplings among the fermions and the Higgs bosons (the
latter being picked out of the scalar components of the su-
persymmetric multiplets). The reason for this optimism is
as follows. Since the four-dimensional theory arises from
ten-dimensional super Yang-Mills theory, the Yukawa
couplings in the former arise from the gaugino —gauge-
boson coupling in ten dimensions which has only one pa-
rameter, the gauge coupling. So, if the nature of the man-
ifold on which the latter is compactified is known, then in
principle the various Yukawa couplings can be exactly
calculated. In practice the situation closely resembles this
scenario. Under favorable circumstances one can evaluate

all Yukawa couplings in terms of a few unknown con-
stants. The essential steps in the calculations have been
given by Witten, Strominger, and Candelas. In partic-
ular we follow the methods of Candelas for computing
Yukawa couplings of algebraic varieties. It should also be
mentioned that some couplings have been computed by
Strominger and nonperturbative corrections to couplings
have been computed by Dine et al.

In this paper we will use their techniques for a four-
generation model originally proposed by Candelas et al.
to obtain Yukawa couplings and CP violation. We con-
sider different symmetry-breaking patterns needed in
these models and various embeddings of the discrete Z5
groups and present Yukawa couplings for various cases.
We find only one case, which has a slim chance of being a
realistic model, while the rest of the cases face
phenomenological difficulties of one kind or another. On
the whole we present our calculations more as an illustra-
tion of the techniques involved rather than as a quest for
a realistic model of quark-lepton interactions. We there-
fore have no predictions that we could exhort our experi-
mental colleagues to look for.

The paper is planned as follows. In Sec. II we present
the manifold and list its properties. Section III contains a
discussion of general rules for calculating Yukawa cou-
plings. In Sec. IV we consider different symmetry-
breaking patterns and associated transformation proper-
ties of quarks and leptons. Sections V, VI, and VII,
respectively, contain our calculations of Yukawa cou-
plings for the cases in which Z5, Z&, and Z5 g Z& are em-
bedded in the E6 group. In Sec. VIII we discuss some
phenomenological aspects whereas Sec. IX contains our
conclusions.

II. THE CP"-BASED CALABI- YAU MANIFOLD

Knowledge of the Calabi-Yau manifold on which the
string theory is compactified is essential for calculation of
Yukawa couplings as it is for studying many other aspects
of these models such as the number of generations, num-
ber of Higgs bosons, the pattern of symmetry breaking,
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We choose C to be complex, so that the model defined
by IZ; I and [Z;*I is not the same, leading to CP viola-
tion. (As in the work of Stominger and Witten, we de-
fine the CP transformation as the one that takes
Z;~Z;*.) This manifold K has a Bette-Hodge number
b» ——1, Euler characteristic 7= —200, and is simply con-
nected. One can define G =Z& &Z& on this manifold by
transformations:

Z5, Z; a'Z;, n=e

Z5 ~ Zi ~Zi +1
(2)

It has been shown that these two symmetries act freely on
the manifold; i.e., they do no have any fixed points. Di-
viding the manifold K by G reduces the Euler characteris-
tics of the manifold to —200/(5X5) = —8, leading to a
model with four generations. They also make the mani-
fold multiply connected, providing a mechanism to break
the E6 symmetry at the compactification scale.

The properties of this manifold have been investigated
in detail by Witten and others. The analysis of global
symmetries reveals that the manifold is endowed with the
following exact symmetries:

8, Z;~o. 'Z;;
(3)

Y& Z& ~Zz&

In addition the manifold is also invariant under the pseu-
dosymmetries (P) (i.e., the symmetries of K but not of
IC/G) which are

Z;~a 'Z;, gn; =0,
Z ~Z ~

(4)

We will make extensive use of these symmetries in what
follows.

III. YUKA WA COUP LINGS: PRELIMINARIES

The Yukawa couplings in the effective four-
dimensional theory arise from the gauge interaction term
in the ten-dimensional action

L, = f ~ "~& g'P~l' A B'Pcf""— (5)

where A, B,C are ESXEs indices and f" c are structure
constants. After compactification on the manifold
K&&M4, the 10-dimensional fields can be expanded in
harmonics on the internal manifold E. We choose K to
be the Calabi-Yau manifold defined in the last section.
On this manifold (and other Calabi- Yau manifolds with a
negative Euler number) the chiral massless fields
transforming as 27-piet of E6 are elements of H] ( T), i.e.,
closed but nonexact one- forms with values in tangent

etc. In this paper we will consider the manifold suggested
in Ref. 3, which is defined as the hypersurface in the corn-

plex four-dimensional CP space (Z;=XZ;, i =1, . . . , 5)
defined by the following equation (called the defining po-
lynomial):

—, g Z; —CZ, Z~Z3Z4Z5=0 .

space, denoted by ApPdxP (Ref. 3). The effective four-
dimensional trilinear couplings are given by the triple
overlap integral

A RBACR, Q, (6)

where A is the (8 closed) holomorphic three-form. The
calculation of Yukawa couplings consists of two parts:
the evaluation of the triple overlap integral [Eq. (6)] [we
will refer to these trilinear couplings as raw Yukawa cou-
plings (RYC)] and the normalization given by

A/A*. (7)

To compute the above expressions we need to know the
explicit representations of the elements of H&(T) For-.
tunately for the manifold under consideration (and other
Calabi-Yau manifolds defined as the transverse intersec-
tion of the hypersurfaces in CP ) there is a one-to-one
correspondence between elements of H~ ( T) and the linear-
ly independent polynomials one can add to the defining
polynomial. ' This remarkable connection can be under-
stood by noting that the different choices of defining po-
lynomials give rise to physically distinct but topologically
equivalent vacua. This freedom in choice of vacuua leads
to flat directions in the theory which in turn give rise to
massless scalars. Since the theory is supersymmetric, the
massless scalars are accompanied by massless fermions.

For example, in our case (before dividing K by Zq XZ~)
we may add any polynomial of the type

CggcDgZg ZgZCZDZg (8)

where q; are the polynomials and P& is the extrinsic cur-
vature of the hypersurface embedded in CP. Moreover,
he also finds that A" is exact when

A ppdx p =CB ZA(ap/3ZB)xppdx p (10)

where P is the defining polynomial [Eq. (1)]. For calcula-
tional purposes we will only need to exploit the one-to-one
correspondence between the massless zero modes and the
polynomials. The results can be summarized as

P; -q;, q;=q;+f"(r)P/oZ~ ),
where P; is the zero mode and f" is any function linear in
Z. Furthermore one can always add a multiple of the de-
fining polynomial P in q; without altering the values of
the integrals in Eqs. (6) and (7). Note that Eqs. (6) and (7)
depend only on the cohomological classes of A", i.e.,

in the defining polynomial [Eq. (1)]. Equation (8), the
most general quintic polynomial, has 126 parameters.
However, due to the freedom in change in basis
Z„~C~ZB, 25 of the parameters in Eq. (8) are redun-
dant. Hence the description of the vacuum requires (126-
25) parameters. Thus on this manifold there are 101 flat
directions leading to 101 massless scalars which in turn
lead to 101 massless fermions.

A more rigorous connection between polynomials and
the elements of H

~ ( T) has been obtained by Candelas.
Using the deformation theory he finds

A".dx P =q.7"dx~
Pl P
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changing A~A+OF has no effect on the integral. In
terms of the polynomials, this means

q=q =q+f"(oPi"c3zg )+gP . (12)

Polynomial

(Z|Z2Z3Z4Z5)
(Ziz2Z3Z4Z5) Z;
(z,z,z,z,z, )z, 'z, '
(Ziz2Z3Z4Z5)zi.
z 15

l

z lpz 5

Z, 5Z, ~Z„5

RYC

p
Cp
C p
C p
C p
C p
C p

(13)

In what follows we will omit the overall constant p
from RYC. Now the task of computing the Yukawa cou-
pling is straightforward. The procedure one may follow is
(a) identify the fifth-order polynomial associated with the
zero modes, (b) multiply these polynomials to obtain the
15th-order resulting polynomial, and (c) if the 15th-order
polynomial is not invariant under the aforementioned
symmetries of the manifold, the Yukawa coupling is zero;
otherwise the Yukawa coupling can be picked out from
the above table.

Now we turn our attention to the normalization matrix
1V,b [Eq. (7)]. N, b can also be evaluated using previously
discussed methods. In terms of the polynomials it is
essentially given by the integral of q, qb over the whole
manifold. Before dividing the manifold K by
G=Z5XZ5 the normalization matrix X,b is a 101X101
matrix. On K/G it will generically reduce to a block di-
agonal matrix of 5X5 and 24 copies of 4X4 matrices.
However in our case A;b does not have any off-diagonal
elements. This can be easily verified using the pseu-
dosymmetric Z;~a 'Z;; g n; =0, whereas using the
symmetry Z;~ZJ various diagonal elements can be relat-
ed. We find

In other words 3" defined with different q's are in the
same cohomological class if they differ only by the multi-
ple or the derivative of the defining polynomial. Using ei-
ther q or q will give the same results.

Now the Yukawa couplings between three fields are
essentially given by the multiplication of three polynomi-
als of degree 5 and integration over the whole manifold,
K. At this point one may use Eq. (12) to connect various
couplings.

In addition to the relations implied by the use of Eq.
(12), there are strong constraints from the symmetries of
the theory. For the integra1 to be nonzero, the integrand
must be invariant under all the symmetries of the mani-
fold. The set of 15th-order polynomials which are invari-
ant under the symmetries Y, B, and P, discussed in the
last section is (Z, Z2Z3Z4Z5 ), (Z, Z2Z3Z4Z5 ) Z
Z / Z2 Z3ZQZ5zl Z ) Z J Z2Z3ZQZ5zl' ) Zl' ) Zl Z '

Zl' Z ' Zk
Using Eq. (12) all of them can be written as

k(ziz2Z3Z4Z5) and hence the relative value of RYC is
given by k:

Polynomial of the type

Zi Zpz3Z4Z)
Z Z, (i~j)
Z; Zj.zk(i&j &k)
Z; ZJ(i~j )

z, 2zJ2zk(l ~j~k)
ZJ Z;Zi, zi(i&k&l)

Normalization

Xp
N]

%3
Ã4
%3/c

(14)

IV. SYMMETRY BREAKING

As is by now quite well known, a multiply connected
Calabi-Yau manifold can lead to the breakdown of the E6
gauge symmetry at the scale of compactification. Study
of this breakdown is facilitated by embedding the discrete
group of the manifold into the E6 gauge group, i.e., the
generating elements of the discrete group G are expressed
as

Uz
——exp i g A, kHk

k

(15)

where Hk are the elements of the Cartan subalgebra (or
diagonal generators) of E6 and A, k are a set of six real pa-
rameters. Ug is actually the Wilson loop integral
exp(i f 3 dy ) where m —6, . . . , 10 in the Calabi-Yau
manifold. If the manifold is simply connected, applica-
tion of Stokes's theorem and that F „=0for the ground
state described by the manifold would tell us that Ug ——1;
for general multiply connected manifolds with Z„sym-
metry, [Us]"=1. Clearly, U~ breaks the gauge symmetry

group without reducing its rank. There are however
many rank-6 subgroups of E6 and superstring physics can-
not decide between them and phenomenological con-
straints must be invoked.

The fact that a low-energy gauge group has to include
the standard model [i.e. , SU(3), XSU(2)l XU(1)3 ] im-
plies that

IA,; j =( c,c,a, b, c,0), — (16)

where we have used the notation of Slansky. " Alterna-
tively one can consider a SU(3) X SU(3) XSU(3) subgroup
of E6 and choose

Ug
——[1]X : 5qy=1 .

Combining these results with RYC one can obtain the
normalized Yukawa couplings (NYC).

We would also like to point out at this stage that the
fourth-order terms of the type (27 X 27 X 27 X 27) can also
be evaluated in similar fashion. Since 27 corresponds to
the Kahler form, it is invariant under all symmetries of
the manifold and since b] ] ——1 for this manifold it is also
unique. Thus we only need to concentrate on the 27X27
part of the above expression, which is essentially a tenth-
order polynomial. The set of tenth-order polynomials in-
variant under all symmetries is (Z&Z2Z3Z4Z5),
(Ziz2Z3Z4Z5)Z;, Z, Z; Zi . The relative values of
the couplings are given by 1, C, C, C, respectively.
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A further set of constraints emerges from requirements
that some component of the (27+27) pair remains light in
order to act as Higgs bosons serving various purposes
such as symmetry breaking, generating quark, lepton
masses, etc. The first question that may be asked is why
cannot these multiplets come from extra fields in I27I-
dimensional multiplets that also contain quark and lepton
fields, since these fields always remain massless by the
virtue of the index theorem. The answer is dictated by the
requirement that we preserve supersymmetry down to the
low-energy scale of about 1 TeV, which in turn requires
that the F and D terms in the potential be at most of the
order of 1 TeV . Because of this, any Higgs-boson fields

P that acquires a vacuum expectation value (VEV) at a
scale above 1 TeV must be accompanied by an anti-
Higgs-boson field P, so that the D terms vanish. Since the

P fields from the "matter" I27)'s do not have a P, only
Higgs-boson fields that can be chosen out of the I27I's
are the light-Higgs-boson doublets; any SU(2)z-singlet
fields that have VEV's above 1 TeV must come from a
(27+27) pair. All these considerations lead to the follow-
ing three interesting possibilities.

(a) Two light-Higgs-boson doublets from (27+ 27).
The electroweak gauge group in this case is SU(3),
XSU(2)z XSU(2)~ XU(1)e z XU(1)v.

(b) Two light SU(5)-singlet-fields from (27+27). (To
be denoted below by v' and n .) The electroweak symme-
try below plank scale is given by SU(3), X SU(2)z
XSU(2)- XU(1) XU(1).

(c) Only one light SU(5) singlet (n ) from (27+27).
The electroweak group here is given by SU(3), X SU(2)z
X U(1) in general.

We will consider these possibilities in Secs. IV—VII.
After E6 is broken due to Wilson loops, quarks and lep-

tons transform nontrivially under G =Z& &Z&. Their ex-
act transformation properties depend upon the way we
choose to embed G in E6. The polynomials which
represent these massless fields reflect their appropriate
transformation properties. Here we list the structure of
the polynomials and their transforrnations under Z& &(Z&.
For brevity we have devised a shorthand notation of the
form (a, b, c,d, e) to denote the polynomial
Z lZ2Z3Z4Z5+, and + . . denotes cyclic permuta-
tion. We find

a /3

(21011), (23000), (03110), (02012), (40010); (20)

To construct polynomials which are invariant under Z5
but transform nontrivially under Z &, let us consider
(a, b, c,d, e), defined as

(a, b, c,d, e)—:gZ Z;"+~Z +2Z;+ 5Z +4/3
" '', (22)

where p is a typical element of Z5, /3 =1. Under Z5 XZ5
symmetry the above polynomials transform as

Z5: (a, b, c,d, e) ~a + '+ + '(a, b, c,d, e)

Z,': (a, b, c,d, e) ~/3 (a, b, c,d, e)
(23)

Since we want the polynomials to be invariant under Z&,
we choose b +2c + 3d +4e to zero (mod 5). Thus the po-
lynomials transforming as a /3 are given by (50000)
(31000), (30110),(12002), (10220) . The polynomials
transforming as a /3" can be easily constructed by ap-
propriately choosing a, b, c, d, and e.

Note that not all of the above polynomials represent
massless fields. Using Eq. (12) it is easy to show that one
of the polynomials from each set corresponds to
which is exact. Alternatively one can show that the poly-
nomial of the types Z; and Z; Z are equivalent to
Z, Z~Z3Z4Z5 and Z~ ZkZ~Z (i&j &k&1&m), respec-
tively. To reproduce the results of Witten in the limit of
C =0 (Ref. 7), we choose the latter set to correspond to
massless fields. These four polynomials will represent the
four generations, respectively. For instance, in the case of
Z & embedding, the first four polynomials in Eqs.
(18)—(21) represent the first, second, third, and the fourth
generation, respectively.

TABLE I. Transformation of various fields in the case of Zq
embedding, where

4/30

(20111), (30200), (03101), (00221), (40001) . (21)

Transformation property: cr /3,
U v v EQ= d, L= E„+

, E„= p, N=
ll np

Z, ~

3i+1 i i —l+
3Zi+2Zi Z& —2+

Z'+ l Z'Z' l +
2 . 2Zi +2 Zi Zi —2 +

Z l Z2Z3Z4Z)

(50000)
(31001)
(30110)
(12002)
(10220)
(11111), (17)

EP E+

For Z& embedding transformation properties of the fields can be
obtained by replacing a with /3.

(21110), (30020), (30101), (12200), (41000);

(21101), (32000), (30011), (20210), (40100); (19)

Case (a)

L,g'
L', g
QC

P, no

Case (b)

Q, u', e+
+,D'
E„,g
None

Transformations

a
A

CX

a —'

mp
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TABLE II. Define A, 1

'——A1 /N, NbN„where N, are the normalizations coming from D terms. We
also omit an overall scale factor.

A
111

A
131

A
121

A
141

A
211

A
221

A
231

A
241

A
321

A341

A
411

A431

A
421

A
441

SC
5C
5C
5

SC
5

5C
5C
SC
5

5C
SC
5

5C
SC3
5

A
112

A
132

A
122

A
142

A
212

A
222

A
232

A
242

h"'
A

332

322

A
342

A
412

A
432

A
422

A
442

5

SC
SC
SC
SC
5

5C
5

SC
0
SC2
5

5C
5

5

SC

A
123

h 143

A
213

h 223

A
233

A
243

h 333

323

A
343

A413

A4»

A
423

A4.3

5
5

0
5

0
5C
5

SC
5

5C
5

5C
5

5C
5C
SC

A
114

A»4

A
124

A
144

A
214

A
224

A
234

A
244

h 314

h»4

A
324

„3.4

A
414

A434

A
424

A
444

5

5C
5

5

5

5C
0
5C
5C
0
0
5

5

5
5C
5C

V. YUKAWA COUPLINGS FOR THE
Z5-EMBEDDING CASE

In this section we will consider the case where the first
Z5 group is embedded in the E6 group (i.e., the Zs de-
fined by the transformations Z;~a'Z;, a=e ~s). In
Table I we list the chiral fermion multiplets and their
transformation properties. For the sake of notation we
give below the decomposition of {27)-dimensional repre-
sentation of E6 under [SO(10), SU(5)] subgroups and iden-

tify the various particles they represent:

{27 ) ~[ 16, 10)+ [16,5]+ [ 16, 1)+ [10,5)

x (u, d; u„e') + (d', v, e) +v'

+(g', Ed, Ed )[10,5]+[1,1](g,E„+,E„)+no .

(24)

Case (a). The superpotential consistent with the gauge
symmetry can be written as

~a ~1 QadbQd+ ~2 a0b d +~3 gagd Oh+ ~4 (Qa Qbgd + Qa Qbgd )~5 (Qa bgd + Qa bgd ) +~6 Nabab 0 d

+~6,"N.kbno „. (25)

The coupling k;(i =1, . . . , 6) in Eq. (25) is further re-
stricted by the Y symmetry present in the manifold under
which

This implies that

and A4 =X5 (27)

Y Y Y Y

Q Lg' Lg'-Q'
Y2 Y2

Q ~ Q', L,g'~L', g .

(26)

This leaves us with four couplings to evaluate, i.e., A, ], A,4,
A,6, and A, 6, of which k6 has already been evaluated by Wit-
ten for the CP-conserving case, C=O and the result in
the presence of CP-violating parameter C&0 is given by

TABLE III. Yukawa couplings for Z5 embedding case. k4 ——g' '/N, NI, N, where N, 's are normali-
zation constants.

111

121

131

141

221

231

241

331

341

g
441

5

0
5

5

5C
SC
0
0
0
5C

112

122

132

142

222

232

242

332

342

442

0
SC
0
5C
5
0
0
0
0
0

113

123

133

143

223

233

243

333

343

443

5C
0
5C
SC
0
0
5C
0
0
0

114

124

134

144

224

234

244

334

344

444

5

5

0
0
0
5C
SC
SC
SC
0
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AO —22
221

h
02 —2
221

h
2 —20
221

g
—220

fl —2 —2 —1

g
—220

rs 2 2 1

y 02 —2
n —2 —2 —1

y 0—22
n —2 —2 —1

0—22

2 —20

—220
A2 —2 —1

5 /3'+ SC/32+ SC'
SP-'+ SCP-'+ SC'

5+5 Cp'+SC3
5/3'+ 5CP'+ 5 C

'

5/3 '+ SC/3 '+ 5C'
5P-'+ 5CP+ 5C-'

5P'+ SC/3'+ SC'

5p '+5C+SC2/3'
5/3'+ SC + SC'/3'

5f3 '+5C+SC'P-'

TABLE IV. Nonzero RYC's for Z5 embedding case.

Fields Transformation

d'

L

eC

V

n0

A

a
a 'p

—Ip —I

CX2

a2

p
—I —2

a 'p
a0

TABLE V. Transformation properties of various fields in the
case of Z~ XZq embedding.

g 000 I g 0, 2, —2

Z,'- I- ' = (5+SC+ 5C')I,

'=5I(1+C+C ),

~a 1 1 Qa Ibad +3 2 ( QaEu, b ud +Da+bgd )

+ 1 3 Tr( I/, I/b )ed+ +y4 (E„,I/Ib Ad )

(2g) Under the Y symmetry we get in this case

Q, u', e+6~ 2/I, D', E„g~ Q, u', e+,

(29)

(30)

k,"-'=src, A, , '=6.

We note that the above couplings are complex and the
phases cannot all be removed by redefinition of fields in

Eq. (19), implying that there is generic CP violation in the
model. As already noted by Witten, there is an interesting
symmetry of the manifold (I3 symmetry) which implies
that we get nonvanishing coupling only when the sub-

scripts of the fields add to zero (mod 5). We list the re-

sults for the other couplings in Tables II and III. A point
worth emphasizing is that the operation Y is equivalent
to invariance under left-right symmetry of weak interac-
tion.

Case (/3). The superpotential in this case can be written
as

implying y&
——y2. Again, by looking at the polynomial

structure we can conclude that y2 ——A, 2
——

y& and y3 —A5.
Therefore, these couplings can be read from Tables II and
III.

Case (c). In this case the transformation of quarks and
leptons after symmetry breaking depends on two indepen-
dent phase factors a and f3. Therefore to realize this case
for the manifold at hand one has to embed both the Z5
groups into E6, a case we treat in a subsequent section. If
we embed only one Z5, it reduces to case (b), which corre-
sponds to f3=a

VI. Z5 EMBEDDING AND YUKAWA COUPLINGS

In this section we consider the implications of embed-
ding the second Z& (i.e. , Z;~Z;+I) into the symmetry
group. Transformation properties of various fields are

TABLE VI. Yukawa couplings for Z& & Z5 embedding case. Defining h1 ' ——A' '/N, NbN„where N, are the norrnalizations com-

ing from D terms. We also omit an overall scale factor. h; ' can be obtained by replacing p with p

A
111

h 131

A
121

A
141

A
211

A
221

A
231

A
241

h 321

A341

A
411

A4»

A
421

h 441

scp-'
5C
5C
5p
5 CP'
SP
5 C2p —2

5( 3p —I

5CP
5p2

SCP
5 O'P
5
5C
SC P
SP'

A
112

A
132

h 122

A
142

A
212

A
222

A
232

h 242

h 312

h 332

A
322

h 342

A
412

A
432

A
422

A
442

5

5C
5 C2p2

5CP
5CP
SP-'
5C
0
5CP
0333

5C
Sp+ 2

5 C/3
5 /3'

5/3

5CP

h 133

A
123

A
143

h

h 223

h 233

h 243

A»4

A
323

A
343

A4»
A4»

A
423

A.43

5p
5p

—2

0
5p
0
5CP
5p2

5C
5p2

5( 2p —I

5p2

5 CP+'
SP-'
5CP
5C
SC'P-'

h 114

h»4

A
124

h 144

A
214

h 224

A
"4

A
244

h»4

h

A
324

A
414

A434

h 424

h 444

5 /3
—2

5CP+'
5p
Sp

—I

Sp
—I

5 C3p2

0
5CP
5 C/3
0
0
5f3

5
sp-'
5CP
5CP
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TABLE VII. Yukawa couplings for Z&)&Z5 case. v4 '——k' '/N, NbN, . FF& can be obtained by re-
placing /3 with P

k 111

k 121

k 141

k 221

k
k 241

k 331

k 441

5fl2

0
5
Sp2

5C
5CP
0
0
0
SCP

k 112

k 122

k 132

k 142

222

232

k 242

332

k 342

k 442

0
5C
0
SCP
Sp

—2

0
0
0
0
0

k 123

k 133

k 143

k 223

233

k 243

333

k 343

SCP
0
5C
SC'f3
0
0
5C
0
0
0

k 114

/
124

k 134

k 144

k 224

k 234

k 244

k 344

k 444

Sf3-'
5p2

0
0
0
5 C'P
5C
5C
5CP
0

X+) =(31001):7 ) =(30110)

7+2 =—(12002):X 2 =—(10220)

Xp =Xp p=(50000),

then the Yukawa couplings are of the form

m1m2m3
X X X hn1, m1 n2, m2 n3, m3 n1n2n3

(31)

(32)

with the nonzero h's being those that satisfy
I

given in Table I and the corresponding polynomials were
obtained in Sec. III. If we denote 7„as

n, +n2+n3=0 (mod5) and m~+m2+m3 ——0 (mod5).
Nonzero elements of h are given in Table IV.

VII. Zg && Z5 EMBEDDING

In this section we will consider the embedding of both
the groups in order to realize case (c), where the E6 group
breaks to the SU(3), X SU(2)l )& U(1) group. The
transformation properties of the fields under the discrete
group are given in Table V. The polynomials correspond-
ing to the different fields can be picked out from Sec. III ~

The most general gauge-invariant superpotential in this
case is

W=h
~

'Q, E„bu,'+h
~

'Q, Ed bd,'+h2 'L, Ed be,'+h 2 'L, Eb&,'h 3 'gagbno+h4", 'Q, Qbg, +h 4 'u,'dbg, '

+h 5 'Q, L~g,'&4 'u,'el'g, '+Pc 4 'd,'gbv,'+h 6 'E„,Ed bno,

Of these h5, h3, h4, and h6 have been evaluated previously in Tables II, III, and V. Furthermore B symmetry implies

h2 ——h &,
' h

&

——h2. The values of the couplings h &, hz, ~&, and ~& are listed in Tables VI and VII.

VIII. PHENOMENOLOGICAL OUTLOOK

We now wish to discuss whether any of the models presented in this paper have a chance of being realistic. Let us, for
instance, consider models of type (a), where the Higgs multiplet which gives masses to quarks and leptons comes from a
(27 + 27) pair. We see that in this case we automatically have the SO(10)-singlet field of the above pair light. This en-
ables us to introduce an intermediate-mass scale using the dimension-4 terms in the superpotential. This will have the
desirable effect of suppressing proton decay' which can arise from the couplings of A, 4 and A, 5 in Eq. (25). Coming to
the quark-lepton masses, we first note that in this model, even though there is no quark-lepton symmetry in the gauge
sector, the Y symmetry implies that quark and lepton masses are equal at the GUT scale, as is evident from Table II.
The most general up- and down-quark mass matrices (at the GUT scale) that follow in this case are

Ck, +k2+k3+k4 (Ck, +C k3+k4) C(k, +k~+k4)+k3
kJ +k2+Ck3+C k4 C (k( +k2)+k3

k)+C) k3

(k, +Ck2+k, k4)

C k ) +kq +Ck 3 +Ck4

C'k, +k, +CI, +I 4

(k, +Ck, +C'k, +C'k, )

where k; = (P„;). The down-quark mass matrix is obtained by replacing k; with k where k = (Pd; ). (We have not
exhibited the normalization factors for different generations. ) It is not clear whether these mass matrices can be realistic
for some choice of parameters k; and k . In any case it is not in obvious conflict with observations. Cases (b) and (c)
will have similar features. More detailed phenomenological analysis of these models is in progress.

IX. CONCLUSIONS

In this paper we have presented a detailed calculation of Yukawa couplings for the four-generation superstring model
for the CP based Calabi-Yau manifold. We find that none of these models lead to a transparently realistic pattern of
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quark and lepton masses. Our main purpose has been to illustrate the techniques of the calculations in detail.
One of the noteworthy features of these explicit calculations of Yukawa couplings has been the emergence of an in-

teresting structure within these couplings. Typically not all the couplings are of the same order but differ from each oth-
er by various powers of C. This may be one way to understand the mass hierarchy of different families. The search for
a model in which such a possibility is realized is in progress.
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